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This first lecture will be about f -divergences and their applications in classical statistics. We
introduce different definitions for f -divergences, from the most restrictive to the most general.

Definition 1 : let f : R+ → R be a convex function such that f(1) = 0. For two p.m.f. P,Q,
we define the f -divergence between P and Q by:

Df (P‖Q) =
∑
x

Q(x)f
(
P (x)
Q(x)

)

Definition 2 : in the case where P << Q i.e. ∀E,Q(E) = 0 → P (E) = 0, we may define the
f -divergence between P and Q by:

Df (P‖Q) =
∫
x

dQf
(

dP
dQ

)

where we denote by dP
dQ the Radon-Nikodym derivative of P relative to Q.

Definition 3 : let µ be any positive measure on X and suppose dP = p(x) dµ, dQ = q(x) dµ.
Then, we may define the f -divergence between P and Q by:

Df (P‖Q) =
∫
{q>0}

dµ q(x)f
(
p(x)
q(x)

)
+ f ′(∞)P [q = 0]

Remark 1 - Gelfand-Yaglom-Perez theorem ([GI59], [Per59]) states that:

Df (P‖Q) = sup
ε
Df (P|ε‖Q|ε)

= sup
π

m∑
k=1

P (Ek) log P (Ek)
Q (Ek)

where the supremum is taken over all finite measurable partitions π = {E1, . . . , Em} (m ≥ 1) of
X .

In this lecture, we will work with the Definition 1.

Examples:

− The total variation distance, denoted by TV (P,Q) is a f -divergence with:

f(x) = 1
2 |x− 1|

As pointed out by its name, the total variation distance is a distance.

− The Kullback-Leibler divergence, denoted by D(P‖Q), is a f -divergence with:

f(x) = x log x
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The Kullback-Leibler divergence is not a distance ; it does not satisfy the symmetry con-
dition.

− The chi-square divergence, denoted by χ2(P‖Q), is a f -divergence with:

f(x) = (x− 1)2

We also remind that χ2(P‖Q) may be written as:

χ2(P‖Q) =
∫ dP 2

dQ − 1

The chi-square divergence is not a distance ; it does not satisfy the symmetry condition.

− The Hellinger-squared divergence, denoted by H2(P,Q),is a f -divergence with:

f(x) = (
√
x− 1)2

We remind that H2(P,Q) may be written as:

H2(P,Q) =
∫ (√

dP −
√

dQ
)2

The Hellinger-squared divergence can be written as the square of a distance.

− The Symmetric Kullback-Leibler divergence, defined byDSKL(P‖Q) = D(P‖Q)+D(Q‖P ),
is a f -divergence with:

f(x) = x log x− log x

Note that even if DSKL is symmetric, it still is not a distance.

− We have that:

•
√
χ2(P‖P+Q

2 ) + χ2(Q‖P+Q
2 ) ;

•
√
D(P‖P+Q

2 ) +D(Q‖P+Q
2 )

both define a distance.

Theorem 1 (Main inequality). With the same hypothesis on f, P,Q as in Definition 1, we have:

Df (P‖Q) ≥ 0

Proof.

Df (P‖Q) =
∑
x

Q(x)f
(
P (x)
Q(x)

)
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Jensen
≥ f

(∑
x

P (x)Q(x)
Q(x)

)
= f(1) = 0

Remark 2 - WLOG, we may suppose f ′(1) = 0.

Theorem 2 (Monotonicity). Denoting by A,B two real random variables and with the same
hypothesis on f, P,Q as in Definition 1, we have:

Df (PA,B‖QA,B) ≥ Df (PA‖QA)

Proof.

Df (PA,B‖QA,B) =
∑
a,b

QA,B(a, b)f
(
PA,B(a, b)
QA,B(a, b)

)

=
∑
a

QA(a)
∑
b

QB|A(b|a)f
(
PB|A(b|a)PA(a)
QB|A(b|a)QA(a)

)
Jensen
≥

∑
a

QA(a)f
(
PA(a)
QA(a)

)

This drawing gives intuition about the following theorem:

PY |X

QX

PX

⇒

⇒

⇒

⇒

QY := PY |X ◦QX

PY := PY |X ◦ PX

Theorem 3 (Data Processing Inequality, DPI). Denoting by X, Y two real random variables
and with the same hypothesis on f, P,Q as in Definition 1, we have:

Df (PX‖QX) ≥ Df (PY ‖QY )

Proof.

Df (PX,Y ‖QX,Y ) =
∑
x,y

QX,Y (x, y)f
(
PX,Y (x, y)
QX,Y (x, y)

)

Since :

PX,Y (x, y)
QX,Y (x, y) = PX(x)PY |X(y|x)

QX(x)PY |X(y|x) = PX(x)
QX(x)
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Therefore, this last ratio does not depend on y. It leads to:

Df (PX,Y ‖QX,Y ) =
∑
x

QX(x)f
(
PX(x)
QX(x)

)
= Df (PX‖QX)

Using that Df (PX,Y ‖QX,Y ) ≥ Df (PY ‖QY ) concludes the proof.

Simple applications:

We fix P,Q as stated in Definition 1, A a subset of X and we define Y (ω) = 1A(ω).

1. |P (A)−Q(A)| ≤ TV (P,Q). Indeed, |P (A)−Q(A)| can be seen as TV [Ber(P (A)),Ber(Q(A))],
where Ber(p) designates a Bernouilli of parameter p.

2. |P (A)−Q(A)| ≤
√
χ2(P‖Q)Q(A) ;

3. |
√
P (A)−

√
Q(A)| ≤

√
H2(P,Q) ;

4. P (A) log 1
Q(A) ≤ D(P‖Q) + log 2. This last point may give results of the following form,

where (Pn), (Qn) denote sequences of distributions satisfying the usual assumptions, and
(An) denotes a sequence of subsets of X , such that Pn(An)→ 1.

Qn(An) ≥ 1
2 exp [−D(Pn‖Qn)(1 + o(1))]

Theorem 4 (Convexity ofDf ). With the same hypothesis on f as in Definition 1, the application
(P,Q) 7→ Df (P‖Q) is convex.

Proof. let λ ∈ (0, 1) and B ∼ Ber(λ). We denote by PX|B=0 = P0, PX|B=1 = P1, QX|B=0 =
Q0, QX|B=1 = Q1. We have P(B = 0) = 1− λ := λ and P(B = 1) = λ. We have:

Df (PX,B‖QX,B) =
∑
x,b

QX,B(x, b)f
(
PX,B
QX,B

)

= λDf (P1‖Q1) + λDf (P0‖Q0)
monotonicity/DPI

≥ Df (PX‖QX) = Df (λP1 + λP0‖λQ1 + λQ0)

which concludes the proof.

Remark 3 - Monotonicity is equivalent to DPI, which therefore implies convexity.

Corollary 1. We fix Q. Then, with the same hypothesis as in Definition 1, the application
P 7→ Df (P‖Q) is convex.
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We would like to introduce an analog of functions’ convex conjugate for distributions. We
remind of the definition of convex conjugate for functions:

f ∗ext(y) = sup
x∈R

[xy − fext(x)]

where fext is a convex extension of a convex function f to all R. It is possible to consider:

ψ∗(g) = sup
P

Eρ(g)−Dfext(P‖Q)

where the supremum is taken over all signed measures.

ψ∗(g) = sup
P

∑
x

P (x)g(x)−Q(x)fext

(
P (x)
Q(x)

)

Re-parametrizing P (x) = y(x)Q(x):

ψ∗(g) = sup
y(x)

∑
x

Q(x) [y(x)g(x)− fext [y(x)]]

=
∑
x

Q(x) sup
y

[yg(x)− fext(y)]

= EQf ∗ext [g(X)]

Theorem 5. With the same hypothesis as in Definition 1, the following holds for any fext such
that fext = f(x) for all x > 0:

Df (P‖Q) = sup
g

{
EP [g(x)]− EQ [f ∗ext [g(x)]]

}
where the supremum is taken over the set {g : R 7→ dom(f ∗ext)}.

Observation: e.g. fext =
{
f(x) x > 0
+∞ x ≤ 0

Proof. "Almost rigorous proof":

Df (P‖Q) =
∑
x

Q(x) sup
g
g
P (x)
Q(x) − f

∗
ext(g)

= sup
g(x)

∑
x

g(x)P (x)− f ∗ext [g(x)]Q(x)

Examples:
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1. Kullback-Leibler:

fext(x) =
{
x log x x > 0
+∞ x ≤ 0

f ∗ext(y) = ey−1

Then:

D(P‖Q) = sup
g

{
EP [g(x)]− EQ

[
eg(x)−1

] }
= sup

g
sup
c

{
EP [(g + c)(x)]− EQ

[
eg(x)+c−1

] }
= sup

g

{
EP [g]− logEQ [eg]

}
This last expression is the Donsker-Varadhan representation of the Kullback-Leibler diver-
gence ([DV83]).

2. For the chi-square divergence:

fext(x) = (x− 1)2

f ∗ext(y) = y + y2

4

Then:

χ2(P‖Q) = sup
g

{
EP (f)− EQ(g)− 1

4EQ(g2)
}

= sup
g

{
EP (g)− EQ(g)− 1

4VQ(g)
}

= sup
g

sup
λ

{
λ [Ep(g)− E(g)]− 1

4λ
2VQ(g)

}
To conclude:

χ2(P‖Q) = sup
g

(EPg − EQg)2

VQ(g)

The chi-square divergence is special because most f -divergence are "locally chi-square". The
following theorem precises what this last statement means:

Theorem 6. Let f be a twice continuously differentiable convex function such that lim supx→+∞ f
′′(λ) <

+∞. Then:

1. if χ2(P‖Q) < +∞ then for any 0 < λ < 1:

Df (λP + λQ‖Q) < +∞
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2. We have

lim
λ→0

1
λ2Df (λP + λQ‖Q) = 1

2f
′′(1)χ2(P‖Q) (1)

where the right-hand side is infinite if χ2(P‖Q) =∞ and f ′′(1) > 0).

Remark 4 - a way to remember this last theorem : when λ goes to 0, we have that λP + λQ
goes to Q. For P → Q, we obtain the quadratic approximation:

Df (P‖Q) = f ′′(1)χ2(P‖Q)(1 + o(1))

Proof. 1. We have:

f(1 + u) = f(1) + uf ′(1) + u2
∫ 1

0
(1− σ)f ′′(1 + uσ) dσ

WLOG we assume f(1)=f’(1)=0. Then:

Df (λP + λQ‖Q) =
∫

dQf
(

1 + λ
dP − dQ

dQ

)

=
∫

dQ
(
λ

dP − dQ
dQ

)2 ∫ 1

0
dσ(1− σ)f ′′

(
1 + σλ

dP − dQ
dQ

)

Since f ′′ > 0 (f convex) and since 1 + σλdP−dQ
dQ ≥ 1− λ, we obtain:

Df (λP + λQ‖Q) ≤ 1
2Cλλ

2χ2(P‖Q)

2. The last inequality implies that if χ2(P‖Q) < +∞, the dominated convergence theorem
applies:

1
λ2Df (λP + λQ‖Q) =

∫
dQ

(
dP − dQ

dQ

)2

f ′′
(

1 + σλ
dP − dQ

dQ

)
︸ ︷︷ ︸

→f ′′(1)

×
∫ 1

0
(1− σ) dσ︸ ︷︷ ︸

=1/2

−→ 1
2χ

2(P‖Q)f ′′(1), λ→ 0

We proved the case χ2(P‖Q) < +∞. The case χ2(P‖Q) = +∞ follows immediately (?).

7



I Application: Empirical distribution and χ2-information
Consider an arbitrary channel PY |X and some input distribution PX . Suppose that we have
Xi

iid∼ PX for i = 1, . . . , n. Let
P̂n = 1

n

n∑
i=1

δXi

denote the empirical distribution corresponding to this sample. Let PY = PY |X ◦ PX be the
output distribution corresponding to PX and PY |X ◦ P̂n be the output distribution corresponding
to P̂n (a random distribution). Note that when PY |X=x(·) = φ(· − x), where φ is a fixed density,
we can think of PY |X ◦ P̂n as a kernel density estimator (KDE), whose density is p̂n(x) = (φ ∗
P̂n)(x) 1

n

∑n
i=1 φ(Xi − x). Furthermore, using the fact that E[D(PY |X ◦ P̂n] = PY , we have

E[D(PY |X ◦ P̂n‖PX)] = D(PY ‖PX) + E[D(PY |X ◦ P̂n‖PY )] ,

where the first term represents the bias of the KDE due to convolution and increases with
bandwidth of φ, while the second term represents the variability of the KDE and decreases with
the bandwidth of φ. Surprisingly, the second term is is sharply (within a factor of two) given by
the Iχ2 information. More exactly, we prove the following result.

Proposition 1. We have

E[D(PY |X ◦ P̂n‖PY )] ≤ log
(

1 + 1
n
Iχ2(X;Y )

)
, (2)

where Iχ2(X;Y ) , χ2(PX,Y ‖PXPY ). Furthermore,

lim inf
n→∞

nE[D(PY |X ◦ P̂n‖PY )] ≥ log e
2 Iχ2(X;Y ) . (3)

In particular, E[D(PY |X ◦ P̂n‖PY )] = O(1/n) if Iχ2(X;Y ) <∞ and ω(1/n) otherwise.

Proof. First, a simple calculation shows that

E[χ2(PY |X ◦ P̂n‖PY )] = 1
n
Iχ2(X;Y ) .

Then from (??) and Jensen’s inequality we get (2).
To get the lower bound in (3), let X̄ be drawn uniformly at random from the sample

{X1, . . . , Xn} and let Ȳ be the output of the PY |X channel with input X̄. With this defini-
tion we have:

E[D(PY |X ◦ P̂n‖PY )] = I(Xn; Ȳ ) .

Next, apply (??) to get

I(Xn; Ȳ ) ≥
n∑
i=1

I(Xi; Ȳ ) = nI(X1; Ȳ ) .
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Finally, notice that

I(X1; Ȳ ) = D

n− 1
n

PXPY + 1
n
PXY

∥∥∥∥∥∥PXPY


and apply the local expansion of KL divergence (1) to get (3).

In the discrete case, by taking PY |X to be the identity (Y = X) we obtain the following
guarantee on the closeness between the empirical and the population distribution. This fact can
be used to test whether the sample was truly generated by the distribution PX .

Corollary 2. Suppose PX is discrete with support X , If X is infinite, then

lim
n→∞

nE[D(P̂n‖PX)] =∞ . (4)

Otherwise, we have
E[D(P̂n‖PX)] ≤ log e

n
(|X | − 1) . (5)

Proof. Simply notice that Iχ2(X;X) = |X | − 1.

Application to KDE:

Let φε = N (0, ε) and choose{
PY |X=x = N (x, ε)
P̃n,ε := PY |X ◦ P̂n = P̂n ∗ φε

We have:

E
[
D(P̃n,ε‖P ∗ φε)

]
� 1
n
Iχ2(X,X +

√
εZ)

Since:

E
[
D(P̃n,ε‖P )

]
= E

[
D(P̃n,ε‖P ∗ φε

]
+D(P ∗ φε‖P )

Under smoothness assumption:

Iχ2(X;X +
√
εZ) ∼ 1/ε

D(P ∗ φε‖P ) = (ε+ o(ε))IF (P ) ∼ ε

E
[
D(P̃n,ε‖P )

]
� 1
nε

+ ε

Which implies:

inf
ε
E
[
D(P̃n,ε‖P )

]
� 1√

n
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Theorem 7 (Hammersley-Chapman-Robbins bound [Ham50], [CR+51]). For all θ̂, θ1, θ2 in R:

Eθ1
[
(θ̂ − θ1)2

]
≥

[
Eθ1(θ̂)− Eθ2(θ̂)

]2
χ2(P θ2‖P θ1)

Proof. This last statement is simply the application of an earlier result:

χ2(P θ2‖P θ1) ≥

[
Eθ1(θ̂ − θ1)− Eθ2(θ̂ − θ1)

]2
Vθ1(θ̂ − θ1)

Theorem 8 (f -divergences are locally Fisher info). Under regularity condition on {P θ} we have

χ2(P θ1‖P θ2) = (θ1 − θ2)2IF (θ2) + o((θ1 − θ2)2)

Df (P θ1‖P θ2) = 1
2f
′′(1)(θ1 − θ2)2IF (θ2) + o((θ1 − θ2)2)

Here, we suppose that Eθ(θ̂) = θ i.e. that θ̂ is unbiased.

Corollary 3 (Cramer-Rao). Supposing that θ̂ is unbiased:

Eθ1
[
(θ̂ − θ1)2

]
≥ lim

θ2→θ1

(θ2 − θ1)2

χ2 (P θ2‖P θ1)

= 1
IF (θ1)

Corollary 4 (Biased Cramer-Rao). Denoting by b(θ) = Eθ(θ̂)− θ:

Eθ1
[
(θ̂ − θ1)2

]
≥ b(θ1)2 + 1 + b′(θ1)2

IF (θ1)

Theorem 9 (Van Trees [Tre68]). Let π be a density on Θ. Then:

Eθ∼πEθ
Xn

1
i.i.d.∼ P θ

[
(θ̂ − θ)2

]
≥ 1
IF (π) + Eθ∼π [IF (θ)]

where IF (π) :=
∫ π′2

π
.

Corollary 5. Under regularity assumptions:

R∗n = 1 + o(1)
n infθ∈Θ IF (θ)

"Nice" proof of Van Trees’ inequality. Let Rδ be the distance π(· − δ).
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Pθ,X :
{
θ ∼ Rδ

X ∼ P θ−δ Qθ,X :
{
θ ∼ R0
X ∼ P θ

Note that PX = QX . From variational characterization we get:

VQ(θ − θ̂) ≥

(
EQ

[
θ̂ − θ

]
− Ep

[
θ̂ − θ

])2

χ2(Pθ,X‖Qθ,X)

under both Q and P , θ̂ has the exactly the same distribution. The last inequality yields:

VQ(θ − θ̂) ≥ δ2

χ2(Pθ,X‖Qθ,X) , δ → 0, pθ − δ → pθ

We simply apply Taylor-Young:

χ2(Pθ,X‖Qθ,X) = χ2(Pθ‖Qθ)︸ ︷︷ ︸
χ2(Rδ‖R0)

+Eθ∼π
(
Pθ
Qθ

)2

χ2(Pθ−δ‖Pθ)︸ ︷︷ ︸
loc. Fisher information

= δ2IF (π) + δ2EθIF (θ) + o(δ2), δ → 0

This is the translation of Van Trees’ inequality into "information-theoretic vocabulary". The
advantage of the latter is that it can be applied also in cases where Fisher information does not
exist or non-regular, and thus obtain rates other than 1

n
.
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