
§ 7. f-divergences

In Lecture 2 we introduced the KL divergence that measures the dissimilarity between two dis-
tributions. This turns out to be a special case of the family of f -divergence between probability
distributions, introduced by Csiszár [Csi67]. Like KL-divergence, f -divergences satisfy a number of
useful properties:

• operational significance: KL divergence forms a basis of information theory by yielding
fundamental answers to questions in channel coding and data compression. Simiarly, f -
divergences such as χ2, H2 and TV have their foundational roles in parameter estimation,
high-dimensional statistics and hypothesis testing, respectively.

• invariance to bijective transformations of the alphabet

• data-processing inequality

• variational representations (à la Donsker-Varadhan)

• local behavior given by χ2 (in non-parametric cases) or Fisher information (in parametric
cases).

The purpose of this Lecture is to establish these properties and prepare the ground for appli-
cations in subsequent chapters. The important highlight is a joint range Theorem of Harremoës
and Vajda [HV11], which gives the sharpest possible comparison inequality between arbitrary
f -divergences (and puts an end to a long sequence of results starting from Pinsker’s inequality).
This material can be skimmed on the first reading and referenced later upon need.

7.1 Definition and basic properties of f-divergences

Definition 7.1 (f -divergence). Let f : (0,∞)→ R be a convex function with f(1) = 0. Let P and
Q be two probability distributions on a measurable space (X ,F). If P � Q then the f -divergence
is defined as

Df (P‖Q) , EQ
[
f

(
dP

dQ

)]
(7.1)

where dP
dQ is a Radon-Nikodym derivative and f(0) , f(0+). More generally, let f ′(∞) ,

limx↓0 xf(1/x). Suppose that Q(dx) = q(x)µ(dx) and P (dx) = p(x)µ(dx) for some common
dominating measure µ, then we have

Df (P‖Q) =

∫

q>0
q(x)f

(
p(x)

q(x)

)
dµ+ f ′(∞)P [q = 0] (7.2)

with the agreement that if P [q = 0] = 0 the last term is taken to be zero regardless of the value of
f ′(∞) (which could be infinite).
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Remark 7.1. For the discrete case, with Q(x) and P (x) being the respective pmfs, we can also
write

Df (P‖Q) =
∑

x

Q(x)f

(
P (x)

Q(x)

)

with the understanding that

• f(0) = f(0+),

• 0f(0
0) = 0, and

• 0f(a0 ) = limx↓0 xf(ax) = af ′(∞) for a > 0.

Remark 7.2. A nice property of Df (P‖Q) is that the definition is invariant to the choice of the
dominating measure µ in (7.2). This is not the case for other dissimilarity measures, e.g., the
squared L2-distance between the densities ‖p− q‖2L2(dµ) which is a popular loss function for density
estimation in statistics literature.

The following are common f -divergences:

• Kullback-Leibler (KL) divergence: We recover the usual D(P‖Q) in Lecture 2 by taking
f(x) = x log x.

• Total variation: f(x) = 1
2 |x− 1|,

TV(P,Q) ,
1

2
EQ
[∣∣∣∣
dP

dQ
− 1

∣∣∣∣
]

=
1

2

∫
|dP − dQ|.

Moreover, TV(·, ·) is a metric on the space of probability distributions.

• χ2-divergence: f(x) = (x− 1)2,

χ2(P‖Q) , EQ

[(
dP

dQ
− 1

)2
]

=

∫
(dP − dQ)2

dQ
=

∫
dP 2

dQ
− 1. (7.3)

Note that we can also choose f(x) = x2 − 1. Indeed, f ’s differing by a linear term lead to the
same f -divergence, cf. Proposition 7.1.

• Squared Hellinger distance: f(x) = (1−√x)
2
,

H2(P,Q) , EQ



(

1−
√
dP

dQ

)2

 =

∫ (√
dP −

√
dQ
)2

= 2− 2

∫ √
dPdQ. (7.4)

Note that H(P,Q) =
√
H2(P,Q) defines a metric on the space of probability distributions

(indeed, the triangle inequality follows from that of L2(µ) for a common dominating measure).

• Le Cam distance [LC86, p. 47]: f(x) = 1−x
2x+2 ,

LC(P‖Q) =
1

2

∫
(dP − dQ)2

dP + dQ
. (7.5)

Moreover,
√

LC(P‖Q) is a metric on the space of probability distributions [ES03].
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• Jensen-Shannon divergence: f(x) = x log 2x
x+1 + log 2

x+1 ,

JS(P,Q) = D
(
P
∥∥∥P +Q

2

)
+D

(
Q
∥∥∥P +Q

2

)
.

Moreover,
√

JS(P‖Q) is a metric on the space of probability distributions [ES03].

Remark 7.3. If Df (P‖Q) is an f -divergence, then it is easy to verify that Df (λP + λ̄Q‖Q) and
Df (P‖λP + λ̄Q) are f -divergences for all λ ∈ [0, 1]. In particular, Df (Q‖P ) = Df̃ (P‖Q) with

f̃(x) , xf( 1
x).

We start summarizing some formal observations about the f -divergences

Proposition 7.1 (Basic properties). The following hold:

1. Df1+f2(P‖Q) = Df1(P‖Q) +Df2(P‖Q).

2. Df (P‖P ) = 0.

3. Df (P‖Q) = 0 for all P 6= Q iff f(x) = c(x − 1) for some c. For any other f we have
Df (P‖Q) = f(0) + f ′(∞) > 0 for P ⊥ Q.

4. If PX,Y = PXPY |X and QX,Y = PXQY |X then the function Df (PY |X=x‖QY |X=x) is X -
measurable and

Df (PX,Y ‖QX,Y ) =

∫

X
dPX(x)Df (PY |X=x‖QY |X=x) , Df (PY |X‖QY |X |PX) . (7.6)

5. If PX,Y = PXPY |X and QX,Y = QXPY |X then

Df (PX,Y ‖QX,Y ) = Df (PX‖QX) . (7.7)

6. Let f1(x) = f(x) + c(x− 1), then

Df1(P‖Q) = Df (P‖Q) ∀P,Q .

In particular, we can always assume that f ≥ 0 and (if f is differentiable at 1) that f ′(1) = 0.

Proof. The first and second are clear. For the third property, verify explicitly that Df (P‖Q) = 0
for f = c(x− 1). Next consider general f and observe that for P ⊥ Q, by definition we have

Df (P‖Q) = f(0) + f ′(∞), (7.8)

which is well-defined (i.e., ∞−∞ is not possible) since by convexity f(0) > −∞ and f ′(∞) > −∞.
So all we need to verify is that f(0) + f ′(∞) = 0 if and only if f = c(x− 1) for some c ∈ R. Indeed,

since f(1) = 0, the convexity of f implies that x 7→ g(x) , f(x)
x−1 is non-decreasing. By assumption,

we have g(0+) = g(∞) and hence g(x) is a constant on x > 0, as desired.
The next two properties are easy to verify. By Assumption A1 in Section 3.4*, there exist

jointly measurable functions p and q such that dPY |X=x = p(y|x)dµ2 and QY |X = q(y|x)dµ2 for
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some positive measure µ2 on Y. We can then take µ in (7.2) to be µ = PX × µ2 which gives
dPX,Y = p(y|x)dµ and dQX,Y = q(y|x)dµ and thus

Df (PX,Y ‖QX,Y ) =

∫

X
dPX

∫

{y:q(y|x)>0}
dµ2 q(y|x)f

(
p(y|x)

q(y|x)

)
+ f ′(∞)

∫

X
dPX

∫

{y:q(y|x)=0}
dµ2 p(y|x)

(7.2)
=

∫

X
dPX

{∫

{y:q(y|x)>0}
dµ2 q(y|x)f

(
p(y|x)

q(y|x)

)
+ f ′(∞)

∫

{y:q(y|x)=0}
dµ2 p(y|x)

}

︸ ︷︷ ︸
Df (PY |X=x‖QY |X=x)

which is the desired (7.6).
The fifth property is verified similarly to the fourth. The sixth follows from the first and the

third. Note also that reducing to f ≥ 0 is done by taking c = f ′(1) (or any subdifferential at x = 1
if f is not differentiable).

7.2 Data-processing inequality; approximation by finite
partitions

Theorem 7.1 (Monotonicity).

Df (PX,Y ‖QX,Y ) ≥ Df (PX‖QX) . (7.9)

Proof. Note that in the case PX,Y � QX,Y (and thus PX � QX), the proof is a simple application
of Jensen’s inequality to definition (7.1):

Df (PX,Y ‖QX,Y ) = EX∼QX EY∼QY |X

[
f

(
PY |XPX

QY |XQX

)]

≥ EX∼QX

[
f

(
EY∼QY |X

[
PY |XPX

QY |XQX

])]

= EX∼QX

[
f

(
PX
QX

)]
.

To prove the general case we need to be more careful. By Assumptions A1-A2 in Section 3.4* we
may assume that there are functions p1, p2, q1, q2, positive measures µ1, µ2 on X and Y , respectively,
so that

dPXY = p1(x)p2(y|x)d(µ1 × µ2), dQXY = q1(x)q2(y|x)d(µ1 × µ2)

and dPY |X=x = p2(y|x)dµ2, dQY |X=x = q2(y|x)dµ2. We also denote p(x, y) = p1(x)p2(y|x), q(x, y) =
q1(x)q2(y|x) and µ = µ1 × µ2.

Fix t > 0 and consider a supporting line to f at t with slope µ, so that

f(u) ≥ f(t) + µ(t− u) , ∀u ≥ 0 .

Thus, f ′(∞) ≥ µ and taking u = λt for any λ ∈ [0, 1] we have shown:

f(λt) + λ̄tf ′(∞) ≥ f(t) , ∀t > 0, λ ∈ [0, 1] . (7.10)

Note that we need to exclude the case of t = 0 since f(0) =∞ is possible.
To rule out the latter possibility, suppose that indeed f(0) = ∞. If QX [p1(X) = 0] > 0

then we also have QX,Y [p1(X)p2(Y |X) = 0] > 0. Consequently, both Df (PX‖QX) = ∞ and
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Df (PX,Y ‖QX,Y ) =∞. Thus, from now on we assume that either f(0) <∞ (in which case (7.10)
also holds with t = 0), or that QX [p1(X) = 0] = 0.

Next, fix some x with q1(x) > 0 and consider the chain

∫

{y:q2(y|x)>0}
dµ2 q2(y|x)f

(
p1(x)p2(y|x)

q1(x)q2(y|x)

)
+
p1(x)

q1(x)
PY |X=x[q2(Y |x) = 0]f ′(∞)

(a)

≥ f

(
p1(x)

q1(x)
PY |X=x[q2(Y |x) > 0]

)
+
p1(x)

q1(x)
PY |X=x[q2(Y |x) = 0]f ′(∞)

(b)

≥ f

(
p1(x)

q1(x)

)

where (a) is by Jensen’s inequality and the convexity of f , and (b) by taking t = p1(x)
q1(x) and

λ = PY |X=x[q2(Y |x) > 0] in (7.10). Now multiplying the obtained inequality by q1(x) and integrating
over {x : q1(x) > 0} we get

∫

{q>0}
dµ q(x, y)f

(
p(x, y)

q(x, y)

)
+ PX,Y [q1(X) > 0, q2(Y |X) = 0] ≥

∫

{q1>0}
dµ1 q1(x)f

(
p1(x)

q1(x)

)
.

Adding f ′(∞)PX [q1(X) = 0] to both sides we obtain (7.9) since both sides evaluate to definition (7.2).

The following is the main result of this section.

Theorem 7.2 (Data processing). Consider a channel that produces Y given X based on the
conditional law PY |X (shown below).

PY |X

PX

QX

PY

QY

Let PY (resp. QY ) denote the distribution of Y when X is distributed as PX (resp. QX). For any
f -divergence Df (·‖·),

Df (PY ‖QY ) ≤ Df (PX‖QX).

Proof. This follows from the monotonicity (7.9) and (7.7).

Next we discuss some of the more useful properties of f -divergence that parallel those of KL
divergence in Theorem 2.5:

Theorem 7.3 (Properties of f -divergences).

• Non-negativity: Df (P‖Q) ≥ 0. If f is strictly convex1 at 1, then Df (P‖Q) = 0 if and only
if P = Q.

1By strict convexity at 1, we mean for all s, t ∈ [0,∞) and α ∈ (0, 1) such that αs + ᾱt = 1, we have
αf(s) + (1− α)f(t) > f(1).
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• Joint convexity: (P,Q) 7→ Df (P‖Q) is a jointly convex function. Consequently, P 7→
Df (P‖Q) and Q 7→ Df (P‖Q) are also convex.

• Conditioning increases f-divergence: Define the conditional f-divergence (similar to
Definition 2.4):

Df

(
PY |X‖QY |X |PX

)
, EX∼PX

[
Df

(
PY |X‖QY |X

)]
, (7.11)

Let PX
PY |X−−−→ PY and PX

QY |X−−−→ QY , i.e.,

PX

PY |X

QY |X

PY

QY

Then
Df (PY ‖QY ) ≤ Df

(
PY |X‖QY |X |PX

)
.

Proof. • Non-negativity follows from monotonicity by taking X to be unary. To show strict
positivity, suppose for the sake of contradiction that Df (P‖Q) = 0 for some P 6= Q. Then
there exists some measurable A such that p = P (A) 6= q = Q(A) > 0. Applying the data
processing inequality (with Y = 1{X∈A}), we obtain Df (Bern(p)‖Bern(q)) = 0. Consider two
cases

1. 0 < q < 1: Then Df (Bern(p)‖Bern(q)) = qf(pq ) + q̄f( p̄q̄ ) = f(1);

2. q = 1: Then p < 1 and Df (Bern(p)‖Bern(q)) = f(p) + p̄f ′(∞) = 0, i.e. f ′(∞) = f(p)
p−1 .

Since x 7→ f(x)
x−1 is non-decreasing, we conclude that f is affine on [p,∞).

Both cases contradict the assumed strict convexity of f at 1.

• Convexity follows from the DPI as in the proof of Theorem 5.1.

• Recall that we defined conditional divergence by (7.11) and hence the inequality follows from
the monotonicity. Another way to see the inequality is as result of applying Jensen’s inequality
to the jointly convex function Df (P‖Q).

Remark 7.4 (Strict convexity). Note that even when f is strictly convex at 1, the map (P,Q) 7→
Df (P‖Q) may not be strictly convex (e.g. TV(Bern(p),Bern(q)) = |p − q| is piecewise linear).
However, if f is strictly convex everywhere on R+ then so is Df . Indeed, if P 6= Q, then there
exists E such that P (E) 6= Q(E). By the DPI and the strict convexity of f , we have Df (P‖Q) ≥
Df (Bern(P (E))‖Bern(Q(E))) > 0.

Remark 7.5. We note that, more generally, we may call functional D(P‖Q) a “g-divergence”, or a
generalized dissimilarity measure, if it satisfies the following properties: positivity, monotonicity,
data processing inequality (DPI), conditioning increases divergence (CID) and convexity in the pair.
As we have seen in the proof of Theorem 5.1 the latter two are exactly equivalent. Furthermore,
our proof demonstrated that DPI and CID are both implied by monotonicity. If D(P‖P ) = 0
then monotonicity, as in (7.9), also implies positivity by taking X to be unary. Finally, notice
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that DPI also implies monotonicity by applying it to the (deterministic) channel (X,Y ) 7→ X.
Thus, requiring DPI (or monotonicity) for D automatically implies all the other main properties.
We remark also that there exist g-divergences which are not monotone transformations of any
f -divergence, cf. [PV10, Section V].

The following convenient property, a counterpart of Theorem 4.7, allows us to reduce any general
problem about f -divergences to the problem on finite alphabets. The proof is in Section 7.14*.

Theorem 7.4. Let P,Q be two probability measures on X with σ-algebra F . Given a finite F-
measurable partitions E = {E1, . . . , En} define the distribution PE on [n] by PE(i) = P [Ei] and
QE(i) = Q[Ei]. Then

Df (P‖Q) = sup
E
Df (PE‖QE) (7.12)

where the supremum is over all finite F-measurable partitions E.

7.3 Total variation and Hellinger distance in hypothesis testing

Different f -divergences have different operational significance. For example, for hypothesis testing
the fundamental limit (minimum total probability of error) of binary hypothesis testing is given by
the total variation; for estimation under quadratic loss the Le Cam divergence (7.5) is useful, etc.
In this section, our goal is consider the problem of binary hypothesis testing and explain the special
roles of the total variation and Hellinger distances for this problem. The problem is formulated as
follows: given an observation (random variable) X, the goal is to decide whether X is drawn from
the distribution P or Q, often phrased in terms of two two competing hypotheses: H0 : X ∼ P
versus H1 : X ∼ Q. We will undertake a systematic study of this problem in Part III and the
extension to composite hypothesis testing in Part VI. For now, let us simply notice that one natural
goal could be to find a (possibly randomized) decision function φ : X → {0, 1} such that the “total
probability of error”

P [φ(X) = 1] +Q[φ(X) = 0] (7.13)

is minimized.

Theorem 7.5. 1. We have the following sup-representations of total variation:

TV(P,Q) = sup
E
P (E)−Q(E) =

1

2
sup
f∈F

EP [f(X)]− EQ[f(X)] (7.14)

where the first supremum is over all measurable sets E, and the second is over F = {f : X →
R, ‖f‖∞ ≤ 1}. In particular, the minimal sum of error probabilities in (7.13) is given by

min
φ
{P [φ(X) = 1] +Q[φ(X) = 0]} = 1− TV(P,Q), (7.15)

where the minimum is over all decision rules φ : X → {0, 1}.2

2. We have the following inf-representation of TV. Provided that the diagonal {(x, x) : x ∈ X}
is measurable,

TV(P,Q) = inf
PX,Y
{P [X 6= Y ] : PX = P, PY = Q}, (7.16)

where the set of joint distribution PX,Y with the property PX = P and PY = Q are called
couplings of P and Q.

2The extension of (7.15) from from simple to composite hypothesis testing is in (34.1).

79



Proof. Let p, q, µ be as in Definition 7.1. Then for any f ∈ F we have

∫
f(x)(p(x)− q(x))dµ ≤

∫
|p(x)− q(x)|dµ = 2TV(P,Q) ,

which establishes that second supremum in (7.14) lower bounds TV, and hence (by taking f(x) =
2 · 1E(x)− 1) so does the first. For the other direction, let E = {x : p(x) > q(x)} and notice

0 =

∫
(p(x)− q(x))dµ =

∫

E
+

∫

Ec
(p(x)− q(x))dµ ,

implying that
∫
Ec(q(x)− p(x))dµ =

∫
E(p(x)− q(x))dµ. But the sum of these two integrals precisely

equals 2TV, which implies that this choice of E attains equality in (7.14).
For the inf-representation [Str65], we notice that given a coupling PX,Y we have from (7.14)

with E as above:

TV(P,Q) = P [E]−Q[E] = PX,Y [X ∈ E]− PX,Y [Y ∈ E] ≤ PX,Y [X 6= Y ] ,

showing that the inf-reprensentation is always an upper bound. To show that this bound is tight
one constructs X,Y as follows: with probability π ,

∫
min(p(x), q(x))dµ we take X = Y = c with

c sampled from a distribution with density r(x) = 1
π min(p(x), q(x)), whereas with probability 1− π

we take X,Y sampled independently from distributions p1(x) = 1
1−π (p(x)−min(p(x), q(x))) and

q1(x) = 1
1−π (q(x)−min(p(x), q(x))). The result follows upon verifying that this PX,Y indeed defines

a coupling of P to Q and applying the identity

TV(P,Q) = 1−
∫

min(p(x), q(x))dµ .

Remark 7.6 (Variational representation). The sup-representation (7.14) of the total variation will
be extended to general f -divergences in Section 7.13. In turn, the inf-representation (7.16) has no
analogs for other f -divergences, with the notable exception of Marton’s d2, see (??). Distances
satisfying inf-representations are often called Wasserstein distances, and hence we may think of TV
as the Wasserstein distance with respect to Hamming distance d(x, x′) = 1{x 6= x′} on X . The
benefit of variational representations is that choosing a particular coupling in (7.16) gives an upper
bound on TV(P,Q), and choosing a particular f in (7.14) yields a lower bound.

Of particular relevance is the special case of multiple-sample testing, where the data X =
(X1, . . . , Xn) are i.i.d. drawn from either P or Q. In other words, the goal is to test

H0 : X ∼ P⊗n vs H1 : X ∼ Q⊗n.

By Theorem 7.5, the optimal total probability of error is given by 1 − TV(P⊗n, Q⊗n). By the
data processing inequality, TV(P⊗n, Q⊗n) is a non-decreasing sequence in n (and bounded by 1 by
definition) and hence converges. One would expect that as n → ∞, TV(P⊗n, Q⊗n) converges to
1 and consequently, the probability of error in the hypothesis test vanishes. It turns out that for
fixed distributions P 6= Q, large deviation theory (see Lecture 15) shows that TV(P⊗n, Q⊗n) indeed
converges to one as n→∞ and, in fact, exponentially fast:

TV(P⊗n, Q⊗n) = 1− exp(−nC(P,Q) + o(n)), (7.17)
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where the exponent C(P,Q) > 0 is known as the Chernoff Information of P and Q. However, as
frequently encountered in high-dimensional statistical problems, if the distributions P = Pn and
Q = Qn depend on n, then the large-deviation asymptotics in (7.17) can no longer be directly
applied. Since computing the total variation between two n-fold product distributions is typically
difficult, understanding how a more computationally tractable f -divergence is related to the total
variation may give insight on its behavior. It turns out Hellinger distance is precisely suited for this
task.

Shortly, we will show the following relation between TV and the Hellinger divergence:

1

2
H2(P,Q) ≤ TV(P,Q) ≤ H(P,Q)

√
1− H2(P,Q)

4
≤ 1. (7.18)

Direct consequences of the bound (7.18) are:

• H2(P,Q) = 2, if and only if TV(P,Q) = 1. In this case, the probability of error is zero since
essentially P and Q have disjoint supports.

• H2(P,Q) = 0 if and only if TV(P,Q) = 0. In this case, the smallest total probability of error
is one, meaning the best thing to do is to flip a coin.

• Hellinger consistency is equivalent to TV consistency: we have

H2(Pn, Qn)→ 0 ⇐⇒ TV(Pn, Qn)→ 0 (7.19)

H2(Pn, Qn)→ 2 ⇐⇒ TV(Pn, Qn)→ 1; (7.20)

however, the speed of convergence need not be the same.

Theorem 7.6. For any sequence of distributions Pn and Qn, as n→∞,

TV(P⊗nn , Q⊗nn )→ 0 ⇐⇒ H2(Pn, Qn) = o

(
1

n

)

TV(P⊗nn , Q⊗nn )→ 1 ⇐⇒ H2(Pn, Qn) = ω

(
1

n

)

Proof. For convenience, let X1, X2, ...Xn
i.i.d.∼ Qn. Then

H2(P⊗nn , Q⊗nn ) = 2− 2E



√√√√

n∏

i=1

Pn
Qn

(Xi)




= 2− 2

n∏

i=1

E

[√
Pn
Qn

(Xi)

]
= 2− 2

(
E

[√
Pn
Qn

])n

= 2− 2

(
1− 1

2
H2(Pn, Qn)

)n
. (7.21)

We now use (7.21) to conclude the proof. Recall from (7.19) that TV(P⊗nn , Q⊗nn ) → 0 if
and only if H2(P⊗nn , Q⊗nn ) → 0, which happens precisely when H2(Pn, Qn) = o( 1

n). Similarly,
by (7.20), TV(P⊗nn , Q⊗nn ) → 1 if and only if H2(P⊗nn , Q⊗nn ) → 2, which is further equivalent to
H2(Pn, Qn) = ω( 1

n).

Remark 7.7. Property (7.21) is known as tensorization. While other f -divergences also satisfy
tensorization, see Section 7.12, the H2 has the advantage of a sandwich bound (7.18) making it the
most convenient tool for checking asymptotic testability of hypotheses.
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7.4 Inequalities between f-divergences and joint range

In this section we study the relationship, in particular, inequalities, between f -divergences. To gain
some intuition, we start with the ad hoc approach by proving the Pinsker’s inequality, which bounds
total variation from above in terms of the KL divergence.

Theorem 7.7 (Pinsker’s inequality).

D(P‖Q) ≥ (2 log e)TV2(P,Q). (7.22)

Proof. It suffices to consider the natural logarithm for the KL divergence. First we show that, by
the data processing inequality, it suffices to prove the result for Bernoulli distributions. For any
event E, let Y = 1{X∈E} which is Bernoulli distributed with parameter P (E) or Q(E). By the DPI,
D(P‖Q) ≥ d(P (E)‖Q(E)). If Pinsker’s inequality holds for all Bernoulli distributions, we have

√
1

2
D(P‖Q) ≥ TV(Bern(P (E)),Bern(Q(E)) = |P (E)−Q(E)|

Taking the supremum over E gives
√

1
2D(P‖Q) ≥ supE |P (E) − Q(E)| = TV(P,Q), in view of

Theorem 7.5.
The binary case follows easily from a second-order Taylor expansion (with integral remainder

form) of p 7→ d(p‖q):

d(p‖q) =

∫ p

q

p− t
t(1− t)dt ≥ 4

∫ p

q
(p− t)dt = 2(p− q)2

and TV(Bern(p),Bern(q)) = |p− q|.

Pinsker’s inequality is sharp in the sense that the constant (2 log e) in (7.22) is not improvable,
i.e., there exist {Pn, Qn} such that LHS

RHS → 2 as n → ∞. (This is best seen by inspecting the
local quadratic behavior in Proposition 5.2.) Nevertheless, this does not mean that the inequality
(7.22) is not improvable, as the RHS can be replaced by some other function of TV(P,Q). Indeed,
several such improvements of Pinsker’s inequality are known. But what is the best inequality? In
addition, another natural question is the reverse inequality: can we upper-bound D(P‖Q) in terms
of TV(P,Q)? Settling these questions rests on characterizing the joint range (the set of possible
values) of a given pair f -divergences. This systematic approach to comparing f -divergences (as
opposed to the ad hoc proof of Theorem 7.7 we presented above) is the subject of this section.

Definition 7.2 (Joint range). Consider two f -divergences Df (P‖Q) and Dg(P‖Q). Their joint
range is a subset of [0,∞]2 defined by

R , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on some measurable space} .

In addition, the joint range over all k-ary distributions is defined as

Rk , {(Df (P‖Q), Dg(P‖Q)) : P,Q are probability measures on [k]} .

As an example, Fig. 7.1 gives the joint range R between the KL divergence and the total
variation. By definition, the lower boundary of the region R gives the optimal refinement of
Pinsker’s inequality:

D(P‖Q) ≥ F (TV(P,Q)), F (ε) , inf
(P,Q):TV(P,Q)=ε

D(P‖Q) = inf{s : (ε, s) ∈ R}.
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Figure 7.1: Joint range of TV and KL divergence. The dashed line is the quadratic lower bound
given by Pinsker’s inequality (7.22).

Also from Fig. 7.1 we see that it is impossible to bound D(P‖Q) from above in terms of TV(P,Q)
due to the lack of upper boundary.

The joint range R may appear difficult to characterize since we need to consider P,Q over
all measurable spaces; on the other hand, the region Rk for small k is easy to obtain (at least
numerically). Revisiting the proof of Pinkser’s inequality in Theorem 7.7, we see that the key step
is the reduction to Bernoulli distributions. It is natural to ask: to obtain full joint range is it
possible to reduce to the binary case? It turns out that it is always sufficient to consider quaternary
distributions, or the convex hull of that of binary distributions.

Theorem 7.8 (Harremoës-Vajda [HV11]).

R = co(R2) = R4.

where co denotes the convex hull with a natural extension of convex operations to [0,∞]2.

We will rely on the following famous result from convex analysis (cf. e.g. [Egg58, Chapter 2,
Theorem 18]).

Lemma 7.1 (Fenchel-Eggleston-Carathéodory theorem). Let S ⊆ Rd and x ∈ co(S). Then there
exists a set of d + 1 points S′ = {x1, x2, . . . , xd+1} ∈ S such that x ∈ co(S′). If S has at most d
connected components, then d points are enough.

Proof. Our proof will consist of three claims:

• Claim 1: co(R2) ⊂ R4

• Claim 2: Rk ⊂ co(R2)
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• Claim 3: R = R4

We can see that Claims 1-2 prove the most interesting part:
⋃∞
k=1Rk = co(R2). Claim 3 is more

technical and its proof can be found in [HV11]. However, we notice that approximation theorem 7.4
allows us to conclude that any point (df , dg) ∈ R is a limit of points in

⋃∞
k=1Rk. For inequalities

between Df and Dg we are only interested in the closure of R, and thus Claims 1-2 are sufficient.
We start with Claim 1. Given any two pairs of distributions (P0, Q0) and (P1, Q1) on some

space X and given any α ∈ [0, 1], we construct a random variable Z = (X,B) with B ∼ Bern(α),
where PX|B=i = Pi and QX|B=i = Qi for i = 0, 1. Then by (7.6) we get

Df (PX,B‖QX,B) = ᾱDf (P0‖Q0) + αDf (P1‖Q1) ,

and similarly for the Dg. Thus, R is convex. Next, notice that R2 is the image of [0, 1]2 and

R2 = R̃2 ∪ {(pf ′(∞), pg′(∞)) : p ∈ (0, 1]} ∪ {(qf(0), qg(0)) : q ∈ (0, 1]} ,

where R̃2 is the image of (0, 1)2 of the continuous map

(p, q) 7→
(
Df (Bern(p)‖Bern(q)), Dg(Bern(p)‖Bern(q))

)
.

Since (0, 0) ∈ R̃2, we can see that regardless of which f(0), f ′(∞), g(0), g′(∞) are infinite, the set
R2 ∩ R2 is connected. Thus, by Lemma 7.1 any point in co(R2) is a combination of two points in
R2. By the argument above, then, R2 ⊂ R4.

Next, we prove Claim 2. Fix P,Q on [k] and denote their PMFs (pj) and (qj), respectively. Note
that without changing either Df (P‖Q) or Dg(P‖Q) (but perhaps, by increasing k by 1), we can
make qj > 0 for j > 1 and q1 = 0, which we thus assume. Denote φj =

pj
qj

for j > 1 and consider

the set

S = {Q̃ = (q̃j)j∈[k] : q̃j ≥ 0,
∑

q̃j = 1, q̃1 = 0,

k∑

j=2

q̃jφj ≤ 1} .

We also define a subset Se ⊂ S consisting of points Q̃ of two types:

1. q̃j = 1 for some j ≥ 2 and φj ≤ 1.

2. q̃j1 + q̃j2 = 1 for some j1, j2 ≥ 2 and q̃j1φj1 + q̃j2φj2 = 1 .

It can be seen that Se are precisely all the extreme points of S. Indeed, any Q̃ ∈ S with
∑

j≥2 q̃jφj < 1
with more than one non-zero atom cannot be extremal (since there is only one active linear constraint∑

j q̃j = 1). Similarly, Q̃ with
∑

j≥2 q̃jφj = 1 can only be extremal if it has one or two non-zero
atoms.

We next claim that any point in S can be written as a convex combination of finitely many
points in Se. This can be seen as follows. First, we can view S and Se as subsets of Rk−1. S is
clearly closed and convex. By a theorem of Krein-Milman S coincides with the closure of the convex
hull of its extreme points. However, co(Se) is compact (hence closed) since by Lemma 7.1 it is a
continuous image of a product of k copies of Se and a probability simplex on [k]. Thus S = co(Se)
and, in particular, there are probability weights {αi, i ∈ [m]} and extreme points Q̃i ∈ Se so that

Q =

m∑

i=1

αiQ̃i . (7.23)
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Next, to each Q̃ we associate P̃ = (p̃j)j∈[k] as follows:

p̃j =

{
φj q̃j , j ∈ {2, . . . , k} ,
1−∑k

j=2 φj q̃j , j = 1

We then have that
Q̃ 7→ Df (P̃‖Q̃) =

∑

j≥2

q̃jf(φj) + f ′(∞)p̃1

affinely maps S to [0,∞] (note that f(0) or f ′(∞) can equal ∞). In particular, if we denote
P̃i = P̃ (Q̃i) corresponding to Q̃i in decomposition (7.23), we get

Df (P‖Q) =
m∑

i=1

αiDf (P̃i‖Q̃i) ,

and similarly for Dg(P‖Q). We are left to show that (P̃i, Q̃i) are supported on at most two points.
Indeed, for Q̃ ∈ Se the set {j ∈ [k] : q̃j > 0 or p̃j > 0} has cardinality at most two (for the second
type extremal points we notice p̃j1 + p̃j2 = 1 implying p̃1 = 0).

From (7.23) we were able to represent an element of R̃k as convex combination of k elements of
R̃2, concluding the proof of Claim 2.

7.5 Examples of computing joint range

7.5.1 Hellinger distance versus total variation

The joint range R2 of H2 and TV over binary distributions is simply:

R2 =
{

(2(1−√pq −√p̄q̄), |p− q|) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1
}
.

shown as non-convex grey region in Fig. 7.2. By Theorem 7.8, their full joint range R is the convex
hull of R2, which turns out to be exactly described by the sandwich bound (7.18) shown earlier in
Section 7.3. This means that (7.18) is not improvable. Indeed, with t ranging from 0 to 1,

• the upper boundary is achieved by P = Bern(1+t
2 ), Q = Bern(1−t

2 ),

• the lower boundary is achieved by P = (1− t, t, 0), Q = (1− t, 0, t).

7.5.2 KL divergence versus total variation

The joint range between KL and TV was previously shown in Fig. 7.1. Although there is no known
close-form expression, the following parametric formula of the lower boundary (see Fig. 7.1) is
known [FHT03, Theorem 1]:

{
TVt = 1

2 t
(

1−
(
coth(t)− 1

t

)2)

Dt = −t2csch2(t) + t coth(t) + log(tcsch(t))
, t ≥ 0. (7.24)

where we take the natural logarithm. Here is a corollary (weaker bound) due to [Vaj70]:

D(P‖Q) ≥ log
1 + TV(P,Q)

1− TV(P,Q)
− 2TV(P,Q)

1 + TV(P,Q)
. (7.25)

Both bounds are stronger than Pinsker’s inequality (7.22). Note the following consequences:
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Figure 7.2: The joint range R of TV and H2 is characterized by (7.18), which is the convex hull of
the grey region R2.

• D → 0⇒ TV→ 0, which can be deduced from Pinsker’s inequality;

• TV → 1⇒ D →∞ and hence D = O(1) implies that TV is bounded away from one. This
can be obtained from (7.24) or (7.25), but not Pinsker’s inequality.

7.5.3 χ2 and total variation

Proposition 7.2. We have the following bound

χ2(P‖Q) ≥ f(TV(P,Q)), f(t) =

{
4t2 . t ≤ 1

2
t

1−t t ≥ 1
2 .
, (7.26)

where function f is a a convex increasing bijection of [0, 1) onto [0,∞). Furthermore, for every
s ≥ f(t) there exists a pair of distributions such that χ2(P‖Q) = s and TV(P,Q) = t.

Proof. We claim that the binary joint range is convex. Indeed,

TV(Bern(p),Bern(q)) = |p− q| , t, χ2(Bern(p)‖Bern(q)) =
(p− q)2

q(1− q) =
t2

q(1− q) .

Given |p− q| = t, let us determine the possible range of q(1− q). The smalles value of q(1− q) is
always 0 by choosing p = t, q = 0. The largest value will be 1/4 if t ≤ 1/2 (by choosing p = 1/2− t,
q = 1/2). If t > 1/2 then we can at most get t(1 − t) (by setting p = 0 and q = t). Thus
we get χ2(Bern(p)‖Bern(q)) ≥ f(|p − q|) as claimed. Convexity follows since derivative of f is
monotoinically increasing.

7.6 A selection of inequalities between various divergences

This section presents a collection of useful inequalities. For a more complete treatment, con-
sider [SV16] and [Tsy09, Sec. 2.4]. Most of these inequalities are joint ranges, which means they are
tight.
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• KL vs TV: see (7.24). There is partial comparison in the other direction (“reverse Pinsker”,
cf. [SV16, Section VI]):

D(P‖Q) ≤ log

(
1 +

2

Qmin
TV(P,Q)2

)
≤ 2 log e

Qmin
TV(P,Q)2 , Qmin = min

x
Q(x)

• KL vs Hellinger:

D(P ||Q) ≥ 2 log
2

2−H2(P,Q)
. (7.27)

There is a partial result in the opposite direction (log-Sobolev inequality for Bonami-Beckner
semigroup, cf. [DSC, Theorem A.1]):

D(P‖Q) ≤
log( 1

Qmin
− 1)

1− 2Qmin

(
1− (1−H2(P,Q))2

)
, Qmin = min

x
Q(x)

• KL vs χ2:
0 ≤ D(P ||Q) ≤ log(1 + χ2(P ||Q)) ≤ log e · χ2(P‖Q) . (7.28)

(i.e. no lower-bound on KL in terms of χ2 is possible).

• TV and Hellinger: see (7.18). Another bound [Gil10]:

TV(P,Q) ≤
√
−2 ln

(
1− H2(P,Q)

2

)

• Le Cam and Hellinger [LC86, p. 48]:

1

2
H2(P,Q) ≤ LC(P,Q) ≤ H2(P,Q). (7.29)

• Le Cam and Jensen-Shannon [Top00]:

LC(P ||Q) log e ≤ JS(P,Q) ≤ LC(P ||Q) · 2 log 2 (7.30)

• χ2 and TV: The full joint range is given by (7.26). Two simple consequences are:

TV(P,Q) ≤ 1

2

√
χ2(P‖Q)

TV(P,Q) ≤ max

{
1

2
,

χ2(P‖Q)

1 + χ2(P‖Q)

}

where the second is useful for bounding TV away from one.

• JS and TV: the full joint region is given by

2d

(
1− TV(P,Q)

2

∥∥∥1

2

)
≤ JS(P,Q) ≤ TV(P,Q) · 2 log 2 . (7.31)

The lower bound is a consequence of Fano’s inequality. For the upper bound notice that for
p, q ∈ [0, 1] and |p − q| = τ the maximum of d(p‖p+q2 ) is attained at p = 0, q = τ (from the
convexity of d(·‖·)) and, thus, the binary joint-range is given by τ 7→ d(τ‖τ/2)+d(1−τ‖1−τ/2).
Since the latter is convex, its concave envelope is a straightline connecting endpoints at τ = 0
and τ = 1.
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7.7 Example: divergences between Gaussians

1. Total variation:

TV(N (0, σ2),N (µ, σ2)) = 2Φ

( |µ|
2σ

)
− 1 (7.32)

=

∫ |µ|
2σ

− |µ|
2σ

ϕ(x)dx (7.33)

=
|µ|√
2πσ

+O(µ2), µ→ 0. (7.34)

2. Hellinger:

H2(N (0, σ2)||N (µ, σ2)) = 2− 2e−
µ2

8σ2 =
µ2

4σ2
+O(µ3), µ→ 0.

More generally,

H2(N (µ1,Σ1)||N (µ2,Σ2)) = 2− 2
|Σ1|

1
4 |Σ2|

1
4

|Σ̄| 12
exp

{
−1

8
(µ1 − µ2)′Σ̄−1(µ1 − µ2)

}
,

where Σ̄ = Σ1+Σ2
2 .

3. KL divergence:

D(N (µ1, σ
2
1)||N (µ2, σ

2
2)) =

1

2
log

σ2
2

σ2
1

+
1

2

(
(µ1 − µ2)2

σ2
2

+
σ2

1

σ2
2

− 1

)
log e.

For a more general result see (2.4).

4. χ2-divergence:

χ2(N (µ, σ2)||N (0, σ2)) = e
µ2

σ2 − 1 =
µ2

σ2
+O(µ3), µ→ 0

χ2(N (µ, σ2)||N (0, 1)) =

{
eµ

2/(2−σ2)

σ
√

2−σ2
− 1 σ2 < 2

∞ σ2 ≥ 2

5. χ2-divergence for Gaussian mixtures [IS03]:

χ2(P ∗ N (0,Σ)||N (0,Σ)) = E[e〈Σ
−1X,X′〉]− 1 , X ⊥⊥ X ′ ∼ P .

7.8 Mutual information based on f-divergence

Given an f -divergence Df , we can define the a version of mutual information

If (X;Y ) , Df (PX,Y ‖PXPY ) .

Theorem 7.9 (Data processing). For U → X → Y , we have If (U ;Y ) ≤ If (U ;X).

Proof. Note that If (U ;X,Y ) = If (U ;X) = Df (PU,X‖PUPX) ≥ Df (PU,Y ‖PUPY ), where we ap-
plied the data-processing Theorem 7.2 to the (possibly stochastic) map (U,X) 7→ (U, Y ). See
also Remark 3.2.
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One often used property of the standard mutual information is the subadditivity : If PA,B|X =
PA|XPB|X (i.e. A and B are conditionally independent given X), then

I(X;A,B) ≤ I(X;A) + I(X;B). (7.35)

However, other notions of f -information have complicated relationship with subadditivity:

1. The f -information corresponding to the χ2-divergence, Iχ2(X;Y ) = χ2(PX,Y ‖PXPY ) is not
subadditive.

2. The f -information corresponding to total-variation ITV(X;Y ) = TV(PX,Y , PXPY ) is not
subadditive. Even worse, it can get stuck. For example, take X ∼ Bern(1/2) and A =
BSCδ(X), B = BSCδ(X) – two independent observations of X across the BSC. A simple
computation shows:

ITV(X;A,B) = ITV(X;A) = ITV(X;B) .

In other words, an additional observation does not improve TV-information at all. This is the
main reason for the famous herding effect in economics [Ban92].

3. The symmetric KL-divergence3 ISKL(X;Y ) = D(PX,Y ‖PXPY ) + D(PXPY ‖PX,Y ) satisfies,
quite amazingly [KF+09], the additivity property :

ISKL(X;A,B) = ISKL(X;A) + ISKL(X;B) (7.36)

To prove this, we first notice the following equivalent expression for ISKL:

ISKL(X;Y ) =
∑

x,x′
PX(x)PX(x′)D(PY |X=x‖PY |X=x′) . (7.37)

From (7.37) we get (7.36) by additivity of D(PA,B|X=x‖PA,B|X=x′). To prove (7.37) first
consider the obvious identity:

∑

x,x′
PX(x)PX(x′)[D(PY ‖PY |X=x′)−D(PY ‖PY |X=x)] = 0

which is rewritten as

∑

x,x′
PX(x)PX(x′)

∑

y

PY (y) log
PY |X(y|x)

PY |X(y|x′) = 0 . (7.38)

Next, notice that

ISKL(X;Y ) =
∑

x,y

[PX,Y (x, y)− PX(x)PY (y)] log
PX,Y (x, y)

PX(x)PY (y)
.

Since the marginals of PX,Y and PXPY coincide, we can replace log
PX,Y (x,y)
PX(x)PY (y) by any

log
PY |X(y|x)

f(y) for any f . We choose f(y) = PY |X(y|x′) to get

ISKL(X;Y ) =
∑

x,y

[PX,Y (x, y)− PX(x)PY (y)] log
PY |X(y|x)

PY |X(y|x′) .

Now averaging this over PX(x′) and applying (7.38) to get rid of the second term in [· · · ], we
obtain (7.37).

3This is the f -information corresponding to the Jeffery divergence D(P‖Q) +D(Q‖P ).
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7.9 Empirical distribution and χ2-information

Consider an arbitrary channel PY |X and some input distribution PX . Suppose that we have Xi
i.i.d.∼ PX

for i = 1, . . . , n. Let

P̂n =
1

n

n∑

i=1

δXi

denote the empirical distribution corresponding to this sample. Let PY = PY |X ◦ PX be the output

distribution corresponding to PX and PY |X ◦ P̂n be the output distribution corresponding to P̂n (a
random distribution). Note that when PY |X=x(·) = φ(·−x), where φ is a fixed density, we can think of

PY |X ◦P̂n as a kernel density estimator (KDE), whose density is p̂n(x) = (φ∗P̂n)(x) 1
n

∑n
i=1 φ(Xi−x).

Furthermore, using the fact that E[D(PY |X ◦ P̂n] = PY , we have

E[D(PY |X ◦ P̂n‖PX)] = D(PY ‖PX) + E[D(PY |X ◦ P̂n‖PY )] ,

where the first term represents the bias of the KDE due to convolution and increases with bandwidth
of φ, while the second term represents the variability of the KDE and decreases with the bandwidth
of φ. Surprisingly, the second term is is sharply (within a factor of two) given by the Iχ2 information.
More exactly, we prove the following result.

Proposition 7.3. We have

E[D(PY |X ◦ P̂n‖PY )] ≤ log

(
1 +

1

n
Iχ2(X;Y )

)
. (7.39)

Furthermore,

lim inf
n→∞

nE[D(PY |X ◦ P̂n‖PY )] ≥ log e

2
Iχ2(X;Y ) . (7.40)

In particular, E[D(PY |X ◦ P̂n‖PY )] = O(1/n) if Iχ2(X;Y ) <∞ and ω(1/n) otherwise.

Proof. First, a simple calculation shows that

E[χ2(PY |X ◦ P̂n‖PY )] =
1

n
Iχ2(X;Y ) .

Then from (7.28) and Jensen’s inequality we get (7.39).
To get the lower bound in (7.40), let X̄ be drawn uniformly at random from the sample

{X1, . . . , Xn} and let Ȳ be the output of the PY |X channel with input X̄. With this definition we
have:

E[D(PY |X ◦ P̂n‖PY )] = I(Xn; Ȳ ) .

Next, apply (6.2) to get

I(Xn; Ȳ ) ≥
n∑

i=1

I(Xi; Ȳ ) = nI(X1; Ȳ ) .

Finally, notice that

I(X1; Ȳ ) = D

(
n− 1

n
PXPY +

1

n
PXY

∥∥∥∥∥PXPY
)

and apply the local expansion of KL divergence (Proposition 5.2) to get (7.40).
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In the discrete case, by taking PY |X to be the identity (Y = X) we obtain the following guarantee
on the closeness between the empirical and the population distribution. This fact can be used to
test whether the sample was truly generated by the distribution PX .

Corollary 7.1. Suppose PX is discrete with support X , If X is infinite, then

lim
n→∞

nE[D(P̂n‖PX)] =∞ . (7.41)

Otherwise, we have

E[D(P̂n‖PX)] ≤ log e

n
(|X | − 1) . (7.42)

Proof. Simply notice that Iχ2(X;X) = |X | − 1.

Remark 7.8. For fixed PX , the tight asymptotic result is

lim
n→∞

nE[D(P̂n‖PX)] =
log e

2
(|supp(PX)| − 1) . (7.43)

See Lemma 11.1 below.

Corollary 7.1 is also useful for the statistical application of entropy estimation. Given n iid
samples, a natural estimator of the entropy of PX is the empirical entropy Ĥemp = H(P̂n) (plug-in
estimator). It is clear that empirical entropy is an underestimate, in the sense that the bias

E[Ĥemp]−H(PX) = −E[D(P̂n‖PX)]

is always non-negative. For fixed PX , Ĥemp is known to be consistent even on countably infinite
alphabets [AK01], although the convergence rate can be arbitrarily slow, which aligns with the
conclusion of (7.41). However, for large alphabet of size Θ(n), the upper bound (7.42) does not
vanish (this is tight for, e.g., uniform distribution). In this case, one need to de-bias the empirical
entropy (e.g. on the basis of (7.43)) or employ different techniques in order to achieve consistent
estimation.

7.10 Most f-divergences are locally χ2-like

In this section we prove analogs of Proposition 5.1 and Proposition 5.2 for the general f -divergences.

Theorem 7.10. Suppose that Df (P‖Q) <∞ and derivative of f(x) at x = 1 exist. Then,

lim
λ→0

1

λ
Df (λP + λ̄Q‖Q) = (1− P [suppQ])f ′(∞) ,

where as usual we take 0 · ∞ = 0 in the left-hand side.

Remark 7.9. Note that we do not need a separate theorem for Df (Q‖λP + λ̄Q) since the exchange
of arguments leads to another f -divergence with f(x) replaced by xf(1/x).

Proof. Without loss of generality we may assume f(1) = f ′(1) = 0 and f ≥ 0. Then, decomposing
P = µP1 + µ̄P0 with P0 ⊥ Q and P1 � Q we have

1

λ
Df (λP + λ̄Q‖Q) = µ̄f ′(∞) +

∫
dQ

1

λ
f

(
1 + λ

µP1 −Q
Q

)
.

Note that g(λ) = f (1 + λt) is positve and convex for every t ∈ R and hence 1
λg(λ) is monotonically

decreasing to g′(0) = 0 as λ↘ 0. Since for λ = 1 the integrand is assumed to be Q-integrable, the
dominated convergence theorem applies and we get the result.
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Theorem 7.11. Let f be twice continuously differentiable on (0,∞) with

lim sup
x→+∞

f ′′(x) <∞ .

If χ2(P‖Q) <∞, then Df (λ̄Q+ λP‖Q) <∞ for all 0 ≤ λ < 1 and

lim
λ→0

1

λ2
Df (λ̄Q+ λP‖Q) =

f ′′(1)

2
χ2(P‖Q) . (7.44)

If χ2(P‖Q) =∞ and f ′′(1) > 0 then (7.44) also holds, i.e. Df (λ̄Q+ λP‖Q) = ω(λ2).

Remark 7.10. Conditions of the theorem include D, DSKL, H2, JS, LC and all Rényi-type
divergences, with f(x) = 1

p−1(xp − 1), of orders p < 2. A similar result holds also for the case when

f ′′(x) → ∞ with x → +∞ (e.g. Rényi-type divergences with p > 2), but then we need to make
extra assumptions in order to guarantee applicability of the dominated convergence theorem (often
just the finiteness of Df (P‖Q) is sufficient).

Proof. Assuming that χ2(P‖Q) < ∞ we must have P � Q and hence we can use (7.1) as the
definition of Df . Note that under (7.1) without loss of generality we may assume f ′(1) = f(1) = 0
(indeed, for that we can just add a multiple of (x− 1) to f(x), which does not change the value of
Df (P‖Q)). From the Taylor expansion we have then

f(1 + u) = u2

∫ 1

0
(1− t)f ′′(1 + tu)dt .

Applying this with u = λP−QQ we get

Df (λ̄Q+ λP‖Q) =

∫
dQ

∫ 1

0
dt(1− t)λ2

(
P −Q
Q

)2

f ′′
(

1 + tλ
P −Q
Q

)
. (7.45)

Note that for any ε > 0 we have supx≥ε |f ′′(x)| , Cε < ∞. Note that P−Q
Q ≥ −1 and, thus, for

every λ the integrand is non-negative and bounded by
(
P −Q
Q

)2

C1−λ (7.46)

which is integrable over dQ× Leb[0, 1] (by finiteness of χ2(P‖Q) and Fubini, which applies due to
non-negativity). Thus, Df (λ̄Q+ λP‖Q) <∞. Dividing (7.45) by λ2 we see that the integrand is
dominated by (7.46) and hence we can apply the dominated convergence theorem to conclude

lim
λ→0

1

λ2
Df (λ̄Q+ λP‖Q)

(a)
=

∫ 1

0
dt(1− t)

∫
dQ

(
P −Q
Q

)2

lim
λ→0

f ′′
(

1 + tλ
P −Q
Q

)

=

∫ 1

0
dt(1− t)

∫
dQ

(
P −Q
Q

)2

f ′′(1) =
f ′′(1)

2
χ2(P‖Q) ,

which proves (7.44).
We proceed to proving that Df (λP + λ̄Q‖Q) = ω(λ2) when χ2(P‖Q) = ∞. If P � Q then

this follows by replacing the equality in (a) with ≥ due to Fatou lemma. If P 6� Q, we consider
decomposition P = µP1 + µ̄P0 with P1 � Q and P0 ⊥ Q. From definition (7.2) we have (for
λ1 = λµ

1−λµ̄)

Df (λP + λ̄Q‖Q) = (1− λµ̄)Df (λ1P1 + λ̄1Q‖Q) + λµ̄Df (P0‖Q) ≥ λµ̄Df (P0‖Q) .

Note that Df (P0‖Q) > 0 unless f = const(x− 1) (see Prop. 7.1) and the proof is complete.
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7.11 Local expansion of f-divergences in parametric families

In Section 5.3* we have already previewed the fact that in parametric families of distributions, the
Hessian of the KL divergence turns out to coincide with the Fisher information. Here we collect
such facts and their proofs. These materials form the basis of sharp bounds on parameter estimation
that we will study later in Lecture 29.

To start with an example, let us return to the Gaussian location family Pt , N (t, 1), t ∈ R.
From the identities presented in Section 7.7 we obtain the following asymptotics:

TV(Pt, P0) =
|t|√
2π

+ o(|t|), H2(Pt, P0) =
t2

4
+ o(t2) ,

χ2(Pt‖P0) = t2 + o(t2), D(Pt‖P0) =
t2

2 log e
+ o(t2) ,

LC(Pt, P0) =
1

4
t2 + o(t2) .

We can see that with the exception of TV, other f -divergences behave quadratically under small
displacement t→ 0. This turns out to be a general fact, and furthermore the coefficient in front
of t2 is given by the Fisher information (at t = 0). To proceed carefully, we need some technical
assumptions on the family Pt.

Definition 7.3 (Regular single-parameter families). Fix τ > 0, space X and a family Pt of
distributions on X , t ∈ [0, τ). We define the following types of conditions that we call regularity at
t = 0:

a) Pt(dx) = pt(x)µ(dx), for some measurable (t, x) 7→ pt(x) ∈ R+ and a fixed measure µ on X ;

b0) There exists a measurable function (s, x) 7→ ṗs(x), s ∈ [0, τ), x ∈ X , such that for µ-almost
every x0 we have

∫ τ
0 |ṗs(x0)|ds <∞ and

pt(x0) = p0(x0) +

∫ t

0
ṗs(x0)ds . (7.47)

Furthermore, for µ-almost every x0 we have limt↘0 ṗt(x0) = ṗ0(x0).

b1) We have ṗt(x) = 0 whenever p0(x) = 0 and, furthermore,

∫

X
µ(dx) sup

0≤t<τ

(ṗt(x))2

p0(x)
<∞ . (7.48)

c0) There exists a measurable function (s, x) 7→ ḣs(x), s ∈ [0, τ), x ∈ X , such that for µ-almost
every x0 we have

∫ τ
0 |ḣs(x0)|ds <∞ and

ht(x0) ,
√
pt(x0) =

√
p0(x0) +

∫ t

0
ḣs(x0)ds . (7.49)

Furthermore, for µ-almost every x0 we have limt↘0 ḣt(x0) = ḣ0(x0).

c1) The family of functions {(ḣt(x))2 : t ∈ [0, τ)} is uniformly µ-integrable.
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Remark 7.11. Recall that the uniform integrability condition c1) is implied by the following
stronger (but easier to verify) condition:

∫

X
µ(dx) sup

0≤t<τ
(ḣt(x))2 <∞ . (7.50)

Impressively, if one also assumes continuous differentiability of ht then the uniform integrability
condition becomes equivalent to the continuity of

t 7→ JF (t) , 4

∫
µ(dx)(ḣt(x))2 .

We refer to [Bor99, Appendix V] for this finesse.

Theorem 7.12. Given a family of distributions {Pt : t ∈ [0, τ)} satisfying the conditions a), b0)
and b1) in Definition 7.3. Then we have

χ2(Pt‖P0) = JF (0)t2 + o(t2) , (7.51)

D(Pt‖P0) =
JF (0)

2 log e
t2 + o(t2) , (7.52)

where JF (0) ,
∫
X µ(dx) (ṗ0(x))2

p0(x) <∞ is the Fisher information at t = 0.

Proof. From assumption b1) we see that for any x0 with p0(x0) = 0 we must have ṗt(x0) = 0 and
thus pt(x0) = 0 for all t ∈ [0, τ). Hence, we may restrict all intergrals below to subset {x : p0(x) > 0},
on which the ratio (pt(x0)−p0(x0))2

p0(x0) is well-defined. Consequently, we have by (7.47)

1

t2
χ2(Pt‖P0) =

1

t2

∫
µ(dx)

(pt(x)− p0(x))2

p0(x)

=
1

t2

∫
µ(dx)

1

p0(x)

(
t

∫ 1

0
duṗtu(x)

)2

(a)
=

∫
µ(dx)

∫ 1

0
du1

∫ 1

0
du2

ṗtu1(x)ṗtu2(x)

p0(x)

Note that by the continuity assumption in b1) we have ṗtu1(x)ṗtu2(x)→ ṗ2
0(x) for every (u1, u2, x) as

t→ 0. Furthermore, we also have
∣∣∣ ṗtu1 (x)ṗtu2 (x)

p0(x)

∣∣∣ ≤ sup0≤t<τ
(ṗt(x0))2

p0(x0) , which is integrable by (7.48).

Consequently, application of the dominated convergence theorem to the integral in (a) concludes
the proof of (7.51).

We next show that for any f -divergence with twice continuously differentiable f (and in fact,
without assuming (7.48)) we have:

lim inf
t→0

1

t2
Df (Pt‖P0) ≥ f ′′(1)

2
JF (0) . (7.53)

Indeed, similar to (7.45) we get

Df (Pt‖P0) =

∫ 1

0
dz(1− z)EX∼P0

[
f ′′
(

1 + z
pt(X)− p0(X)

p0(X)

)(
pt(X)− p0(X)

p0(X)

)2
]
. (7.54)
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Dividing by t2 notice that from b0) we have pt(X)−p0(X)
tp0(X)

a.s.−−→ ṗ0(X)
p0(X) and thus

f ′′
(

1 + z
pt(X)− p0(X)

p0(X)

)(
pt(X)− p0(X)

tp0(X)

)2

→ f ′′(1)

(
ṗ0(X)

p0

)2

.

Thus, applying Fatou’s lemma we recover (7.53).
Next, plugging f(x) = x log x in (7.54) we obtain for the KL divergence

1

t2
D(Pt‖P0) =

1

log e

∫ 1

0
dz EX∼P0


 1− z

1 + z pt(X)−p0(X)
p0(X)

(
pt(X)− p0(X)

tp0(X)

)2

 . (7.55)

The first fraction inside the bracket is between 0 and 1 and the second by sup0<t<τ

(
ṗt(X)
p0(X)

)2
, which

is P0-integrable by b1). Thus, dominated convergence theorem applies to the double integral in (7.54)
and we obtain

lim
t→0

1

t2
D(Pt‖P0) =

1

log e

∫ 1

0
dz EX∼P0

[
(1− z)

(
ṗ0(X)

p0(X)

)2
]
,

completing the proof of (7.52).

Theorem 7.12 applies to many cases (e.g. to smooth subfamilies of exponential families, for
which one can take µ = P0 and p0(x) ≡ 1), but it is not sufficiently general. To demonstrate the
issue, consider the following example.

Example 7.1 (Location families with compact support). We say that family Pt is a (scalar) location
family if X = R, µ = Leb and pt(x) = p0(x− t). Consider the following example, for α > −1:

p0(x) = Cα ×





xα, x ∈ [0, 1] ,

(2− x)α, x ∈ [1, 2] ,

0, otherwise

,

with Cα chosen from normalization. Clearly, here condition (7.48) is not satisfied and both χ2(Pt‖P0)
and D(Pt‖P0) are infinite for t > 0, since Pt 6� P0. But JF (0) <∞ whenever α > 1 and thus one
expects that a certain remedy should be possible. Indeed, one can compute those f -divergences that
are finite for Pt 6� P0 and find that for α > 1 they are quadratic in t. As an illustration, we have

H2(Pt, P0) =





Θ(t1+α), 0 ≤ α < 1

Θ(t2 log 1
t ), α = 1

Θ(t2), α > 1

(7.56)

as t→ 0. This can be computed directly, or from a more general results of [IK81, Theorem VI.1.1].4

The previous example suggests that quadratic behavior as t→ 0 can hold even when Pt 6� P0,
which is the case handled by the next (more technical) result, whose proof we placed in Section 7.14*).
One can verify that condition c1) is indeed satisfied for all α > 1 in Example 7.1, thus establishing
the quadratic behavior. Also note that the stronger (7.50) only applies to α ≥ 2.

4Statistical significance of this calculation is that if we were to estimate the location parameter t from n iid
samples, then precision δ∗n of the optimal estimator up to constant factors is given by solving H2(Pδ∗n , P0) � 1

n
,

cf. [IK81, Chapter VI]. For α < 1 we have δ∗n � n−
1

1+α which is notably better than the empirical mean estimator

(attaining precision of only n−
1
2 ). For α = 1/2 this fact was noted by D. Bernoulli in 1777 as a consequence of his

(newly proposed) maximum likelihood estimation.
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Theorem 7.13. Given a family of distributions {Pt : t ∈ [0, τ)} satisfying the conditions a), c0)
and c1) of Definition 7.3, we have

χ2(Pt‖ε̄P0 + εPt) = t2ε̄2
(
JF (0) +

1− 4ε

ε
J#(0)

)
+ o(t2) , ∀ε ∈ (0, 1) (7.57)

H2(Pt, P0) =
t2

4
JF (0) + o(t2) , (7.58)

where JF (0) = 4
∫
ḣ2

0dµ <∞ is the Fisher information and J#(0) =
∫
ḣ2

01{h0=0}dµ can be called
the Fisher defect at t = 0.

Example 7.2 (On Fisher defect). Note that in most cases of interest we will have the situation
that t 7→ ht(x) is actually differentiable for all t in some two-sided neighborhood (−τ, τ) of 0. In
such cases, h0(x) = 0 implies that t = 0 is a local minima and thus ḣ0(x) = 0, implying that the

defect J#
F = 0. However, for other families this will not be so, sometimes even when pt(x) is smooth

on t ∈ (−τ, τ) (but not ht). Here is such an example.
Consider Pt = Bern(t2). A straighforward calculation shows:

χ2(Pt‖ε̄P0 + εPt) = t2
ε̄2

ε
+O(t4), H2(Pt, P0) = 2(1−

√
1− t2) = t2 +O(t4) .

Taking µ({0}) = µ({1}) = 1 to be the counting measure, we get the following

ht(x) =

{√
1− t2, x = 0

|t|, x = 1
, ḣt(x) =





−t√
1−t2 , x = 0

sign(t), x = 1, t 6= 0

1, x = 1, t = 0 (just as an agreement)

.

Note that if we view Pt as a family on t ∈ [0, τ) for small τ , then all conditions a), c0) and c1) are
clearly satisfied (ḣt is bounded on t ∈ (−τ, τ)). We have JF (0) = 4 and J#(0) = 1 and thus (7.57)
recovers the correct expansion for χ2 and (7.58) for H2.

Notice that the non-smoothness of ht only becomes visible if we extend the domain to t ∈ (−τ, τ).
In fact, this issue is not seen in terms of densities pt. Indeed, let us compute the density pt and its
derivative ṗt explicitly too:

pt(x) =

{
1− t2, x = 0

t2, x = 1
, ṗt(x) =

{
−2t, x = 0

2t, x = 1
.

Clearly, pt is continuously differentiable on t ∈ (−τ, τ). Furthermore, the following expectation
(typically equal to JF (t) in (??))

EX∼Pt

[(
ṗt(X)

pt(X)

)2
]

=

{
0, t = 0

4 + 4t2

1−t2 , t 6= 0

is discontinuous at t = 0. To make things worse, at t = 0 this expectation does not match our
definition of the Fisher information JF (0) in Theorem 7.13, and thus does not yield the correct
small-t behavior for either χ2 or H2. In general, to avoid difficulties one should restrict to those
families with t 7→ ht(x) continuously differentiable in t ∈ (−τ, τ).
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7.12 Rényi divergences and tensorization

The following family of divergence measures introduced by Rényi is key in many applications
involving product measures. Although these measures are not f -divergences, they are obtained as
monotone transformation of an appropriate f -divergence and thus satisfy DPI and other properties
of f -divergences.

Definition 7.4. For any λ ∈ R \ 0, 1 we define the Rényi divergence of order λ as

Dλ(P‖Q) ,
1

λ− 1
logEQ

[(
dP

dQ

)λ]
,

where EQ[·] is understood as an f -divergence Df (P‖Q) with f(x) = xλ, see Definition 7.1. Condi-
tional Rényi divergence is defined as

Dλ(PX|Y ||QX|Y |PY ) , Dλ(PY × PX|Y ||PY ×QX|Y )

=
1

λ− 1
logEY∼PY

∫

X
(dPX|Y (x))λ(dQX|Y (a))1−λ .

Numerous properties of Rényi divergences are known, see [VEH14]. Here we only notice a few:

• Special cases of λ = 1
2 , 1, 2: Under mild regularity conditions limλ→1Dλ(P‖Q) = D(P‖Q). On

the other hand, for D2 is a monotone transformation of χ2 in (7.3), while D 1
2

is a monotone

transformation of H2 in (7.4).

• There is a version of the chain rule:

Dλ(PA,B||QA,B) = Dλ(PB||QB) +Dλ(PA|B||QA|B|P (λ)
B ) , (7.59)

where P
(λ)
B is the λ-tilting of PB towards QB given by

P
(λ)
B (b) , P λB(b)Q1−λ

B (b) exp{−(λ− 1)Dλ(PB||QB)} . (7.60)

• However, the key property is additivity under products, or tensorization:

Dλ(
∏

i

PXi‖
∏

i

QXi) =
∑

i

Dλ(PXi‖QXi) , (7.61)

which is a simple consequence of (7.59).

The following consequence of the chain rule will be crucial in statistical applications later.

Proposition 7.4. Consider product channels PY n|Xn =
∏
PYi|Xi and QY n|Xn =

∏
QYi|Xi. We

have (with all optimizations over all possible distributions)

inf
PXn ,QXn

Dλ(PY n‖QY n) =
n∑

i=1

inf
PXi ,QXi

Dλ(PYi‖QYi) (7.62)

sup
PXn ,QXn

Dλ(PY n‖QY n) =
n∑

i=1

sup
PXi ,QXi

Dλ(PYi‖QYi) =
n∑

i=1

sup
x,x′

Dλ(PYi|Xi=x‖QYi|Xi=x′) (7.63)
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In particular, for any collections of distributions {Pθ, θ ∈ Θ} and {Qθ, θ ∈ Θ}:
inf

P∈co{P⊗nθ },Q∈co{Q⊗nθ }
Dλ(P‖Q) ≥ n inf

P∈co{Pθ},Q∈co{Qθ}
Dλ(P‖Q) (7.64)

sup
P∈co{P⊗nθ },Q∈co{Q⊗nθ }

Dλ(P‖Q) ≤ n sup
P∈{Pθ},Q∈{Qθ}

Dλ(P‖Q) (7.65)

Remark 7.12. The mnemonic for (7.64)-(7.65) is “mixtures of products are less dissimilar than
products of mixtures”. The former arise in statistical problems with iid observations.

Proof. The second equality in (7.63) follows from the fact that Dλ is an increasing function of
an f -divergence, and thus maximization should be attained at an extreme point of the space of
probabilities, which are just the single-point masses. The main equalities (7.62)-(7.63) follow from
a) restricting optimizations to product distributions and invoking (7.61); and b) the chain rule for
Dλ. For example for n = 2, we fix PX2 and QX2 , which (via channels) induce joint distributions
PX2,Y 2 and QX2,Y 2 . Then we have

Dλ(PY1|Y2=y‖QY1|Y2=y′) ≥ inf
P̃X1

,Q̃X1

Dλ(P̃Y1‖Q̃Y1) ,

since PY1|Y2=y is a distribution induced by taking P̃X1 = PX1|Y2=y, and similarly for QY1|Y2=y′ . In
all, we get

Dλ(PY 2‖QY 2) = Dλ(PY2‖QY2) +Dλ(PY1|Y2
‖QY1|Y2

|P (λ)
Y2

) ≥
2∑

i=1

inf
PXi ,QXi

Dλ(PYi‖QYi) ,

as claimed. The case of sup is handled similarly.
From (7.62)-(7.63), we get (7.64)-(7.65) by taking X = Θ and specializing inf, sup to diagonal

distributions PXn and QXn , i.e. those with the property that P[X1 = · · · = Xn] = 1 and
Q[X1 = · · · = Xn] = 1).

7.13 Variational representation of f-divergences

In Theorem 4.5 we had a very useful variational representation of KL-divergence due to Donsker
and Varadhan. In this section we show how to derive such representations for other f -divergences
in a principled way. The proofs are slightly technical and given in Section 7.14* at the end of this
chapter.

Let f : (0,+∞)→ R be a convex function. The convex conjugate f∗ : R→ R ∪ {+∞} of f is
defined by:

f∗(y) = sup
x∈R+

xy − f(x) , y ∈ R . (7.66)

Denote the domain of f∗ by dom(f∗) , {y : f∗(y) <∞}. Two important properties of the convex
conjugates are

1. f∗ is also convex (which holds regardless of f being convex or not);

2. Biconjugation: (f∗)∗ = f , which means

f(x) = sup
y
xy − f∗(y)

and implies the following (for all x > 0 and y)

f(x) + f∗(g) ≥ xy .
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Similarly, we can define a convex conjugate for any convex functional Ψ(P ) defined on the space
of measures, by setting

Ψ∗(g) = sup
P

∫
gdP −Ψ(P ) . (7.67)

Under appropriate conditions (e.g. finite X ), biconjugation then yields the sought-after variational
representation

Ψ(P ) = sup
g

∫
gdP −Ψ∗(g) . (7.68)

Next we will now compute these conjugates for Ψ(P ) = Df (P‖Q). It turns out to be convenient
to first extend the definition of Df (P‖Q) to all finite signed measures P then compute the conjugate.
To this end, let fext : R → ∪{+∞} be an extension of f , such that fext(x) = f(x) for x ≥ 0 and
fext is convex on R. In general, we can always choose fext(x) =∞ for all x < 0. In special cases
e.g. f(x) = |x− 1|/2 or f(x) = (x− 1)2 we can directly take fext(x) = f(x) for all x. Now we can
define Df (P‖Q) for all signed measure measures P in the same way as in Definition 7.1 using fext

in place of f .
For each choice of fext we have a variational representation of f -divergence:

Theorem 7.14. Let P and Q be probability measures on X . Fix an extension fext of f . Then

Df (P‖Q) = sup
g:X→dom(f∗ext)

EP [g(X)]− EQ[f∗ext(g(X))]. (7.69)

where f∗ext is the conjugate of fext, i.e., f∗ext(y) = supx∈R xy − fext(x).

As a consequence of the variational characterization, we get the following properties for f -
divergences:

1. Convexity: First of all, note that Df (P‖Q) is expressed as a supremum of affine functions
(since the expectation is a linear operation). As a result, we get that (P,Q) 7→ Df (P‖Q) is
convex, which was proved in previous lectures using different method.

2. Weak lower semicontinuity: Recall the example in Remark 4.3, where {Xi} are i.i.d. Rademach-
ers (±1), and ∑n

i=1Xi√
n

D−→N (0, 1)

by the central limit theorem; however, by Proposition 7.1, for all n,

Df

(
PX1+X2+...+Xn√

n

∥∥∥∥N (0, 1)

)
= f(0) + f ′(∞) > 0,

since the former distribution is discrete and the latter is continuous. Therefore similar to
the KL divergence, the best we can hope for f -divergence is semicontinuity. Indeed, if X is
a nice space (e.g., Euclidean space), in (7.69) we can restrict the function g to continuous
bounded functions, in which case Df (P‖Q) is expressed as a supremum of weakly continuous
functionals (note that f∗ ◦ g is also continuous and bounded since f∗ is continuous) and is
hence weakly lower semi-continuous, i.e., for any sequence of distributions Pn and Qn such
that Pn

w−→ P and Qn
w−→ Q, we have

lim inf
n→∞

Df (Pn‖Qn) ≥ Df (P‖Q).
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3. Relation to DPI: As we discussed in (4.2) variational representations can be thought of as
extensions of the DPI. As an exercise, one should try to derive the estimate

|P [A]−Q[A]| ≤
√
Q[A] · χ2(P‖Q)

via both the DPI and (7.73).

Example 7.3 (Total variation). For total variation, we have f(x) = 1
2 |x−1|. Consider the extension

fext(x) = 1
2 |x− 1| for x ∈ R. Then

f∗ext(y) = sup
x

{
xy − 1

2
|x− 1|

}
=

{
+∞ if |y| > 1

2
y if |y| ≤ 1

2

.

Thus (7.69) gives
TV(P,Q) = sup

g:|g|≤ 1
2

EP [g(X)]− EQ[g(X)], (7.70)

which previously appeared in (7.14).

Example 7.4 (χ2-divergence). For χ2-divergence we have f(x) = (x− 1)2. Take fext(x) = (x− 1)2,

whose conjugate is f∗ext(y) = y + y2

4 . Applying (7.69) yields

χ2(P‖Q) = sup
g:X→R

EP [g(X)]− EQ

[
g(X) +

g2(X)

4

]
(7.71)

= sup
g:X→R

2EP [g(X)]− EQ[g2(X)]− 1 (7.72)

where the last step follows from a change of variable (g ← 1
2g − 1).

To get another equivalent, but much more memorable representation, we notice that (??) it is
not scale-invariant. To make it so, setting g = λh and optimizing over the λ ∈ R first we get

χ2(P‖Q) = sup
h:X→R

(EP [h(X)]− EQ[h(X)])2

VarQ(h(X))
. (7.73)

The statistical interpretation of (7.73) is as follows: if a test statistic h(X) is such that the separation
between its expectation under P and Q far exceeds its standard deviation, then this suggests the two
hypothesis can be distinguished reliably. The representation (7.73) will turn out useful in statistical
applications in Lecture 29 for deriving the Hammersley-Chapman-Robbins (HCR) lower bound as
well as its Bayesian version, see Section 29.5, and ultimately the Cramer-Rao and van Trees lower
bounds.

Example 7.5 (KL-divergence). In this case we have f(x) = x log x. Consider the extension
fext(x) =∞ for x < 0, whose convex conjugate is f∗(y) = log e

e exp(y). Hence (7.69) yields

D(P‖Q) = sup
g:X→R

EP [g(X)]− (EQ[exp{g(X)}]− 1)log e (7.74)

Note that in the last example, the variational representation (7.74) we obtained for the KL
divergence is not the same as the Donsker-Varadhan identity in Theorem 4.5, that is,

D(P‖Q) = sup
g:X→R

EP [g(X)]− logEQ[exp{g(X)}] . (7.75)
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In fact, (7.74) is weaker than (7.75) in the sense that for each choice of g, the obtained lower bound on
D(P‖Q) in the RHS is smaller. Furthermore, regardless of the choice of fext, the Donsker-Varadhan
representation can never be obtained from Theorem 7.14 because, unlike (7.75), the second term
in (7.69) is always linear in Q. It turns out if we define Df (P‖Q) = ∞ for all non-probability
measure P , and compute its convex conjugate, we obtain in the next theorem a different type of
variational representation, which, specialized to KL divergence in Example 7.5, recovers exactly the
Donsker-Varadhan identity.

Theorem 7.15. Consider the extension fext of f such that fext(x) = ∞ for x < 0. Let S = {x :
q(x) > 0} where q is as in (7.2). Then

Df (P‖Q) = f ′(∞)P [Sc] + sup
g

EP [g1S ]−Ψ∗Q,P (g) , (7.76)

where
Ψ∗Q,P (g) , inf

a∈R
EQ[f∗ext(g(X)− a)] + aP [S].

In the special case f ′(∞) =∞, we have

Df (P‖Q) = sup
g

EP [g]−Ψ∗Q(g), Ψ∗Q(g) , inf
a∈R

EQ[f∗ext(g(X)− a)] + a. (7.77)

Remark 7.13 (Marton’s divergence). Recall that in Theorem 7.5 we have shown both the sup and
inf characterizations for the TV. Do other f -divergences also possess inf characterizations? The
only other known example (to us) is due to Marton. Let

Dm(P‖Q) =

∫
dQ

(
1− dP

dQ

)2

+

,

which is clearly an f -divergence with f(x) = (1− x)2
+. We have the following [BLB04, Lemma 8.3]:

Dm(P‖Q) = inf{E[P 2[X 6= Y |Y ]] : X ∼ P, Y ∼ Q} ,

where infimum is over all couplings. To prove this, a simple calculation shows that the same
coupling used for (7.16) attains E[P 2[X 6= Y |Y ]] = Dm(P‖Q). On the other hand, for the case of
discrete P,Q (which can be considered without loss of generality due to Theorem 7.4), we have
PX,Y (x0, x0) ≤ PX(x0) = P (x0) for every x0. Thus dividing by PY (x0) = Q(x0) we get

P[X 6= Y |Y ] ≥ 1− P (Y )

Q(Y )
,

taking positive part of this, squaring and taking the expectation over Y ∼ Q completes the proof of

E[P2[X 6= Y |Y ]] ≤ Dm(P‖Q) .

Marton’s Dm divergence plays a crucial role in concentration of measure [BLB04, Chapter 8].
Note also that while Theorem 7.11 does not apply to Dm, due to absence of twice continuous
differentiability, it does apply to Dm(P‖Q) +Dm(Q‖P ).
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7.14* Technical proofs: convexity, local expansions and
variational representations

In this section we collect proofs of some technical theorems from this chapter.

Proof of Theorem 7.13. By definition we have

L(t) ,
1

ε̄2t2
χ2(Pt‖ε̄P0 + εPt) =

1

t2

∫

X
µ(dx)

(pt(x)− p0(x))2

ε̄p0(x) + εpt(x)
=

1

t2

∫
µ(dx)g(t, x)2 , (7.78)

where

g(t, x) ,
pt(x)− p0(x)√
ε̄p0(x) + εpt(x)

= φ(ht(x);x) , φ(h;x) ,
h2 − p0(x)√
ε̄p0(x) + εh2

.

By c0) the function t 7→ ht(x) ,
√
pt(x) is absolutely continuous (for µ-a.e. x). Below we will

show that ‖φ(·;x)‖Lip = suph≥0 |φ′(h;x)| ≤ 2−ε
(1−ε)

√
ε
. This implies that t 7→ g(t, x) is also absolutely

continuous and hence differentiable almost everywhere. Consequently, we have

g(t, x) = t

∫ 1

0
duġ(tu, x), ġ(t, x) , φ′(ht(x);x)ḣt(x) ,

Since φ′(·;x) is continuous with

φ′(h0(x);x) =

{
2, x : h0(x) > 0,
1√
ε
, x : h0(x) = 0

(7.79)

(we verify these facts below too), we conclude that

lim
s→0

ġ(s, x) = ġ(0, x) = ḣ0(x)

(
2 · 1{h0(x) > 0}+

1√
ε
1{h0(x) = 0}

)
, (7.80)

where we also used continuity ḣt(x)→ ḣ0(x) by assumption c0).
Substituting the integral expression for g(t, x) into (7.78) we obtain

L(t) =

∫
µ(dx)

∫ 1

0
du1

∫ 1

0
du2ġ(tu1, x)ġ(tu2, x) . (7.81)

Since |ġ(s, x)| ≤ C|hs(x)| for some C = C(ε), we have from Cauchy-Schwarz

∫
µ(dx)|̇g(s1, x)ġ(s2, x)| ≤ C2 sup

t

∫

X
µ(dx)ḣt(x)2 <∞ . (7.82)

where the last inequality follows from the uniform integrability assumption c1). This implies that
Fubini’s theorem applies in (7.81) and we obtain

L(t) =

∫ 1

0
du1

∫ 1

0
du2G(tu1, tu2) , G(s1, s2) ,

∫
µ(dx)ġ(s1, x)ġ(s2, x) .

Notice that if a family of functions {fα(x) : α ∈ I} is uniformly square-integrable, then the family
{fα(x)fβ(x) : α ∈ I, β ∈ I} is uniformly integrable simply because apply |fαfβ| ≤ 1

2(f2
α + f2

β).

102



Consequently, from the assumption c1) we see that the integral defining G(s1, s2) allows passing the
limit over s1, s2 inside the integral. From (7.80) we get as t→ 0

G(tu1, tu2)→ G(0, 0) =

∫
µ(dx)ḣ0(x)2

(
4 · 1{h0 > 0}+

1

ε
1{h0 = 0}

)
= JF (0) +

1− 4ε

ε
J#(0) .

From (7.82) we see that G(s1, s2) is bounded and thus, the bounded convergence theorem applies
and

lim
t→0

∫ 1

0
du1

∫ 1

0
du2G(tu1, tu2) = G(0, 0) ,

which thus concludes the proof of L(t)→ JF (0) and of (7.57) assuming facts about φ. Let us verify
those.

For simplicity, in the next paragraph we omit the argument x in h0(x) and φ(·;x). A straight-
forward differentiation yields

φ′(h) = 2h
h2

0(1− ε
2) + ε

2h
2

(ε̄h2
0 + εh2)3/2

.

Since h√
ε̄h2

0+εh2
≤ 1√

ε
and

h2
0(1− ε

2
)+ ε

2
h2

ε̄h2
0+εh2 ≤ 1−ε/2

1−ε we obtain the finiteness of φ′. For the continuity

of φ′ notice that if h0 > 0 then clearly the function is continuous, whereas for h0 = 0 we have
φ′(h) = 1√

ε
for all h.

We next proceed to the Hellinger distance. Just like in the argument above, we define

M(t) ,
1

t2
H2(Pt, P0) =

∫
µ(dx)

∫ 1

0
du1

∫ 1

0
du2ḣtu1(x)ḣtu2(x) .

Exactly as above from Cauchy-Schwarz and supt
∫
µ(dx)ḣt(x)2 <∞ we conclude that Fubini applies

and hence

M(t) =

∫ 1

0
du1

∫ 1

0
du2H(tu1, tu2) , H(s1, s2) ,

∫
µ(dx)ḣs1(x)ḣs2(x) .

Again, the family {ḣs1 ḣs2 : s1 ∈ [0, τ), s2 ∈ [0, τ} is uniformly integrable and thus from c0) we
conclude H(tu1, tu2) → 1

4JF (0). Furthermore, similar to (7.82) we see that H(s1, s2) is bounded
and thus

lim
t→0

M(t) =

∫ 1

0
du1

∫ 1

0
du2 lim

t→0
H(tu1, tu2) =

1

4
JF (0) ,

concluding the proof of (7.58).

Proceeding to variational representations, we prove the counterpart of Gelfand-Yaglom-Perez The-
orem 4.7.

Proof of Theorem 7.4. The lower bound Df (P‖Q) ≥ Df (PE‖QE) follows from the DPI. To prove
an upper bound, first we reduce to the case of f ≥ 0 by property 6 in Prop. 7.1. Then define sets
S = suppQ, F∞ = {dPdQ = 0} and for a fixed ε > 0 let

Fm =

{
εm ≤ f

(
dP

dQ

)
< ε(m+ 1)

}
,m = 0, 1, . . . .
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We have

ε
∑

m

mQ[Fm] ≤
∫

S
dQf

(
dP

dQ

)
≤ ε

∑

m

(m+ 1)Q[Fm] + f(0)Q[F∞]

≤ ε
∑

m

mQ[Fm] + f(0)Q[F∞] + ε . (7.83)

Notice that on the interval I+
m = {x > 1 : εm ≤ f(x) < ε(m+ 1)} the function f is increasing and

on I−m = {x ≤ 1 : εm ≤ f(x) < ε(m + 1)} it is decreasing. Thus partition further every Fm into
F+
m = {dPdQ ∈ I+

m} and F−m = {dPdQ ∈ I−m}. Then, we see that

f

(
P [F±m ]

Q[F±m ]

)
≥ εm .

Consequently, for a fixed n define the partition consisting of sets E = {F+
0 , F

−
0 , . . . , F

+
n , F

−
n , F∞, S

c,∪m>nFm}.
For this partition we have, by the previous display:

D(PE‖QE) ≥ ε
∑

m≤n
mQ[Fm] + f(0)Q[F∞] + f ′(∞)P [Sc] . (7.84)

We next show that with sufficiently large n and sufficiently small ε the RHS of (7.84) approaches
Df (P‖Q). If f(0)Q[F∞] =∞ (and hence Df (P‖Q) =∞) then clearly (7.84) is also infinite. Thus,
assume that f(0)Q[F∞] <∞.

If
∫
S dQf

(
dP
dQ

)
=∞ then the sum over m on the RHS of (7.83) is also infinite, and hence for

any N > 0 there exists some n such that
∑

m≤nmQ[Fm] ≥ N , thus showing that RHS for (7.84)

can be made arbitrarily large. Thus assume
∫
S dQf

(
dP
dQ

)
< ∞. Considering LHS of (7.83) we

conclude that for some large n we have
∑

m>nmQ[Fm] ≤ 1
2 . Then, we must have again from (7.83)

ε
∑

m≤n
mQ[Fm] + f(0)Q[F∞] ≥

∫

S
dQf

(
dP

dQ

)
− 3

2
ε .

Thus, we have shown that for arbitrary ε > 0 the RHS of (7.84) can be made greater than
Df (P‖Q)− 3

2ε.

Proof of Theorem 7.14. Armed with Theorem 7.4, it suffices to show (7.69) for finite X . Indeed,
for general X , given a finite partition E = {E1, . . . , En} of X , we say a function g : X → R is
E-compatible if g is constant on each Ei ∈ E . Taking the supremum over all finite partitions E we
get

Df (P‖Q) = sup
E
Df (PE‖QE)

= sup
E

sup
g:X→dom(f∗ext)

g E-compatible

EP [g(X)]− EQ[f∗ext(g(X))]

= sup
g:X→dom(f∗ext)

EP [g(X)]− EQ[f∗ext(g(X))],

where the last step follows is because the two sumprema combined is equivalent to the supremum
over all simple (finitely-valued) functions g, which are dense in all measurable functions.
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Next, consider finite X . Let S = {x ∈ X : Q(x) > 0} denote the support of Q. We show the
following statement

Df (P‖Q) = sup
g:S→dom(f∗ext)

EP [g(X)]− EQ[f∗ext(g(X))] + f ′(∞)P (Sc), (7.85)

which is equivalent to (7.69) simple because sup{x : x ∈ dom(f∗ext)} = limx→∞
fext(x)
x = f ′(∞). By

definition,

Df (P‖Q) =
∑

x∈S
Q(x)fext

(
P (x)

Q(x)

)

︸ ︷︷ ︸
,Ψ(P )

+f ′(∞) · P (Sc),

Consider the functional Ψ(P ) defined above where P takes values over all signed measures on S,
which can be identified with RS . The convex conjugate of Ψ(P ) is as follows: for any g : S → R,

Ψ∗(g) = sup
P

∑

x

P (x)g(x)−Q(x)

{
sup

h∈dom(f∗ext)

P (x)

Q(x)
h− f∗ext(h)

}

= sup
P

inf
h:S→dom(f∗ext)

∑

x

P (x)(g(x)− h(x)) +Q(x)f∗ext(h(x))

(a)
= inf

h:S→dom(f∗ext)
sup
P

∑

x

P (x)(g(x)− h(x)) + EQ[f∗ext(h)]

=

{
EQ[f∗ext(g(X))] g : S → dom(f∗ext)

+∞ otherwise
.

where (a) follows from the minimax theorem (which applies due to finiteness of X ). Applying the
convex duality in (7.68) yields the proof of the desired (7.85).

Proof of Theorem 7.15. First we argue that the supremum in the right-hand side of (7.76) can be
taken over all simple functions g. Then thanks to Theorem 7.4, it will suffice to consider finite alphabet
X . To that end, fix any g. For any δ, there exists a such that EQ[f∗ext(g−a)]−aP [S] ≤ Ψ∗Q,P (g) + δ.
Since EQ[f∗ext(g − an)] can be approximated arbitrarily well by simple functions we conclude that
there exists a simple function g̃ such that simultaneously EP [g̃1S ] ≥ EP [g1S ]− δ and

Ψ∗Q,P (g̃) ≤ EQ[f∗ext(g̃ − a)]− aP [S] + δ ≤ Ψ∗Q,P (g) + 2δ .

This implies that restricting to simple functions in the supremization in (7.76) does not change the
right-hand side.

Next consider finite X . We proceed to compute the conjugate of Ψ, where Ψ(P ) , Df (P‖Q) if
P is a probability measure on X and +∞ otherwise. Then for any g : X → R, maximizing over all
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