Spring 2020

CREST OFPR - Information Theory and Stats Final Exam

Due: Thur, Jan 23, 2020 (email to yp@mit.edu)
Prof. Y. Polyanskiy

1 Exercises

NOTE: Each exercise is 10 points. Only 3 exercises per assignment will be graded. If you submit more than 3 solved exercises please indicate which ones you want to be graded.
$\mathbf{1}$ Let $\mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$ be the Gaussian distribution on \mathbb{R}^{n} with mean $\mathbf{m} \in \mathbb{R}^{n}$ and covariance matrix $\boldsymbol{\Sigma}$.

1. Under what conditions on $\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}, \mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}$ is

$$
D\left(\mathcal{N}\left(\mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}\right) \| \mathcal{N}\left(\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}\right)\right)<\infty
$$

2. Compute $D\left(\mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma}) \| \mathcal{N}\left(0, \mathbf{I}_{n}\right)\right)$, where \mathbf{I}_{n} is the $n \times n$ identity matrix.
3. Compute $D\left(\mathcal{N}\left(\mathbf{m}_{1}, \boldsymbol{\Sigma}_{1}\right) \| \mathcal{N}\left(\mathbf{m}_{0}, \boldsymbol{\Sigma}_{0}\right)\right)$ for non-singular $\boldsymbol{\Sigma}_{\mathbf{0}}$. (Hint: think how Gaussian distribution changes under shifts $\mathbf{x} \mapsto \mathbf{x}+\mathbf{a}$ and non-singular linear transformations $\mathbf{x} \mapsto \mathbf{A x}$. Apply data-processing to reduce to previous case.)

2 Let X be distributed according to the exponential distribution with mean $\mu>0$, i.e., with density $p(x)=\frac{1}{\mu} \mathrm{e}^{-x / \mu} \mathbf{1}_{\{x \geq 0\}}$. Let $a \in \mathbb{R}$. Compute the divergence $D\left(P_{X+a} \| P_{X}\right)$.

3 (Information bottleneck) Let $X \rightarrow Y \rightarrow Z$ where Y is a discrete random variable taking values on a finite set \mathcal{Y}. Prove that

$$
I(X ; Z) \leq \log |\mathcal{Y}| .
$$

4 Let $D_{S K L}(P \| Q)=D(P \| Q)+D(Q \| P)$ be an f-divergence, and define $I_{S K L}(X ; Y)=D_{S K L}\left(P_{X, Y} \| P_{X} P_{Y}\right)$. Now consider three random variables X, A, B s.t. $A \Perp B \mid X$ (i.e. $A \leftarrow X \rightarrow B$). Show that

$$
I_{S K L}(X ; A, B)=I_{S K L}(X ; A)+I_{S K L}(X ; B) .
$$

(Hint: first show $I_{S K L}(X ; Y)=\sum_{x, x^{\prime}} P_{X}(x) P_{X}\left(x^{\prime}\right) D\left(P_{Y \mid X=x} \| P_{Y \mid X=x^{\prime}}\right)$. Then notice $D\left(P_{A, B \mid X=x} \| P_{A, B \mid X=x}\right.$ $\left.D\left(P_{A \mid X=x} \| P_{A \mid X=x^{\prime}}\right)+D\left(P_{B \mid X=x} \| P_{B \mid X=x^{\prime}}\right).\right)$

5 Let $I_{T V}(X ; Y)=\operatorname{TV}\left(P_{X, Y}, P_{X} P_{Y}\right)$. Let $X \sim \operatorname{Bern}(1 / 2)$ and conditioned on X generate A and B independently setting them equal to X or $1-X$ with probabilities $1-\delta$ and δ, respectively (i.e. $A \leftarrow X \rightarrow B$). Show

$$
I_{T V}(X ; A, B)=I_{T V}(X ; A)=|1-2 \delta|,
$$

and the second observation of X is "uninformative" (in the $I_{T V}$ sense).
6 For a family of probability distributions \mathcal{P} and a functional $T: \mathcal{P} \rightarrow \mathbb{R}$ define its χ^{2}-modulus of continuity as

$$
\delta_{\chi^{2}}(t)=\sup _{P_{1}, P_{2} \in \mathcal{P}}\left\{T\left(P_{1}\right)-T\left(P_{2}\right): \chi^{2}\left(P_{1} \| P_{2}\right) \leq t\right\} .
$$

When the functional T is affine, and continuous, and \mathcal{P} is compact ${ }^{1}$ Polyanskiy and Wu (2017) show that

$$
\begin{equation*}
\frac{1}{7} \delta_{\chi^{2}}(1 / n)^{2} \leq \inf _{\hat{T}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{X_{i} \sim}^{i i d}\left(T(P)-\hat{T}_{n}\left(X_{1}, \ldots, X_{n}\right)\right)^{2} \leq \delta_{\chi^{2}}(1 / n)^{2} \tag{1}
\end{equation*}
$$

Consider the following bio-statistics problem: In i-th mouse a tumour develops at time $A_{i} \in$ $[0,1]$ with $A_{i} \stackrel{i i d}{\sim} \pi$ where π is a pdf on $[0,1]$ bounded by $\frac{1}{2} \leq \pi \leq 2$. For each i the existence of tumour is checked at another random time $B_{i} \stackrel{i i d}{\sim} \operatorname{Unif}[0,1]$ with $B_{i} \Perp A_{i}$. Given observations $X_{i}=\left(1\left\{A_{i} \leq B_{i}\right\}, B_{i}\right)$ one is trying to estimate $T(\pi)=\pi[A \leq 1 / 2]$. Show that

$$
\inf _{\hat{T}_{n}} \sup _{\pi} \mathbb{E}\left[\left(T(\pi)-\hat{T}_{n}\left(X_{1}, \ldots, X_{n}\right)\right)^{2}\right] \asymp n^{-2 / 3}
$$

[^0]
[^0]: ${ }^{1}$ Both under the same, but otherwise arbitrary topology on \mathcal{P}

