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Abstract. This paper considers an ML inspired approach to hypothesis test-
ing known as classifier/classification-accuracy testing (CAT). In CAT, one first
trains a classifier by feeding it labeled synthetic samples generated by the null
and alternative distributions, which is then used to predict labels of the actual
data samples. This method is widely used in practice when the null and alter-
native are only specified via simulators (as in many scientific experiments).

We study goodness-of-fit, two-sample (TS) and likelihood-free hypothesis
testing (LFHT), and show that CAT achieves (near-)minimax optimal sample
complexity in both the dependence on the total-variation (TV) separation ǫ
and the probability of error δ in a variety of non-parametric settings, including
discrete distributions, d-dimensional distributions with a smooth density, and
the Gaussian sequence model. In particular, we close the high probability
sample complexity of LFHT for each class. As another highlight, we recover
the minimax optimal complexity of TS over discrete distributions, which was
recently established by [DGK+21]. The corresponding CAT simply compares
empirical frequencies in the first half of the data, and rejects the null when
the classification accuracy on the second half is better than random.
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1. INTRODUCTION

The rapid development of machine learning over the past three decades has had a profound
impact on many areas of science and technology. It has replaced or enhanced traditional statistical
procedures and automated feature extraction and prediction where in the past human experts
had to intervene manually. One example is the technique that has become known as ‘classification
accuracy testing‘ (CAT). The idea, first explicitly described in [Fri04], is extremely simple. Consider
the setting of two-sample testing: suppose the statistician has samples X and Y of size n from two
distributions PX and PY respectively on some space X , and wishes to test the hypotheses

H0 : PX = PY versus H1 : PX 6= PY. (TS)

The statistician has many classical methods at their disposal such as the Kolmogorov-Smirnov or
the Wilcoxon – Mann – Whitney test. Friedman’s idea was to use machine learning as a powerful
tool to summarize the data and subsequently apply a classical two-sample test to the transformed
data. More concretely, the proposal is to train a binary classifier C : X → {0, 1} on the labeled data
∪ni=1{(Xi, 0), (Yi, 1)} and compare the samples C(X1), . . . , C(Xn) and C(Y1), . . . , C(Yn).

Friedman’s idea to use classifiers to summarize data before applying classical statistical analysis
downstream can be generalized beyond two-sample testing (TS). Likelihood-free inference (LFI),
also known as simulation-based inference (SBI), has seen a flurry of interest recently. In LFI, the

scientist has a dataset Z1, . . . , Zm
iid∼ Pθ⋆ and is given access to a black box simulator which given

a parameter θ produces a random variable with distribution Pθ. The goal is to do inference on
θ⋆. The key aspect of the problem, lending the name ‘likelihood-free‘, is that the scientist doesn’t
know the inner workings of the simulator. In particular its output is not necessarily differentiable
with respect to θ and the density of Pθ cannot be evaluated even up to normalization. This setting
arises in numerous areas of science where highly complex, mechanistic, stochastic simulators are
used such as climate modeling, particle physics, phylogenetics and epidemiology to name a few, and
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its importance was realized as early as [DG84]. In this paper we study the problem of likelihood-
free hypothesis testing (LFHT) proposed recently in [GP22] as a simplified model of likelihood-free
inference. Compared to two-sample testing, here in addition to the dataset Z of size m, we have
two ‘simulated‘ samples X,Y of size n each from PX and PY respectively. The goal is to test the
hypotheses

H0 : Zi ∼ PX versus H1 : Zi ∼ PY. (LFHT)

It is important that apriori PX and PY are only known to belong to a certain ambient (usually non-
parametric) class. This stands in contrast with the earliest appearances of (LFHT) in [Ziv88,Gut89],
where authors studied the rate of decay of the type-I and type-II error probabilities for fixed PX,PY.

In the context of (LFHT) the idea of Friedman materializes as follows. First, train a classifier
C : X → {0, 1} to distinguish between PX and PY and second, compare the transformed dataset
{C(Zj))}mj=1 to {C(Xi)}ni=1 and {C(Yi)}ni=1. The second step compares iid samples of Bernoulli
random variables (provided C is trained on held out data), thus any reasonable test simply thresholds
the number of Zj classified as 1, namely the test is of the form

1

m

m∑

j=1

C(Zj) ≥ γ (1.1)

for some γ ∈ [0, 1]. The idea to classify Z as coming from either PX or PY based on the empirical
mass on some separating set S = C−1({1}) ≈ {dPY/dPX ≥ 1} has been attributed to Scheffé in
folklore [DL01, Section 6]. To illustrate the genuine importance of these ideas, we draw on the famous
Higgs boson discovery. In 2012 [CKS+12,ABCG+15] at the Large Hadron Collider (LHC) a team of
physicists announced that they observed the Higgs boson, an elementary particle theorized to exist
in 1964. It is regarded as the crowning achievement of the LHC, the most expensive instrument ever
built. They achieved this feat via likelihood-free inference, using the ideas of classification accuracy
testing/Scheffé’s test in particular. As part of their analysis pipeline they trained a boosted decision
tree classifier on simulated data and thresholded counts of observations falling in the classification
region.

This work was initiated as an attempt to understand the theoretical properties of classifier-
accuracy testing, motivated by the clear practical interest in these questions. Our intuition told us
that restricting the classifier to have binary output might throw away too much statistical power. In
regions with large (small) density ratio, the binary output ought to loose useful information about
the (un)certainty of the classifier output. The Neyman-Pearson Lemma phrases this succinctly:
the optimal classifier aggregates the log density ratio, while heuristically Scheffé’s test aggregates
indicators that the log density ratio exceeds some threshold. The operational implication of this
would be to train probabilistic classifiers C : X → R approximating the log density ratio, and to
aggregate this R-valued output instead of the binary output. However, our results show that this is
not necessary for optimality, at least in the minimax sense.

1.1 Informal description of the results

We study the problems of goodness-of-fit testing, two-sample testing and likelihood-free hypothe-
sis testing in a minimax framework (see Section 2.1.1 for precise definitions). Namely, given a family
of probability distributions P, we study the minimum number of observations n (and m for LFHT)
that are required to perform the test with error probability less than δ ∈ (0, 1/2) in the worst case
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over the distributions PX and PY. We show for multiple natural classes P that there exist minimax
optimal (with some restrictions) classification accuracy tests.

Let us clarify what we mean by ‘classification-accuracy’ tests for goodness-of-fit testing (GoF) and
the problems TS and LFHT. Suppose we have a sample X of size 2n from the unknown distribution
PX. We also have a second sample Y of size 2n from PY ∈ P which corresponds to the known null
distribution in the case of GoF and is unknown in the case of TS, LFHT. Finally, for LFHT we have
an additional sample Z of size 2m from PZ ∈ {PX,PY}. Write Dtr , {Xtr, Y tr, Ztr} for the first
halves of each sample and Dte , {Xte, Y te, Zte} for the rest. We train a classifier C : X → {0, 1} on
the input Dtr that aims to assign 1 to PX and 0 to PY. Going forward, it will be easier to think of C
in terms of the ‘separating set’ S , C−1({1}). Thus, S is a random subset of X whose randomness
comes from Dtr and potentially an external seed. Given two datasets {Ai}ai=1, {Bj}bj=1, we define
the classifier-accuracy statistic

TS(A,B) ,
1

a

a∑

i=1

1{Ai ∈ S} − 1

b

b∑

j=1

1{Bj ∈ S}. (1.2)

The name ‘classifier-accuracy’ is given due to the fact that TS(X
te, Y te) + 1 is equal to the sum of

the fraction of correctly classified test instances under the two classes. Finally, we say a test is a
classifier-accuracy test if its output is obtained by thresholding |TS | for some classifier C = 1S on
the test data Dte.

Theorem 1 (informal). There exist classifier-accuracy tests with minimax (near-)optimal sam-
ple complexity for all problems GoF,TS, LFHT and multiple classes of distributions P.

1.2 Proof sketch

The bulk of the technical difficulty lies in finding a good separating set S ⊆ X . But how
do we measure the quality of S? Define the “separation” sep(S) , PX(S) − PY(S), and the
“size” τ(S) , min{PX(S)PX(S

c),PY(S)PY(S
c)}. The following lemma describes the performance of

classifier-accuracy tests (1.2) in terms of sep and τ .

Lemma 1. Consider the hypothesis testing problem H0 : p = q versus an arbitrary alternative
H1. Suppose that the learner has constructed a separating set S such that | sep(S)| = |p(S)−q(S)| ≥
sep for every (p, q) ∈ H1, and τ(S) = (p(S)(1−p(S))∧(q(S)(1−q(S))) ≤ τ for every (p, q) ∈ H0∪H1.
Then using only the knowledge of τ , the classifier-accuracy test (1.2) with n test samples from both
p and q and an appropriate threshold achieves type-I and type-II errors at most δ, provided that

n ≥ c
log(1/δ)

sep

(
1 +

τ

sep

)

for a large enough universal constant c > 0.

With Lemma 1 in hand it is clear how we need to design S. It should satisfy
∣∣ sep(S)

∣∣ is big under H1, and τ(S) is small under both H0 and H1 (1.3)

with probability 1− δ. The latter condition, namely that τ is small i.e. C = 1S is imbalanced, may
seem unintuitive as given any two (sufficiently regular) probability distributions there always exists
a balanced classifier whose separation is optimal up to constant.
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Proposition 1. Let P,Q be two distributions on a generic probability space (X ,F). Then

TV(P,Q) ≤ 2 sup{P(C(X) = 0)− Q(C(X) = 0) : P(C(X) = 0) = Q(C(X) = 1)},
where C : X → {0, 1} is a possibly randomized classifier. Here the constant 2 is tight.

Despite Proposition 1, we find that choosing a highly imbalanced classifier C is crucial in obtain-
ing the minimax sample complexity in some classes. This has interesting implications for practical
classifier-accuracy testing. Indeed, classifiers are commonly trained to minimize some proxy of mis-
classification error; however, the above heuristics show that this is not necessarily optimal, instead
one should seek imbalanced classifiers with large separation. Another way to phrase it is that when
training a classifier for testing one should have the downstream task in mind, namely, maximizing
the power of the resulting test, and not classification accuracy.

1.3 Prior work and contribution

The problem of two-sample (TS) testing (aka closeness testing) and the related problem of
goodness-of-fit (GoF) testing (aka identity testing) has a long history in both statistics and computer
science. We only mention a small subset of the literature, directly relevant to our work. In seminal
works Ingster studied (GoF) for the Gaussian sequence model [Ing82,IS03] and for smooth densities
[Ing87] in one dimension. Extensions to multiple dimensions and (TS) can be found in works such
as [LY19,ACPS18]. For discrete distributions on a large alphabet the two problems appeared first
in [GR00, BFR+00], see also [CDVV14, VV17] and the survey [Can20]. Recent work [DGPP18,
DGK+21] has focused on GoF and TS with vanishing error probability.

The problem of likelihood-free hypothesis testing appeared first in the works [Ziv88,Gut89], who
studied the asymptotic setting. Minimax likelihood-free hypothesis testing (LFHT) was first studied
by the information theory community in [KTWV10, KWTV12] for a restricted class of discrete
distributions on a large alphabet, with a strengthening by [HM12] to vanishing error probability
(in some regimes). More recently, the problem was proposed in [GP22] as a simplified model of
likelihood-free inference, and authors derived minimax optimal sample complexities for constant
error in the settings studied in the present paper.

The idea of using classifiers for two-sample testing was proposed in [Fri04] and has seen a flurry
of interest [GF03, LPO16,KRSW21, HMN22]. In likelihood-free inference the output of classifiers
can be used as summary statistics for Approximate Bayesian Computation [JWZW17, GDKC18]
or to approximate density ratios [CBL20] via the ’likelihood-ratio trick’. A classifier with binary
{0, 1} output was used in the discovery of the Higgs boson [CKS+12,ABCG+15] to determine the
detection region.

Our work is the first to study the non-asymptotic properties of classifier-based tests in any setting
and we find that classifier-accuracy tests are minimax optimal for a wide range of problems. As a
consequence of our results we resolve the minimax high probability sample complexity of LFHT over
all classes studied, and also obtain new, tight results on high probability GoF and TS.

1.4 Structure

In Sections 2.1.1 and 2.1.2 we define the statistical problems and distribution classes we study.
In Tables 1 and 2 we present all sample complexity results, and in Section 2.2 we indicate how to
derive them. Sections 3.1, 3.2 and 3.3 study the problem of learning good separating sets for discrete
and smooth distributions and the Gaussian sequence model respectively. The appendix contains all
proofs omitted from the main text, including all lower bounds in Appendix D.
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2. RESULTS

2.1 Technical preliminaries

2.1.1 Two-sample, goodness-of-fit and likelihood-free hypothesis testing Formally, we define a
hypothesis as a set of probability measures. Given two hypotheses H0 and H1 consisting of distribu-
tions on some measurable space X , we say that a function ψ : X → {0, 1} tests the two hypotheses
against each other with error at most δ ∈ (0, 1/2) if

max
i=0,1

max
P∈Hi

PS∼P (ψ(S) 6= i) ≤ δ. (2.1)

Throughout the remainder of this section let P be a class of probability distributions on X . Suppose
we observe independent samples X ∼ P⊗n

X , Y ∼ P⊗n
Y and Z ∼ P⊗m

Z whose distributions PX,PY,PZ ∈
P are unknown to us. We now define the problems at the center of our work.

Definition 1. Given a known P0 ∈ P, goodness-of-fit testing is the comparison of

H0 : PX = P0 versus H1 : TV(PX,P0) ≥ ǫ (GoF)

based on the sample X. Write nGoF(ǫ, δ,P) for the smallest number such that for all n ≥ nTS there
exists a function ψ : X n → {0, 1} which given X as input tests between H0 and H1 with error
probability at most δ, for arbitrary PX,P0 ∈ P.

Definition 2. Two-sample testing is the comparison of

H0 : PX = PY versus H1 : TV(PX,PY) ≥ ǫ (TS)

based on the samples X,Y . Write nTS(ǫ, δ,P) for the smallest number such that for all n ≥ nTS
there exists a function ψ : X n × X n → {0, 1} which given X,Y as input tests between H0 and H1

with error probability at most δ, for arbitrary PX,PY ∈ P.

Definition 3. Likelihood-free hypothesis testing is the comparison of

H0 : PZ = PX versus H1 : PZ = PY (LF)

based on the samples X,Y,Z. Write RLF(ǫ, δ,P) ⊆ R2 for the maximal set such that for all (n,m) ∈
N2 with n ≥ x,m ≥ y for some (x, y) ∈ RLF, there exists a function ψ : X n × X n × Xm → {0, 1}
which given X,Y,Z as input, successfully tests H0 against H1 with error probability at most δ,
provided TV(PX,PY) ≥ ǫ and PX,PY ∈ P.

2.1.2 Classes of distributions We consider the following nonparametric families of distributions.
Smooth density. Let C(β, d,C) denote the set of functions f : [0, 1]d → R that are ⌈β − 1⌉-times
differentiable and satisfy

‖f‖Cβ , max

(
max

0≤|α|≤⌈β−1⌉
‖f (α)‖∞, sup

x 6=y∈[0,1]d,|α|=⌈β−1⌉

|f (α)(x)− f (α)(y)|
‖x− y‖β−⌈β−1⌉

2

)
≤ C,

where ⌈β−1⌉ denotes the largest integer strictly smaller than β and |α| =∑d
i=1 αi for the multiindex

α ∈ Nd. We write PH(β, d,CH) for the class of distributions with Lebesgue-densities in C(β, d,CH).
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Distributions on a finite alphabet. For k ∈ N, let

PD(k) , {all distributions on the finite alphabet [k]},
PDb(k,CDb) , {p ∈ PD(k) : ‖p‖∞ ≤ CDb/k},

where CDb > 1 is a constant. In other words, PDb are those discrete distributions that are bounded
by a constant multiple of the uniform distribution.
Gaussian sequence model on the Sobolev ellipsoid. Define the Sobolev ellipsoid E(s, C) of
smoothness s > 0 and size C > 0 as {θ ∈ RN :

∑∞
j=1 j

2sθ2j ≤ C}. For θ ∈ R∞ let µθ = ⊗∞
i=1N (θi, 1),

and define our second class as

PG(s, CG) , {µθ : θ ∈ E(s, CG)} .

To briefly motivate the study of PG, consider the classical Gaussian white noise model. Here we
have iid observations of the stochastic process

dYt = f(t)dt+ dWt, t ∈ [0, 1],

where (Wt)t≥0 denotes Brownian motion and f ∈ L2[0, 1] is unknown. Suppose now that {φi}i≥1

forms an orthonormal basis for L2[0, 1] and given an observation Y define the values

yi , 〈Y, φi〉 =
∫ 1

0
f(t)φi(t)dt+

∫ 1

0
φi(t)dWt , θi + ǫi.

Notice that ǫi ∼ N (0, 1) and that E[ǫiǫj] = 1i=j. In other words, the sequence {yi}i≥1 is an observa-
tion from the distribution µθ. Consider the particular case of φ1 ≡ 1 and φ2k =

√
2 cos(2πkx), φ2k+1 =√

2 sin(2πkx) for k ≥ 1 and assume that f satisfies periodic boundary conditions. Then θ denotes
the Fourier coefficients of f and the condition that

∑∞
j=1 j

2sθ2j ≤ C is equivalent to an upper bound
on the order (s, 2)-Sobolev norm of f , see e.g. Proposition 1.14 of [Tsy08]. In other words, by study-
ing the class PG we can deduce results for signal detection in Gaussian white noise, where the signal
has bounded Sobolev norm.

Table 1

Minimax sample complexity of testing (up to constant factors) over PH,PG,PDb.

nGoF nTS RLF

PDb(k)

√
k log(1/δ)

ǫ2
+ log(1/δ)

ǫ2
nGoF m ≥ log(1/δ)

ǫ2
and n ≥ nGoF and nm ≥ n2

GoF

PH(β, d)

√
log(1/δ)

ǫ(2β+d/2)/β + log(1/δ)
ǫ2

nGoF m ≥ log(1/δ)
ǫ2

and n ≥ nGoF and nm ≥ n2
GoF

PG(s)

√
log(1/δ)

ǫ(2s+1/2)/s +
log(1/δ)

ǫ2
nGoF m ≥ log(1/δ)

ǫ2
and n ≥ nGoF and nm ≥ n2

GoF

2.2 Minimax sample complexity of classifier-accuracy tests

In Tables 1 and 2 we present our and prior results on the minimax sample complexity of GoF,TS
and LFHT; here
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Table 2

Minimax sample complexity of testing (up to constant factors) over PD.

nGoF(PD) nTS(PD)

n ≥ m m ≥ log(1/δ)

ǫ2
and mn2 ≥ kn2

GoF

(OPT)mn2 ≥ kn2
GoF and n ≥ nGoF

(CAT)nGoF

(

ǫ
log(k)

, δ
k
,PDb

)

(CAT)

mn2

log( k

δ
)
≥ kn2

GoF

(

ǫ
log(k)

, δ
k

)

and n ≥ nGoF(
ǫ

log(k)
, δ
k
)

k <
log( 1

δ )
ǫ4

nGoF(PDb) nGoF(PDb)

RLF(PD)

k ≥ log( 1

δ
)

ǫ4

(OPT)nGoF(PDb)
(

k2 log( 1

δ
)

ǫ4

) 1

3

m > n

m ≥ log(1/δ)

ǫ2
and n ≥ nGoF and nm ≥ n2

GoF

• unmarked entries denote minimax optimal results achievable by a classifier-accuracy test;
• entries marked with (OPT) denote minimax optimal results that are not known to be achiev-

able by any classifier-accuracy test;
• entries marked with (CAT) denote the best known result using a classifier-accuracy test.

In the constant error regime (δ = Θ(1)) the results of Tables 1 and 2 are well known; for
instance, the sample complexities of GoF, TS, and LFHT under PD were characterized in [Pan08,
BV15,GP22], respectively1. Less is known under the high-probability regime (δ = o(1)): for PD,
nGoF was characterized in [HM13,DGPP18] for uniformity testing, with the general case following
from the flattening reduction [DK16]; nTS was characterized in [DGK+21]. For RLF, the k > n case
for PDb is resolved by [HM12], and the achievability direction of the case m > n of RLF for PD

can be deduced from [DGK+21] via the natural reduction between TS and LFHT (see [GP22]). The
remaining upper bounds are achievable by the classifier-accuracy tests below, and the proofs of all
lower bounds are deferred to Appendix D.

As for the efficacy of classifier-accuracy tests, the upper bounds in Tables 1 and 2 follow from
the combination of Lemma 1 and the following results:

• PDbPDbPDb : see Corollary 2;
• PHPHPH : see Section 3.2 and Corollary 2;
• PGPGPG : see Proposition 6;
• PDPDPD : for GoF, see Proposition 2 if k < log(1/δ)/ǫ4, and Proposition 5 otherwise; for TS, see

Proposition 2; for LFHT, see Proposition 2 if n ≥ k ∧m, and Section 3.1.3 and Proposition 5
otherwise.

3. LEARNING SEPARATING SETS

In this section, we construct the separating sets S used in the classifier-accuracy test (1.2). Section
3.1 is devoted to discrete distribution models PDb and PD, where we need a delicate tradeoff between
the expected separation and the size of S. A similar construction in the Gaussian sequence model
PG is presented in Section 3.3.

1[GP22] only resolved the minimax sample complexity of LFHT for PD up to log(k)-factors in some regimes.
However, by combining the classifier accuracy tests of this paper for m ≤ n and the reduction to two-sample testing
with unequal sample size [BV15,DGK+21] for m > n these gaps are filled.
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3.1 The discrete case

Given two iid samples X,Y of sizes NX , NY
iid∼ Poi(n) from unknown discrete distributions

p = (p1, . . . , pk), q = (q1, . . . , qk) over a finite alphabet [k] = {1, 2, . . . , k}, can we learn a set Ŝ ⊆ [k]
using X,Y that separates p from q? To measure the quality of a given separating set A ⊆ [k], we
define two quantities sep(A) , p(A)− q(A) and τ(A) , min{p(A)p(Ac), q(A)q(Ac)}. Intuitively, the
first quantity sep(A) measures the separation of A, and the second quantity τ(A) measures the size
of A. Recall that by Lemma 1, in order to perform the classifier-accuracy test (1.2), we aim to find
a separating set Ŝ such that

| sep(Ŝ)| is large and τ(Ŝ) is small. (3.1)

The rest of this section is devoted to the construction of Ŝ satisfying (3.1), and we will present our
results on learning separating sets in order of increasing complexity.

Notation: for a random variable X we write σ2(X) for the optimal sub-Gaussian variance proxy
of X. In other words, σ2(X) is the smallest value such that E exp(λ(X − EX)) ≤ exp(λ2σ2(X)/2)
holds for all λ ∈ R.

3.1.1 A natural separating set Let {Xi, Yi}i∈[k] be the empirical frequencies of each bin i ∈ [k] in
our samples X,Y , i.e. nXi ∼ Poi(npi) and nYi ∼ Poi(nqi). A natural separating set is the following:

Ŝ1/2 , {i : Xi > Yi or Xi = Yi and Ci = 1},

where C1, C2 . . . Ck are iid Ber(1/2) random variables. We use the subscript “1/2” to illustrate our
tie-breaking rule: when Xi = Yi, the symbol i is added to the set with probability 1/2.

Our first result concerns the separating power of the above set.

Proposition 2. Suppose p, q ∈ PD(k) with TV(p, q) ≥ ǫ. There exists a universal constant
c > 0 such that

P

(
sep(Ŝ1/2) ≥ cǫ2

(
n

k
∧
√
n

k
∧ 1

ǫ

))
≥ 1− δ,

provided n ≥ 1
cnTS(ǫ, δ,PD(k)).

Together with the trivial upper bound τ(Ŝ1/2) ≤ 1/4, Proposition 2 and Lemma 1 imply that

using Ŝ1/2 achieves the minimax sample complexity for the following problems:

• GoF in PDb and PD as long as k = O(log(1/δ)/ǫ4);
• TS in PDb as long as k = O(log(1/δ)/ǫ4), and in PD for all (k, ǫ, δ);
• LFHT in PDb as long as k = O(log(1/δ)/ǫ4), and in PD as long as n ≥ m.

However, in the remaining regimes the above test could be strictly sub-optimal. This failure
comes down to two issues. First, Proposition 2 requires n & nTS(ǫ, δ,PD(k)) in order to find a
good separating set, which can be sub-optimal when the optimal sample complexity for the original
testing problem is only n & nGoF(ǫ, δ,PD(k)). Second, the quantity τ(Ŝ1/2) is Ω(1) in the general
case because the tie-breaking rule adds too many symbols to the set. These issues will be addressed
separately in the next two sections.
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3.1.2 The “better of two” separating sets This section aims to find a separating set Ŝ with
essentially the same separation as Ŝ1/2 in Proposition 2, but with a smaller τ(Ŝ). The central idea

is to use a different tie-breaking rule from Ŝ1/2. Given a subset D ⊆ [k], we define the imbalanced
separating sets

Ŝ>(D) = {i ∈ D : Xi > Yi},
Ŝ<(D) = {i ∈ D : Xi < Yi}.

In other words, in both Ŝ> and Ŝ<, we do not include the symbols withXi = Yi in the separating set.
Consequently, |Ŝ>(D)| ∨ |Ŝ<(D)| is upper bounded by the sample size; if in addition qi is bounded
from above uniformly over i ∈ D, this will yield good control of τ for both separating sets Ŝ>(D)
and Ŝ<(D). In particular, τ(Ŝ>(D)) ∨ τ(Ŝ<(D)) = O(1 ∧ (nmaxi∈D qi)).

Next we aim to show that the above sets achieve good separation. However, there is a subtlety
here: removing the ties from Ŝ1/2 may no longer guarantee the desired separation, as illustrated in
the following proposition.

Proposition 3. Consider the distributions p, q on [3k] with pi = 1{i ≤ k}/(2k)+1{i > k}/(4k)
and qi = 1{i ≤ k}/k. Then, for n ≤ 0.6k,

E sep(Ŝ>([3k])) < 0.

Proposition 3 shows that sticking to only one set Ŝ> or Ŝ< fails to give the same separation
guarantees as Proposition 2. A priori it may seem that Ŝ> is designed to capture elements of the
support where p is greater than q, but it fails to do so spectacularly. An intuitive explanation of
this phenomenon is as follows. Since the probability of each bin is small (. 1/k) under both p and
q, in the small n regime2 can expect that (a) each bin appears either once or not at all and (b)
there is no overlap between the observed bins in sample X and Y . In this heuristic picture, the set
Ŝ> is simply the set of observed bins in the X-sample. Each X-sample falling in the first k bins
contributes − 1

2k to the separation, while each X-sample in the last 2k bins contributes only + 1
4k to

the separation. Since p puts mass 1/2 on both the first k and last 2k bins, there is an equal number
of n/2 observations in each part and the overall separation is ≍ − n

8k . Similar results can be proved

for Ŝ< with p, q as above but swapped, and also for modified p, q separated by smaller ǫ in TV for
any ǫ ∈ (0, 1).

Motivated by the above discussion, in the sequel we consider the sets Ŝ>, Ŝ< jointly. Specifically,
the next proposition shows that at least one of the sets Ŝ> and Ŝ< have a good separation.

Proposition 4. There exists a universal constant c > 0 such that for any D ⊆ [k] and proba-
bility mass functions p, q, it holds that

E
[
sep(Ŝ>(D)) − sep(Ŝ<(D))

]
≥ c

∑

i∈D

n(pi − qi)
2

√
n(pi ∧ qi) + 1

∧ |pi − qi|,

σ2(sep(Ŝ>(D))) + σ2(sep(Ŝ<(D))) ≤ 1

c

∑

i∈D

pi + qi
n

∧ |pi − qi|2.

2Technically, to satisfy the stated conditions we would require n .
√
k, but the described event captures dominant

effects even for larger
√
k ≪ n ≪ k.
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Based on Proposition 4, our final separating set is chosen from these two options, based on
evaluation on held out data. As for the choice of D, in this section we choose D = [k]. The following
corollary summarizes the performance of this choice under PDb.

Corollary 2. Suppose p, q ∈ PDb(k,O(1)) with TV(p, q) ≥ ǫ. There exists a universal constant
c > 0 such that using the samples X,Y we can find a set Ŝ ⊆ [k] which, with probability 1 − δ,
satisfies ∣∣∣sep(Ŝ)

∣∣∣ ≥ cǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

)
and τ(Ŝ) ≤ 1

c

(
1 ∧ n

k

)
, (3.2)

provided n ≥ 1
cnGoF(ǫ, δ,PDb(k,O(1))).

By Corollary 2 and Lemma 1, using the above set Ŝ achieves the minimax sample complexity
for all problems GoF, TS, and LFHT and all parameters (k, ǫ, δ) under PDb. However, under PD,
the performance of Ŝ is no better than that of Ŝ1/2. This is because a good control of τ(Ŝ>([k]))
requires a bounded probability mass function; in other words, choosing D = [k] is not optimal for
finding the best separating set under PD. In the next section, we address this issue by choosing D
to be one of O(log k) subsets of [k].

3.1.3 The “best of O(log k)” separating sets This section is devoted to the two missing regimes
m ≥ n for LFHT over PD and k & log(1/δ)/ǫ4 for GoF over PD (cf. discussion after Proposition 1
and Corollary 2). For the former, recall that the classifier-accuracy test based on Ŝ1/2 achieves the
sample complexity

n & nGoF(ǫ, δ,PD) +
k
√

log(1/δ)√
nǫ2

. (3.3)

If n & k then (3.3) is the same as n & nGoF; if m/ log(1/δ) . n then (3.3) is implied by n &
nGoF + k log(1/δ)√

mǫ2
, which is optimal within an O(log1/2(1/δ)) factor (cf. Table 2). In our application

to GoF we take m = ∞, and the missing regime k & log(1/δ)/ǫ4 corresponds precisely to nGoF . k.
Summarizing, in the remainder of this section we may assume that k ∧ (m/ log(1/δ)) & n.

Let t = k∧(c0m/ log(1/δ)), where c0 > 0 is a small absolute constant. By the previous paragraph,
we assume without loss of generality that t > n. For ℓ = ⌈log2(t/n)⌉ ≥ 1, define the following ℓ+ 2
subsets of [k]:

D0 =

{
i : q̂0i ≤

1

t

}
, Dj =

{
i : q̂0i ∈

(2j−1

t
,
2j

t

]}
for j ∈ [ℓ], Dℓ+1 =

{
i : q̂0i >

2ℓ

t

}
.

Here q̂0i denotes the empirical pmf of m/2 held out samples drawn from q (for GoF, one can un-
derstand q̂0i = qi for the distribution q is known). The motivation behind the above choices is the
“localization” of each q̂0i , as shown in the following lemma.

Lemma 2. For a small enough universal constant c0 > 0, with probability at least 1−kδ it holds
that for each i ∈ [k]:

1. if q̂0i ∈ D0, then qi < 2/t;
2. if q̂0i ∈ Dj for some j ∈ [ℓ], then qi ∈ (2j−2/t, 2j+1/t];
3. if q̂0i ∈ Dℓ+1, then qi > 2ℓ−1/t.
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Lemma 2 ensures that with high probability, the distribution q restricted to each set Dj is near-
uniform. This is similar in spirit to the idea of flattening used in distribution testing [DK16]. The
proof of Lemma 2 directly follows from the Poisson concentration in Lemma 6 and is thus omitted.

Our main result of this section is the next proposition, which shows that there exist some j ∈
{0, 1, · · · , ℓ+1} and Ŝ ⊆ Dj such that Ŝ is a near-optimal separating set within logarithmic factors.

Proposition 5. Suppose p, q ∈ PD(k) with TV(p, q) ≥ ǫ, and X,Y are n iid samples drawn
from p, q respectively. There exists a universal constant c > 0 such that using the samples X,Y , we
can find some j ∈ {0, 1, · · · , ℓ+ 1} and a set Ŝ ⊆ Dj which, with probability 1−O(kδ), satisfies

∣∣∣sep(Ŝ)
∣∣∣ ≥ c

(ǫ
ℓ

)2{ n/k if j = 0

n/
√
kt/2j if j ∈ [ℓ+ 1]

}
and τ(Ŝ) ≤ n2j

ct

provided that

n

√
1 ∧ m

log(1/δ)k
≥ 1

c
nGoF(ǫ/ℓ, δ,PD).

By Proposition 5 and Lemma 1, using the above set Ŝ leads to the following sample complexity
guarantee for the problems GoF and LFHT:

• for GoF under PD, it succeeds with n = Θ(nGoF(ǫ/ℓ, δ/k,PD)) observations, which is within a
multiplicative O(logΘ(1)(k)) factor of the minimax optimal sample complexity in the missing
k ≥ log(1/δ)/ǫ4 regime;

• for LFHT under PD and m ≥ n, it succeeds with n = Θ(nGoF(ǫ/ℓ, δ/k,PD)
√
k log(k/δ)/m)

observations, which is within a multiplicative O(logΘ(1)(k) log(k/δ)) factor of the minimax
optimal sample complexity in the missing n ≤ m ∧ k.

Therefore, classifier-accuracy tests always lead to near-optimal sample complexities for all GoF,TS,
and LFHT problems under both PDb and PD, within polylogarithmic factors in (k, 1/δ). We leave
the removal of extra logarithmic factors for classifier-accuracy tests as an open problem.

3.2 The smooth density case

We briefly explain how Corollary 2 can be used to learn separating sets between distributions in
the class PH of β-Hölder smooth distributions on [0, 1]d. The reduction relies on an approximation
result due to Ingster [Ing87,IS03], see also [ACPS18, Lemma 7.2]. Let Pr be the L

2-projection onto
piecewise constant functions on the regular grid on [0, 1]d with rd cells.

Lemma 3. There exist constants c1, c2 independent of r such that for any f ∈ PH(β, d,CH),

‖Prf‖2 ≥ c1‖f‖2 − c2r
−β.

For simplicity write f, g for the Lebesgue densities of PX,PY ∈ PH. Suppose TV(PX,PY) =
1
2‖f − g‖1 ≥ ǫ. By Jensen’s inequality and Lemma 3, ǫ . ‖Pr(f − g)‖2 for r ≍ ǫ−1/β. The key
observation is that Prf is essentially the probability mass function of the distribution PX when
binned on the regular grid with rd cells. We can now directly apply the results for PDb (Corollary
2) with alphabet size k ≍ ǫ−d/β , which combined with Lemma 1 leads to the sample complexity
guarantees in Table 1 for the smooth density class PH in all three problems GoF,TS and LFHT.
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3.3 The Gaussian case

Suppose we have two samples X,Y of size n from ⊗∞
j=1N (θXj , 1) =: µθX and µθY respec-

tively, where θX , θY have Sobolev norm ‖θ‖2s ,
∑

j θ
2
j j

2s bounded by a constant. In addition,

TV(µθX , µθY ) ≥ ǫ > 0. We use θ̂X and θ̂Y to denote the empirical mean vector from samples X and
Y , respectively.

The separating set is constructed as follows:

Ŝ = {Z ∈ RN : T (Z) ≥ 0},

where T (Z) = 2
∑J

j=1(θ̂
X
j − θ̂Yj )(Zj − (θ̂Xj + θ̂Yj )/2) for some J ∈ N to be specified. This is simply a

truncated version of the likelihood-ratio test between µθ̂X and µθ̂Y , where we set all but the first J

coordinates of θ̂X and θ̂Y to zero. The performance of the separating set is summarized in the next
proposition.

Proposition 6. There exists universal constants c, c′ such that when J = ⌊cǫ−1/s⌋ the inequal-
ity

P

(
µθX (Ŝ)− µθY (Ŝ) ≥ c′

(√
nǫ1/s ∧ 1

ǫ

)
ǫ2
)

≥ 1− δ

holds, provided n & 1
c′nTS(ǫ, δ,PG).

Applying Proposition 6 and Lemma 1 with the trivial bound τ(Ŝ) ≤ 1/4 leads to the sample
complexity guarantees in Table 1 for the Gaussian sequence model class PG in all three problems
GoF,TS and LFHT.
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APPENDIX A: AUXILIARY LEMMAS

We state some auxiliary lemmas which will be used for the proof. We begin with a simple identity
for standard normal distributions.

Lemma 4. Take a, b ∈ R and let Z be standard normal. Then

EΦ(aZ + b) = Φ

(
b√

1 + a2

)
.

Proof. Let Z ′ be a standard Gaussian independent of Z. Then

EΦ(aZ + b) = P(aZ + b ≥ Z ′) = P

(
Z ′ − aZ√
1 + a2

≤ b√
1 + a2

)
= Φ

(
b√

1 + a2

)
.

The following lemma is the celebrated result of Gaussian Lipschitz concentration.

Lemma 5 (Lipschitz concentration for Gaussians [Ver18, Theorem 5.2.1]). Let Q be a d-dimensional
standard Gaussian and let f : Rd → R be σ-Lipschitz. Then f(Q) is sub-Gaussian with variance
proxy σ2.

The next lemma states the Chernoff bound for Poisson random variables.

Lemma 6 ([MU17, Theorem 5.4]). For all λ > 0 and x ≥ 0 we have

P(Poi(λ)− λ ≥ x) ≤ exp

(
− x2

2(λ+ x)

)
,

P(Poi(λ)− λ ≤ −x) ≤ exp

(
−x

2

2λ

)
.

The following technical lemma is helpful in establishing the Bernstein concentration in Lemma
8.

Lemma 7. Let a ≥ 0, p, q ∈ [0, 1] and define τ = p(1 − p) ∧ q(1 − q), ν = p(1 − p) ∨ q(1 − q).
Then it always holds that

a

√
ν

2
≤ a

√
τ + a2 + |p− q|.

In particular, if |p− q| ≥ a
√
τ + a2, then

4|p − q| ≥ a
√
τ + a

√
ν + a2.

Proof. After rearranging and noting that 1+2
√
2 < 4, it is clear that the first inequality implies

the second. Below we prove the first inequality.
Since the claim is invariant under the transformations (p, q) 7→ (q, p) and (p, q) 7→ (1− p, 1− q),

it suffices to consider the case where p ≤ 1/2 and p(1− p) ≤ q(1− q). It further suffices to consider
the case where p ≤ q ≤ 1/2: if not, then p ≤ 1− q ≤ 1/2, and the transformation (p, q) 7→ (p, 1− q)
keeps (τ, ν) invariant while makes |p − q| smaller. The proof is then completed by considering the
following two scenarios:
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• if p ≥ q/2, then ν = q(1− q) ≤ 2p(1− p) = 2τ , so a
√
ν/2 ≤ a

√
τ ;

• if p ≤ q/2, then 2a
√
ν ≤ a2 + ν ≤ a2 + q ≤ a2 + 2(q − p).

APPENDIX B: OMITTED PROOFS FROM SECTION 1

B.1 Proof of Lemma 1

Before we prove Lemma 1, we begin with a technical lemma on the Bernstein concentration of
the classifier-accuracy test (1.2).

Lemma 8. Suppose A1, . . . , An
iid∼ Ber(p) and B1, . . . , Bm

iid∼ Ber(q). Let τ = p(1− p)∧ q(1− q)
and define the averages Ā = 1

n

∑n
i=1Ai and B̄ = 1

m

∑m
j=1Bj . There exists a universal constant

c > 0 such that

P

(
∣∣Ā− B̄

∣∣ ≤ 1

2
|p− q| − 1

2

√
c log(1/δ)τ

n ∧m − 1

2

c log(1/δ)

n ∧m

)
≤ δ,

P

(
∣∣Ā− B̄

∣∣ ≥ 2|p− q|+ 2

√
c log(1/δ)τ

n ∧m + 2
c log(1/δ)

n ∧m

)
≤ δ.

Proof. Let ν = p(1− p) ∨ q(1− q). Note that the first inequality is trivially true if

|p− q| ≤
√
c log(1/δ)τ

n ∧m +
c log(1/δ)

n ∧m .

Assuming otherwise, by the second statement of Lemma 7, the first probability is upper bounded
by

P

(
∣∣Ā− B̄

∣∣ ≤ |p− q| − 5

8

√
c log(1/δ)τ

n ∧m − 1

8

√
c log(1/δ)ν

n ∧m − 5

8

c log(1/δ)

n ∧m

)
.

By choosing c sufficiently large (independently of p, q, n,m, δ), and applying Bernstein’s inequality
separately to both Ā and B̄, the above probability can be made smaller than δ.

For the second inequality, using the first statement of Lemma 7, it is upper bounded by

P

(
|Ā− B̄| ≥ |p− q|+

√
c log(1/δ)τ

n ∧m +
1√
2

√
c log(1/δ)ν

n ∧m +
c log(1/δ)

n ∧m

)
.

Again, taking c sufficiently large (independently of p, q, n,m, δ) and applying Bernstein’s inequality
separately to both Ā and B̄, the above probability can be made smaller than δ.

Now we proceed to prove Lemma 1. Using n test samples (X,Y ) from both p and q, consider
the following classifier-accuracy test: we accept H0 if

∣∣∣∣∣
1

n

n∑

i=1

(1(Xi ∈ S)− 1(Yi ∈ S))

∣∣∣∣∣ ≤
√
cτ log(1/δ)

n
+
c log(1/δ)

n
,
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and reject H0 otherwise. Here c > 0 is a large absolute constant, and we note that the threshold
only relies on the knowledge of τ in addition to (n, δ).

To analyze the type-I and type-II errors, first assume that H0 holds. Since sep(S) = 0 under
H0, the second statement of Lemma 8 implies that we accept H0 with probability at least 1− δ/2
if c > 0 is large enough. If H1 holds, with probability at least 1 − δ/2, by the first statement of
Lemma 8 we have∣∣∣∣∣

1

n

n∑

i=1

(1(Xi ∈ S)− 1(Yi ∈ S))

∣∣∣∣∣ ≥ |sep| −
(√

cτ log(1/δ)

n
+
c log(1/δ)

n

)
.

By the lower bound of n assumed in Lemma 1, in this case we will reject H0, as desired.

B.2 Proof of Proposition 1

Lemma 9. Let µ be a non-negative measure on some space X and let a, b : X → R+ such that∫
a(x)dµ(x) > 0 and b(x) = 0 only if a(x) = 0. Then

inf
x∈spt(µ)

(
a(x)

b(x)

)
≤
∫
a(x)dµ(x)∫
b(x)dµ(x)

≤ sup
x∈spt(µ)

(
a(x)

b(x)

)
.

Proof. Defining 0/0 = 1, we have
∫
a(x)dµ(x) =

∫
a(x)

b(x)
b(x)dµ(x)

≤ sup
x∈spt(µ)

(
a(x)

b(x)

)∫
b(x)dµ(x).

The other direction follows analogously.

Proof of Proposition 1. Let p, q be the densities of P,Q with respect to a common dominat-
ing measure, and let E , {x : p(x) > q(x)} so that TV(P,Q) = P(E)− Q(E) > 0. Assume without

loss of generality that P(E) + Q(E) ≥ 1. Given t ∈ [0, 1] define Et , {x : p(x)−q(x)
p(x)+q(x) ≥ t}, so that

the map t 7→ P(Et) +Q(Et) is non-increasing and left-continuous. Note that E0 = E while E1 = ∅,
so that t⋆ = max{t ∈ [0, 1] : P(Et) + Q(Et) ≥ 1} exists. Now choose the randomized classifier C as
follows:

C(x) =





0 if x ∈ E(t⋆)+ ,

1 if x /∈ Et⋆ ,

Ber(r) if x ∈ Et⋆ − E(t⋆)+ ,

where E(t⋆)+ = ∩t>t⋆Et ⊆ Et⋆ , and

r :=
1− P(E(t⋆)+)− Q(E(t⋆)+)

P(Et⋆) + Q(Et⋆)− P(E(t⋆)+)− Q(E(t⋆)+)
∈ [0, 1].

This classifier is balanced, as

P(C(X) = 0) + Q(C(X) = 0)

= P(E(t⋆)+) + Q(E(t⋆)+) + r(P(Et⋆) + Q(Et⋆)− P(E(t⋆)+)− Q(E(t⋆)+))

= 1.
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For t ∈ [0, 1] define

f(t) ,

{
(P(Et)− Q(Et))/(P(Et) + Q(Et)) if P(Et) + Q(Et) > 0,

1 otherwise.

Let 0 ≤ t ≤ s ≤ 1, we show that f(t) ≤ f(s). Without loss of generality assume that f(s) < 1 and
that P(Es\Et) + Q(Es\Et) > 0. Notice that f(t) ≤ f(s) if and only if

∫
Et\Es

(p(x)− q(x))dx
∫
Et\Es

(p(x) + q(x))dx

!
≤
∫
Es
(p(x)− q(x))dx∫

Es
(p(x) + q(x))dx

.

However, the above inequality follows from Lemma 9. Thus, it holds that

P(C(X) = 0)− Q(C(X) = 0)

P(C(X) = 0) + Q(C(X) = 0)
≥ f(t⋆) ≥ f(0) =

P(E)− Q(E)

P(E) + Q(E)
.

Plugging in P(C(X) = 0) + Q(C(X) = 0) = 1 and P(E) + Q(E) ≤ 2 yields the result.
To show tightness, one can consider p(x) = 1[0,1], q(x) = (1 + ǫ)1[0,1/(1+ǫ)], C(x) = 1x∈(1/(2+ǫ),1],

and let ǫ→ 0+.

APPENDIX C: OMITTED PROOFS FROM SECTION 3

C.1 Useful Lemmas

Before we present the formal proofs, this section summarizes some useful lemmas on the expected
value and sub-Gaussian concentration of the separation.

Lemma 10. Let µ ≥ λ ≥ 0 and X ∼ Poi(µ), Y ∼ Poi(λ). Then

P(X > Y ) +
1

2
P(X = Y )− 1

2
≥ c

(
µ− λ√
λ+ 1

∧ 1

)

holds, where c > 0 is a universal constant.

Proof. For t ∈ [λ, µ] define the function

f(t) = P(Poi(t) > Y ) +
1

2
P(Poi(t) = Y ).

Clearly f(λ) = 1
2 . We have

d

dt
P(Poi(t) > Y ) = −P(Poi(t) > Y ) + P(Poi(t) > Y − 1) = P(Poi(t) = Y ).

Similarly we get

d

dt
P(Poi(t) = Y ) = −P(Poi(t) = Y ) + P(Poi(t) = Y − 1).

Thus, we obtain

f ′(t) =
1

2
E [P(Poi(t) ∈ {Y − 1, Y })] .



20 GERBER, HAN AND POLYANSKIY

Next we prove the following inequality: if y is a non-negative integer with |y − t| ≤ 8
√
t, then

P(Poi(t) = y) = Ω

(
1√
t+ 1

)
. (C.1)

To prove (C.1), we distinguish three scenarios:

1. If t < 1/100, then the only non-negative integer y with |y − t| ≤ 8
√
t is y = 0. Therefore

P(Poi(t) = y) = e−t = Ω(1).
2. If 1/100 ≤ t ≤ 100, then 0 ≤ y ≤ 180. In this case,

P(Poi(t) = y) ≥ min
1/100≤t≤100

min
0≤y≤180

P(Poi(t) = y) = Ω(1).

3. If t > 100, then for t− 8
√
t ≤ y1 ≤ y2 ≤ t+ 8

√
t, we have

P(Poi(t) = y1)

P(Poi(t) = y2)
= ty2−y1

y2!

y1!
=

y2∏

y=y1+1

t

y
=
(
1±O(t−1/2)

)O(16
√
t)
= Θ(1).

In the above we have used that |t/y − 1| = O(t−1/2) for all y ∈ [y1, y2], and y2 − y1 ≤ 16
√
t.

Consequently,

P(Poi(t) = y) = Ω

(
P(|Poi(t)− t| ≤ 8

√
t)

16
√
t

)
= Ω

(
1√
t

)
,

where the last step is due to Chebyshev’s inequality.

Now we apply (C.1) to prove Lemma 10. We first show that for non-negative integer y,

{|y − λ| ≤ 2
√
λ} ∧ {

√
λ ≤

√
t ≤

√
λ+ 1} =⇒ {|y − t| ≤ 8

√
t}. (C.2)

In fact, if
√
λ <

√
2 − 1, then the LHS of (C.2) implies that y = 0 and t < 2, thus (C.2) holds. If√

λ ≥
√
2− 1, then the LHS of (C.2) implies that

|y − t| ≤ |y − λ|+ (t− λ) ≤ 2
√
λ+ (2

√
λ+ 1) < 8

√
λ ≤ 8

√
t,

and (C.2) holds as well. Next, by (C.1) and (C.2), as well as Chebyshev’s inequality P(|Y − λ| ≤
2
√
λ) ≥ 3

4 , we have

f ′(t) ≥ 3

8
min

y≥0:|y−λ|≤2
√
λ
P(Poi(t) = y)

≥ 3

8
1{

√
λ ≤

√
t ≤

√
λ+ 1} · min

|y−t|≤8
√
t
P(Poi(t) = y)

= Ω

(
1{

√
λ ≤

√
t ≤

√
λ+ 1}√

t+ 1

)
= Ω

(
1{

√
λ ≤

√
t ≤

√
λ+ 1}√

λ+ 1

)
.

Finally, for some absolute constant c > 0 it holds that

f(µ)− f(λ) =

∫ µ

λ
f ′(t)dt ≥ c

∫ µ

λ

1{
√
λ ≤

√
t ≤

√
λ+ 1}√

λ+ 1
dt ≥ c

(
µ− λ√
λ+ 1

∧ 1

)
,

which is the statement of the lemma.
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Lemma 11. For any D ⊆ [k], each of sep(Ŝs(D)), s ∈ {>,<, 1/2} is sub-Gaussian with variance
proxy σ2 which can be bounded as

σ2 .
∑

i∈D
(pi − qi)

2 ∧ pi + qi
n

= O
(
1

n

)
,

with universal hidden constants.

Proof. Using standard tail bounds of the Poisson distribution (Lemma 6) we have for any i ∈ D
with pi > qi,

P(i ∈ Ŝ<(D)) ≤ P(i 6∈ Ŝ1/2(D)) ≤ P(i 6∈ Ŝ>(D))

= P(Poi(npi) ≤ Poi(nqi))

≤ P

(
Poi(npi)− npi ≤ −1

2
n(pi − qi)

)
+ P

(
Poi(nqi)− nqi >

1

2
n(pi − qi)

)

≤ 2 exp

(
−cn(pi − qi)

2

pi + qi

)

for some universal c > 0. Similarly, if i ∈ D with pi ≤ qi we get

P(i ∈ Ŝ>(D)) ≤ P(i ∈ Ŝ1/2(D)) ≤ P(i /∈ Ŝ<(D)) = P(Poi(npi) ≥ Poi(nqi)) ≤ 2 exp

(
−cn(pi − qi)

2

pi + qi

)
.

Using these estimates we turn to bounding the moment generating function of sep(Ŝs) for s ∈ {>
,<, 1/2}. Before doing so, recall [BM13, Theorem 2.1] that the best-possible sub-Gaussian variance
proxy σ2opt(µ) of the Ber(µ) distribution satisfies

σ2opt(µ) =
1
2 − µ

log
(

1
µ − 1

) ,

where the values for µ ∈ {0, 12 , 1} should be understood as the limit of the above expression (resulting
in σ2opt = 0, 14 , 0 respectively). Notice also that µ 7→ σ2opt(µ) is increasing on [0, 12 ] and decreasing on

[12 , 1], and

σ2opt(µ) ≤





2
log(2/µ) if 0 < µ < 1/4,

1/4 if 1/4 ≤ µ ≤ 3/4,
2

log(2/(1−µ)) if 3/4 < µ < 1.

Let T ⊆ D denote the subset of indices given by

T =

{
i ∈ D : 2 exp

(
−cn(pi − qi)

2

pi + qi

)
≥ 1

4

}
=

{
i ∈ D : (pi − qi)

2 ≤ pi + qi
n

log(8)

c

}
.

Now, for any s ∈ {>,<, 1/2}, the sub-Gaussian variance proxy σ2s of sep(Ŝs)−E sep(Ŝs) =
∑

i∈D(pi−
qi)(1{i ∈ Ŝs} − P(i ∈ Ŝs))) is at most

σ2s ≤
∑

i∈T

(pi − qi)
2

4
+
∑

i∈D\T
(pi − qi)

2 · 2(pi + qi)

cn(pi − qi)2
.
∑

i∈D
(pi − qi)

2 ∧ pi + qi
n

,

where the second step used the definition of T . In particular, since
∑

i∈D(pi + qi)/n ≤ 2/n, the
above expression is always upper bounded by O(1/n).
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C.2 Proof of Proposition 2

By Lemma 10, we have

E sep(Ŝ1/2) =
∑

i∈[k]
P(i ∈ Ŝ1/2)(pi − qi)

=
∑

i∈[k]
(P(i ∈ Ŝ1/2)−

1

2
)(pi − qi)

&
∑

i∈[k]

(
n|pi − qi|√
n(pi ∧ qi) + 1

∧ 1

)
|pi − qi|

≥ min
G⊆[k]




∑

i∈G

n(pi − qi)
2

√
n(qi ∧ pi) + 1

+
∑

i 6∈G
|pi − qi|



 .

Applying the Cauchy-Schwarz inequality twice, we can bound the first term above by

∑

i∈G

n(pi − qi)
2

√
n(qi + pi) + 1

≥ n
(∑

i∈G |pi − qi|
)2

∑
i∈G

√
n(qi + pi) + 1

≥ n
(∑

i∈G |pi − qi|
)2

√
2nk + k2

.

Therefore, we get the lower bound

E sep(Ŝ1/2) & min
0≤ǫ1≤ǫ

{
nǫ21√
k(n+ k)

+ ǫ− ǫ1

}
=

{
ǫ2

λ if ǫ < λ
2

ǫ− λ
4 ≥ ǫ

2 if ǫ ≥ λ
2

& ǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

)

where λ =

√
k(n+k)

n ≍
√

k
n ∨ k

n .

By Lemma 11 we know that sep(Ŝ1/2) is sub-Gaussian with variance proxy O(1/n), which implies

that | sep(Ŝ1/2)| & ǫ2(1ǫ ∧
√

n
k ∧ n

k ) with probability at least 1− δ, provided that

ǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

)
&

√
log(1/δ)

n
.

The above rearranges to n & nTS(ǫ, δ,PD).

C.3 Proof of Proposition 3

A direct computation gives

2E sep(Ŝ>) = 2

3k∑

i=1

(pi − qi)P(i ∈ Ŝ>)

= −P
(
Poi

( n
2k

)
> Poi

(n
k

))
+ 1− e−n/(4k)

≤ −(1− e−n/(2k))e−n/k + 1− e−n/(4k)

= −e−n/k + e−3n/(2k) + 1− e−n/(4k) ≤ 0,

for exp(−n/(4k)) ' 0.86. Rearranging, this gives the sufficient condition n/k ≤ 0.6.
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C.4 Proof of Proposition 4

Similar to the proof of Proposition 2, we have by Lemma 10 that

E sep(Ŝ1/2(D)) =
∑

i∈D
(pi − qi)P(i ∈ Ŝ1/2(D)) ≥ cE(D) +

1

2
{p(D)− q(D)}

−E sep(D \ Ŝ1/2(D)) =
∑

i∈D
(qi − pi)P(i 6∈ Ŝ1/2(D)) ≥ cE(D) +

1

2
{q(D)− p(D)}

where c > 0 is universal and E(D) =
∑

i∈D
n|pi−qi|2√
n(pi∧qi)+1

∧ |pi − qi|. Therefore,

E
[
sep(Ŝ>(D)) − sep(Ŝ<(D))

]
= E

[
sep(Ŝ1/2(D))− sep(D \ Ŝ1/2(D))

]
≥ 2cE(D). (C.3)

The bound on the sub-Gaussian variance proxy follows directly from Lemma 11.

C.5 Proof of Corollary 2

By a two-fold sample splitting, suppose that we have independent held out samples (X̃, Ỹ ) iden-
tical in distribution to (X,Y ). In the sequel we will use samples (X,Y ) to construct two separating
sets, and use samples (X̃, Ỹ ) to make a choice between them.

Let the sets Ŝ> , Ŝ>([k]), Ŝ< , Ŝ<([k]) be constructed using X,Y . By Proposition 2 and 4, we
have

|E sep(Ŝ>)| ∨ |E sep(Ŝ<)| & ǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

)
,

σ2(Ŝ>) + σ2(Ŝ<) .
∑

i∈[k]

pi + qi
n

.
1

k ∨ n,

where the last step have used that pi + qi . 1/k in PDb. Going forward, we assume that

ǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

)
&

√
log(1/δ)

k ∨ n ,

which rearranges to n & nGoF(ǫ, δ,PD). Consequently, this ensures that | sep(Ŝ>)| ∨ | sep(Ŝ<)| &
ǫ2
(
1
ǫ ∧
√

n
k ∧ n

k

)
with probability 1 − O(δ). Moreover, as n & log(1/δ), with probability at least

1− δ we have Poi(n) ≤ 2n (cf. Lemma 6). Under this event, one has |Ŝ>| ∨ |Ŝ<| ≤ 2n, and

τ(Ŝ>) ∨ τ(Ŝ<) .
|Ŝ>| ∨ |Ŝ<|

k
∧ 1 ≤ 2n

k
∧ 1.

Next we make a choice between Ŝ> and Ŝ< based on held out samples (X̃, Ỹ ). Let p̂, q̂ denote the
empirical pmfs constructed using X̃, Ỹ respectively. For any set A ⊆ [k] write ŝep(A) = p̂(A)− q̂(A).
We define our final estimator to be

Ŝ =

{
Ŝ> if |ŝep(Ŝ>)| ≥ |ŝep(Ŝ<)|,
Ŝ< otherwise.
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Clearly τ(Ŝ) ≤ τ(Ŝ>)∨ τ(Ŝ<) . 1∧ (n/k). To show the high-probability separation of Ŝ, note that
by Lemma 8, it holds with probability at least 1−O(δ) that

| sep(Ŝ)| ≥ 1

2
|ŝep(Ŝ)| − O



√
τ(Ŝ) log(1/δ)

n
+

log(1/δ)

n




=
1

2
|ŝep(Ŝ>)| ∨ |ŝep(Ŝ<)| − O

(√
log(1/δ)

n ∨ k +
log(1/δ)

n

)

≥ 1

4
| sep(Ŝ>)| ∨ | sep(Ŝ<)| − O

(√
log(1/δ)

n ∨ k +
log(1/δ)

n

)

= Ω

(
ǫ2
(
1

ǫ
∧
√
n

k
∧ n

k

))
−O

(√
log(1/δ)

n ∨ k +
log(1/δ)

n

)
.

Here the first term always dominates the second as long as n & nGoF(ǫ, δ,PD).

C.6 Proof of Proposition 5

Similar to the proof of Corollary 2, we apply a two-fold sample splitting to obtain n independent
held out samples (X̃, Ỹ ). In the sequel we construct 2(ℓ+2) candidate separating sets from (X,Y ),
and make a choice among them using held out samples (X̃, Ỹ ).

The construction of the 2(ℓ + 2) separating sets is simple: for each j ∈ {0, 1, · · · , ℓ + 1}, we
construct two sets Ŝ>(Dj) and Ŝ<(Dj). The following lemma summarizes some properties of these
separating sets. Recall that we assume that t = k∧ (c0m/ log(1/δ)) > n so that ℓ = ⌈log2(t/n)⌉ ≥ 1.

Lemma 12. Fix any j ∈ {0, 1, · · · , ℓ+1}, and let ǫj =
∑

i∈Dj
|pi − qi|. With probability at least

1− δ, the following statements hold:

1. if j = 0, then

∣∣∣sep(Ŝ>(D0))
∣∣∣ ∨
∣∣∣sep(Ŝ<(D0))

∣∣∣ & E0 −O
(√

E0 log(1/δ)

n

)
,

where

E0 =
∑

i∈D0

n|pi − qi|2 ∧ |pi − qi| &
nǫ20
k

=: Ẽ0(ǫ0).

2. if j ∈ [ℓ], then

∣∣∣sep(Ŝ>(Dj))
∣∣∣ ∨
∣∣∣sep(Ŝ<(Dj))

∣∣∣ & Ej −O
(√

Ej log(1/δ)

n

)
,

where

Ej =
∑

i∈Dj

n|pi − qi|2 ∧ |pi − qi| &
nǫ2j√
kt/2j

=: Ẽj(ǫj).
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3. if j = ℓ+ 1, then

∣∣∣sep(Ŝ>(Dℓ+1))
∣∣∣ ∨
∣∣∣sep(Ŝ<(Dℓ+1))

∣∣∣ & Eℓ+1 −O
(√

log(1/δ)

n

)
,

where

Eℓ+1 =
∑

i∈Dℓ+1

n|pi − qi|2√
nqi

∧ |pi − qi| &
√
n

k
ǫ2ℓ+1 =: Ẽℓ+1(ǫℓ+1).

Proof. We prove the above statements separately.

1. Case I: j = 0. By Proposition 4, it holds that

E[sep(Ŝ>(D0))− sep(Ŝ<(D0))] &
∑

i∈D0

n|pi − qi|2 ∧ |pi − qi| = E0,

where we have used Lemma 2 that qi ≤ 2/t ≤ 2/n for all i ∈ D0. Moreover,

σ2(sep(Ŝ>(D0))) ∨ σ2(sep(Ŝ<(D0)))

.
∑

i∈D0

|pi − qi|2 ∧
pi + qi
n

.
∑

i∈D0

1

n

(
n|pi − qi|2 ∧ |pi − qi|

)
=
E0

n
,

where the last inequality is due to the following deterministic inequality: if q ≤ 2/n, then

|p− q|2 ∧ p+ q

n
.

1

n

(
n|p− q|2 ∧ |p− q|

)
.

The proof of the above deterministic inequality is based on two cases:

• if p ≤ 3/n, then |p− q|2 . |p− q|2 ∧ (|p− q|/n);
• if p > 3/n, then p+ q . n|p− q|2 ∧ |p − q|.

Consequently, we have the first statement. For the second statement, similar to the proof of
Proposition 2 we have

E0 ≥ min
ǫ′0∈[0,ǫ0]

(
n(ǫ′0)

2

k
+ ǫ0 − ǫ′0

)
& ǫ20

(
1

ǫ0
∧ n

k

)
≍ nǫ20

k
.

2. Case II: j ∈ [ℓ]. By Proposition 4 and Lemma 2 we have

E[sep(Ŝ>(Dj))− sep(Ŝ<(Dj))] &
∑

i∈Dj

n(pi − qi)
2 ∧ |pi − qi| = Ej .

Similar to Case I, we have

σ2(sep(Ŝ>(Dj))) ∨ σ2(sep(Ŝ<(Dj))) .
∑

i∈Dj

|pi − qi|2 ∧
pi + qi
n

.
Ej
n
,

and the first statement follows.
For the second statement, note that |Dj | ≤ t/2j−1 = O(

√
kt/2j) by Lemma 2. Therefore,

Ej ≥ min
ǫ′j∈[0,ǫj ]

(
n(ǫ′j)

2

|Dj |
+ ǫj − ǫ′j

)
& ǫ2j

(
1

ǫj
∧ n√

kt/2j

)
≍

nǫ2j√
kt/2j

.



26 GERBER, HAN AND POLYANSKIY

3. Case III: j = ℓ+ 1. By Proposition 4 and Lemma 2, we have

E[sep(Ŝ>(Dℓ+1))− sep(Ŝ<(Dℓ+1))] &
∑

i∈Dℓ+1

n(pi − qi)
2

√
nqi

∧ |pi − qi| = Eℓ+1.

The first statement then follows from Lemma 11. The second statement then follows from

Eℓ+1 ≥ min
ǫ′ℓ+1∈[0,ǫℓ+1]

(
n(ǫ′ℓ+1)

2

√
nk

+ ǫℓ+1 − ǫ′ℓ+1

)
& ǫ2ℓ+1

(
1

ǫℓ+1
∧
√
n

k

)
≍
√
n

k
ǫ2ℓ+1.

The proof is complete.

Based on Lemma 12, we are about to describe how we choose from the sets {Ŝ>(Dj), Ŝ<(Dj)}ℓ+1
j=0.

Similar to the proof of Corollary 2, using the held out samples (X̃, Ỹ ), we can obtain the empirical
estimates ŝep(Ŝs(Dj)) for all s ∈ {>,<} and j ∈ {0, 1, · · · , ℓ+ 1}. With a small absolute constant
c1 > 0 and Ẽj as defined in Lemma 12, the selection rule is as follows: if there is some s ∈ {>,<}
and j ∈ {0, 1, · · · , ℓ+ 1} such that

|ŝep(Ŝs(Dj))| ≥ c1Ẽj(ǫ/(ℓ+ 2)),

then choose Ŝ = Ŝs(Dj); if there is no such pair (s, j), choose an arbitrary Ŝ.
We first show that with probability at least 1−O(kδ), such a pair (s, j) exists. Since ‖p−q‖1 ≥ ǫ,

there must exist some j ∈ {0, 1, · · · , ℓ+ 1} such that ǫj ≥ ǫ/(ℓ+ 2). As long as

n ≥ c2nGoF(ǫ/ℓ, δ,PD)

for a large constant c2 > 0, one can check via Lemma 12 that | sep(Ŝ>(Dj))| ∨ | sep(Ŝ<(Dj))| ≥
4c1Ẽj(ǫ/(ℓ + 2)) for a small enough universal constant c1 > 0. Assuming that n & log(1/δ), we
have τ(Ŝ>(Dj)) ∨ τ(Ŝ<(Dj)) = O(n2j/t) with probability 1 − O(δ) due to Poisson concentration
(Lemma 6). On this event, it holds with probability at least 1− δ that (cf. Lemma 8)

|ŝep(Ŝ>(Dj))| ∨ |ŝep(Ŝ<(Dj))| ≥ 2c1Ẽj(ǫ/(ℓ+ 2))−O
(√

2j log(1/δ)

t
+

log(1/δ)

n

)
,

which is at least c1Ẽj(ǫ/(ℓ+ 2)) as long as

n

√
t

k
≍ n

√
1 ∧ m

log(1/δ)k
≥ c3nGoF(ǫ/ℓ, δ,PD) (C.4)

for some large c3 > 0. Therefore, provided (C.4) holds, the desired pair (j, s) exists with probability
1−O(kδ) due to a union bound.

Conversely, if |ŝep(Ŝs(Dj))| ≥ c1Ẽj(ǫ/(ℓ+2)) holds for some (s, j), the true separation |sep(Ŝs(Dj))|
is at least of the same order as well. Indeed, Lemma 8 shows that

|sep(Ŝs(Dj))| ≥
1

2
|ŝep(Ŝs(Dj))| − O

(√
2j log(1/δ)

t
+

log(1/δ)

n

)
,

which is at least c1Ej(ǫ/(ℓ+ 2))/4 as long as (C.4) holds. This completes the proof.



MINIMAX OPTIMAL TESTING BY CLASSIFICATION 27

C.7 Proof of Proposition 6

The statement of Proposition 6 follows immediately from the following lemma.

Lemma 13. Let sep(Ŝ) , µθX (Ŝ)− µθY (Ŝ). There exist universal constants ci > 0, i ∈ [5] such
that for J = ⌊c1ǫ−1/s⌋ we have

E[sep(Ŝ)] +
c2√
n
≥ c3ǫ

2

ǫ+
√
J/n

P

(∣∣∣sep(Ŝ)− E sep(Ŝ)
∣∣∣ ≥ t+

c4√
n

)
≤ 2 exp(−c5nt2)

for all t ≥ 0.

Proof. Write ‖·‖, 〈·, ·〉 for the ℓ2 norm/inner product restricted to the first J coordinates. Notice
that given θ̂X and θ̂Y , T (θ) is simply a Gaussian random variable with ET (θ) = ‖θ̂Y −θ‖2−‖θ̂X−θ‖2
and var(T ) = 4‖θ̂X − θ̂Y ‖2. Define the vectors

U = {θ̂Xj − θ̂Yj }Jj=1

V = {θ̂Xj + θ̂Yj }Jj=1.

Note that they are independent, jointly Gaussain with variance 2IJ/n and means equal to the first
J coordinates of θX ∓ θY respectively. Let Φ be the cdf of the standard Gaussian and φ = Φ′ be its
density. The separation can be written as

sep(Ŝ) = f(θX)− f(θY ),

where

f(θ) = Φ

(
‖θ̂Y − θ‖2 − ‖θ̂X − θ‖2

2‖θ̂X − θ̂Y ‖

)
= Φ

(
−1

2

〈
V,

U

‖U‖

〉
+

〈
θ,

U

‖U‖

〉)
. (C.5)

We focus on proving the desired tail bound first. To make the dependence on the variables explicit,
write g(U, V ) = f(θX) − f(θY ) for the separation. Given U , V is a N (θX + θY , 2Ij/n) random
variable. Differentiating g and using that φ is 1/

√
2πe-Lipschitz we have

‖∇V g(U, V )‖ =
∥∥∥− 1

2

U

‖U‖

(
φ

(
−1

2

〈
V,

U

‖U‖

〉
+

〈
θX ,

U

‖U‖

〉)

− φ

(
−1

2

〈
V,

U

‖U‖

〉
+

〈
θY ,

U

‖U‖

〉))∥∥∥

≤ 1√
8πe

∣∣∣∣
〈
θX − θY ,

U

‖U‖

〉∣∣∣∣

≤ CG√
8πe

.

By Lipschitz concentration of the Gaussian distribution (Lemma 5) we conclude that g − E[g|U ] is
sub-Gaussian with variance proxy C2

G/(4πen). Next we study the concentration of E[g|U ]. To this
end, note that

−1

2

〈
V,

U

‖U‖

〉
+

〈
θ,

U

‖U‖

〉∣∣∣∣U ∼ N
(〈

θ − 1

2
(θX + θY ),

U

‖U‖

〉
,
1

2n

)
.
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Thus, using the independence of U and V and Lemma 4 we obtain

E [g(U, V )|U ] = E
[
f(θX)− f(θY )|U

]

= Φ

(
W√

4 + 2/n

)
− Φ

(
− W√

4 + 2/n

)
,

where we write W ,
〈
θX − θY , U

‖U‖

〉
. Let Φ̃ = Φ(·/

√
4 + 2/n) to ease notation. Once again by

Lipschitzness of Φ, we obtain for every t ≥ 0 that

P
(∣∣∣Φ̃(W )− EΦ̃(W )

∣∣∣ ≥ t
)
≤ P

(∣∣∣Φ̃(W )− Φ̃(EW )
∣∣∣ ≥ t− ‖Φ̃‖Lip

√
var(W )

)

≤ P

(
|W − EW | ≥ t

‖Φ̃‖Lip
−
√

var(W )

)
,

and an analogous inequality can be obtained for −W . The last ingredient is showing that W
concentrates well.

Lemma 14. W is sub-Gaussian with variance proxy 1/(2n).

Proof of Lemma 14. To simplify notation, let τ = θX − θY , σ2 = 1/(2n) and let Q be a
zero-mean identity-covariance Gaussian random vector so that

W
d
=

〈
τ,

τ + σQ

‖τ + σQ‖

〉
.

We have
〈
τ,

τ + σQ

‖τ + σQ‖

〉
=

〈
τ

E‖τ + σQ‖ ,
τ + σQ

‖τ + σQ‖

〉

︸ ︷︷ ︸
|·|≤1 almost surely

(‖τ + σQ‖ − E‖τ + σQ‖)︸ ︷︷ ︸
σ2 sub-Gaussian

+σ

〈
τ

E‖τ + σQ‖ , Q
〉

︸ ︷︷ ︸
σ2 sub-Gaussian

,

where we use that E‖τ +σQ‖ ≥ ‖τ‖ by Jensen’s inequality, and apply Lemma 5 twice. Overall, this
implies that W is sub-Gaussian with variance proxy σ2 = 1/(2n) as required.

Recall that we have decomposed the separation as follows:

sep(Ŝ)− E sep(Ŝ) = g − E[g|U ]︸ ︷︷ ︸
O(1/n) sub-Gaussian

+Φ̃(W )− Φ̃(−W )− E[Φ̃(W )− Φ̃(−W )]︸ ︷︷ ︸
O(1/n) sub-Gaussian tails beyond O(1/

√
n)

,

which completes the proof.
Let us turn to calculating the expected separation. We have already seen that

E sep(Ŝ) = E
[
Φ̃(W )− Φ̃(−W )

]
.

Again by Lipschitzness we have |EΦ̃(W ) − Φ̃(EW )| ≤ ‖Φ̃‖LipE|W − EW | . 1/
√
n by Lemma 14.

Thus, we see that

E sep(Ŝ) + Ω

(
1√
n

)
≥ Φ̃(EW )− Φ̃(−EW ),
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where the implied constant is universal. To simplify notation, let τ = θX − θY , σ2 = 1/(2n) and let
Q be a standard normal random variable. Looking at EW we have

EW = E

〈
τ,

τ + σQ

‖τ + σQ‖

〉
=

1

σ
E 〈τ,∇Q‖τ + σQ‖〉 = 1

σ
E [〈τ,Q〉 ‖τ + σQ‖]

by Stein’s identity. By the rotational invariance of the Gaussian distribution, the above is equal to

EW =
‖τ‖
σ

E

[
Q1

√
(‖τ‖ + σQ1)2 + · · ·+ σ2Q2

J

]

=
‖τ‖
σ

E

[
Q1

√
(‖τ‖ + σQ1)2 + · · ·+ σ2Q2

J −Q1

√
‖τ‖2 + σ2Q2

1 + · · · + σ2Q2
J

]

= 2‖τ‖2E


 Q2

1√
(‖τ‖ + σQ1)2 + · · ·+ σ2Q2

J +
√

‖τ‖2 + σ2Q2
1 + · · · + σ2Q2

J


 .

By the Cauchy-Schwarz inequality we have

(E|Q1|)2 . E


 Q2

1√
(‖τ‖+ σQ1)2 + · · ·+ σ2Q2

J +
√

‖τ‖2 + σ2Q2
1 + · · ·+ σ2Q2

J


× (‖τ‖ + σ

√
J).

Plugging into our expression for EW this yields

EW &
‖τ‖2

‖τ‖+ σ
√
J
.

To clarify notation, let us now write ‖ · ‖J for the ℓ2-norm restricted to the first J coordinates.
Taking J = cǫ−1/s it holds that

‖τ‖2J = ‖τ‖2 −
∑

j>J

τ2j ≥ ‖τ‖2 − J−2s
∑

j>J

τ2j j
2s = ‖τ‖2 − c−2sǫ2‖τ‖2s .

Since ‖τ‖s . 1 and ‖τ‖ ≥ ǫ by assumption, we see that for large enough universal constant c we
have ‖τ‖J ≥ ǫ/2. Since the map x 7→ x2/(x+ c) is increasing for x, c > 0 it follows that

EW &
ǫ2

ǫ+
√
J/n

for a universal implied constant. By the inequality Φ(x)− Φ(−x) ≥ x/2 for x ∈ [0, 1] we obtain

Φ̃(EW )− Φ̃(−EW ) ≥ 1 ∧ EW/2,

which completes the proof.
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APPENDIX D: LOWER BOUNDS

Recall the notation of Section 2.1.1. Given two hypotheses H0,H1, our aim is to lower bound
the minimum achievable worst-case error. To this end, we use the following standard fact:

min
ψ

max
i=0,1

sup
P∈Hi

PS∼P (ψ(S) 6= i) ≥ 1

2

(
1− TV(EP0,EP1)

)
, (D.1)

where P0, P1 are any random probability distributions with P(Pi ∈ Hi) = 1 and EPi denote the
corresponding mixtures and TV denotes the total variation distance. Hence, deriving a lower bound
of order δ on the minimax error reduces to the problem of finding mixtures EPi such that 1 −
TV(EP0,EP1) = Ω(δ). To this end we utilize standard inequalities between divergences.

Lemma 15 ([PW23]). For any probability measures P,Q the inequalities

1− TV(P,Q) ≥ 1

2
e−KL(P‖Q) ≥ 1

2(1 + χ2(P‖Q))

hold, where KL and χ2 denote the Kullback-Leibler and χ2 divergence respectively.

Many of our lower bounds will follow from reduction to prior work.

D.1 Lower bounds for PDb

In [GP22] the authors gave the construction of distributions pη,ǫ, p0 ∈ PDb(k, 2) (originally due
to Paninski) for a mixing parameter η such that TV(pη,ǫ, p0) = ǫ ≍

√
KL(pη,ǫ, p0) for all η, where

the implied constant is universal. They further showed that

χ2(Eηp
⊗n
η,ǫ , p

⊗n
0 ) ≤ exp

(
c
n2ǫ4

k

)
− 1 (D.2)

and

χ2
(
Eη
[
p⊗n0 ⊗ p⊗(n+m)

ǫ,η

]∥∥∥Eη
[
p⊗n0 ⊗ p⊗nǫ,η ⊗ p⊗m0

])
≤ exp

(
c
m(n+m)ǫ4

k

)
− 1 (D.3)

for a universal c > 0.

Remark 1. More precisely, (D.3) can be extracted from [GP22] using the chain rule for χ2 (as
opposed to KL).

D.1.1 Lower bound for TS and GoF Take P0 = p⊗2n
0 and P1 = p⊗nǫ,η0 ⊗ p⊗n0 in (D.1) for a fixed

η0. Then, by Lemma 15 and the data-processing inequality we have

1− TV(EP0,EP1) ≥
1

2
exp(−nKL(pǫ,η‖p0)) ≥

1

2
exp(−cnǫ2) !

= Ω(δ)

for a universal c > 0. This shows that GoF,TS are impossible at total error δ unless n & log(1/δ)/ǫ2,
which gives the first term of our lower bound.
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For the second term, consider the random measures P0 = p⊗2n
0 and P1 = p⊗n0 ⊗ p⊗nǫ,η in (D.1).

Then using (D.2) and Lemma 15 we have

1− TV(EP1,EP0) ≥
1

2

1

1 + χ2(EP1‖EP0)

≥ 1

2
exp

(
−cn

2ǫ4

k

)
!
= Ω(δ).

Therefore, TS is impossible unless n &
√
k log(1/δ)/ǫ2, which yields the second term of our lower

bound.

D.1.2 Lower bound for LFHT The necessity of m & log(1/δ)/ǫ2 and n &
√
k log(1/δ)/ǫ2 follows

as for TS above. Taking P0 = p⊗n0 ⊗ p⊗nǫ,η ⊗ p⊗m0 and P1 = p⊗n0 ⊗ p
⊗(n+m)
ǫ,η in (D.1), using (D.3) and

Lemma 15 we obtain the inequality

1− TV(EP0,EP1) ≥
1

2

1

1 + χ2(EP1‖EP0)

≥ 1

2
exp

(
−cm(m+ n)ǫ4

k

)
!
= Ω(δ).

Therefore, LFHT is impossible with error O(δ) unless mn & k log(1/δ)/ǫ4 (note that the m2-term
is never active), which completes the lower bound proof.

D.2 Lower bounds for PH

We don’t provide the details because they are entirely analogous to Section D.1 and rely on
classical constructions that can be found in [GP22].

D.3 Lower bounds for PG

Given a vector η ∈ {±1}N define the measure

Pη =
∞⊗

j=1

{
N (ηjc1ǫ

2s+1
2s , 1) if 1 ≤ j ≤ c2ǫ

−1/s,
N (0, 1) otherwise.

}

Let η1, η2, . . . be iid uniform signs in {±1}, and γη be the mean vector of Pη. Writing ‖ · ‖s for the
Sobolev-norm of smoothness s and ‖ · ‖ for the Euclidean norm, we see that for any η

‖γη‖2s =
∞∑

j=1

j2sγ2ηj =

c2ǫ−1/s∑

j=1

j2sc21ǫ
2s+1

s ≤ c21ǫ
2s+1

s

(
2c2ǫ

−1/s
)2s+1

≍ c21c
2s+1
2 ,

‖γη‖2 =
∞∑

j=1

γ2ηj = c21ǫ
2s+1

s c2ǫ
−1/s ≍ c21c2ǫ

2.

Then for any CG > 0 we can choose c1, c2 independently of ǫ such that P0,Pη ∈ PG(s, CG) almost
surely and ‖γη‖ = 10ǫ. Then for ǫ ≤ 1/10 we know that

TV(P0,Pη) = 2Φ

(‖γη‖
2

)
− 1 ≥ ǫ.
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D.3.1 Lower bounds for GoF and TS Take P0 = P⊗2n
0 and P1 = P⊗n

1

⊗ P⊗n
0 . Then

KL(P0‖P1) = nKL(P0‖P1) = nc2ǫ
−1/s (c1ǫ

2s+1
2s − 0)2

2
≍ nǫ2.

Using Lemma 15 this gives us

1− TV(P0, P1) & exp(−KL(P0‖P1)) = exp(−Θ(nǫ2))
!
= Ω(δ).

By (D.1) we know then that n & log(1/δ)/ǫ2 is necessary for both GoF and TS over PG.
To get the second term in the minimax sample complexity consider the construction P0 = P⊗2n

0

and P1 = P⊗n
η ⊗ P⊗n

0 where η is a uniformly random vector of signs. Writing ω = c1ǫ
2s+1
2s note that

EP⊗n
η =

c2ǫ−1/s⊗

j=1

(
1

2
N (ω, 1)⊗n +

1

2
N (−ω, 1)⊗n

)
.

From here we can compute

KL(P0‖EP1) ≍ ǫ−1/s
KL

(
N (0, 1)⊗n

∥∥∥1
2
N (ω, 1)⊗n +

1

2
N (−ω, 1)⊗n

)

≍ ǫ−1/s

(
n

2
ω2 − EX∼N (0,In) log cosh

(
ω

n∑

i=1

Xi

))

≤ ǫ−1/s

4
n2ω4 ≍ n2ǫ

4s+1
s ,

where we used the inequality log cosh(x) ≥ x2

2 − x4

12 for all x ∈ R. Thus, using Lemma 15,

1− TV(P0‖EP1) & exp(−KL(P0‖EP1)) ≥ exp(−Θ(n2ǫ
4s+1

s ))
!
= Ω(δ).

By (D.1) we know then that n &
√

log(1/δ)/ǫ
2s+1/2

s is necessary for both GoF and TS over PG.

D.3.2 Lower bounds for LFHT If m ≥ n, from the GoF lower bound n & nGoF we conclude that
mn & n2GoF, as desired. Therefore, throughout this section we assume that m < n.

Let P0 = P⊗n
η ⊗P⊗n

0 ⊗Pmη and P1 = P⊗n
η ⊗P⊗n

0 ⊗P⊗m
0 , where η is a uniformly random vector of

signs. Once again, we define ω = c1ǫ
2s+1
2s . We follow a proof similar to the cases PDb,PH in [GP22].

We use the data processing inequality, the chain rule and tensorization of χ2:

χ2(EP0‖EP1) = χ2(EP⊗(n+m)
η ‖EP⊗n

η ⊗ P⊗m
0 )

=


EX1Eη1|XEη′1|X1

∫

Rm

exp
(
−1

2

∑m
j=1

{
(zj − η1ω)

2 + (zj − η′1ω)
2
})

(2π)m/2 exp(−1
2

∑m
j=1 z

2
j )

dz



c2ǫ−1/s

− 1,

where X1 ∼ (12N (ω, 1/n) + 1
2N (−ω, 1/n)) and η1, η

′
1|X1 are iid scalar signs from the posterior

p(·|X1), with joint distribution p(η1,X1) = φ(
√
n(X1 − η1ω))/2.
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The Gaussian integral above can be evaluated exactly and we obtain

χ2(EP0‖EP1) = (EX1,η1,η′1
exp(ω2mη1η

′
1))

c2ǫ−1/s − 1.

Now, we can calculate

P(η1 = η′1) = EX1

p(X1|η1 = 1)2 + p(X1|η1 = −1)2

(p(X1|η1 = 1) + p(X1|η1 = −1))2

=
1

2
+

1

4

∫
(p(x1|η1 = 1)− p(x1|η1 = −1))2

p(x1|η1 = 1) + p(x1|η1 = −1)
dx1

≤ 1

2
+

1

16

∑

b∈{±1}
χ2(N (bω, 1/n)‖N (−bω, 1/n))

=
1

2
+

exp(4ω2n)− 1

8
.

Together with P(η1 = η′1) ≤ 1, we have

EX1,η1,η′1
exp(ω2mη1η

′
1) ≤ e−ω

2m +

(
1

2
+

1

2
∧ e4ω

2n − 1

8

)
(eω

2m − e−ω
2m)

= cosh(ω2m) + t sinh(ω2m),

with t = 1 ∧ ((e4ω
2n − 1)/4). Distinguish into two scenarios:

• if t = 1, then 4ω2n ≥ 1, and the above expression is eω
2m ≤ e4ω

4nm;
• if t < 1, then ω2n ≤ 1/2 and t ≤ 8ω2n. Since m < n, and cosh(x) ≤ 1 + x2, sinh(x) ≤ 2x for

all x ∈ [0, 1], the above expression is at most

1 + (ω2m)2 + 2tω2m ≤ exp(17ω4mn).

Combining the above scenarios, we have

χ2(EP0‖EP1) ≤ exp(17ω4nm · c2ǫ−1/s)− 1.

Thus, we obtain

1− TV(EP0,EP1) &
1

1 + χ2(EP0‖EP1)
≥ exp(−17ω4nm · c2ǫ−1/s)

!
= Ω(δ).

This gives the desired lower bound

nm &
log(1/δ)

ǫ
4s+1

s

.

D.4 Lower bounds for PD

Clearly all lower bounds that apply to PDb also apply to PD; in particular this gives the sample
complexity lower bound for GoF. In addition, lower bounds on the minimax high-probability sample
complexity of TS were derived in [DGK+21]. Hence, inspecting the claimed minimax rates, we
only need to consider the problem LFHT in the cases m ≤ n ≤ k and n ≤ m ≤ k. We give two
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separate constructions for the two cases, both inspired by classical constructions in the literature. As
opposed to the i.i.d. sampling models, we will use the Poissonized models and rely on the formalism
of pseudo-distributions as described in [DGK+21]. Specifically, suppose we can construct a random
vector (p, q) ∈ [0, 1]2 such that 1) Ep = Eq = Θ(1/k) and |E[p − q]| = Θ(ǫ/k); and 2) the following
χ2 upper bounds hold for the Poisson mixture:

χ2(E[Poi(np)⊗ Poi(nq)⊗ Poi(mp)]‖E[Poi(np)⊗ Poi(nq)⊗ Poi(mq)]) ≤ B(n,m, ǫ, k),

χ2(E[Poi(nq)⊗ Poi(np)⊗ Poi(mp)]‖E[Poi(np)⊗ Poi(nq)⊗ Poi(mp)]) ≤ B(n,m, ǫ, k);
(D.4)

then (n,m) ∈ RLF(ǫ, δ,PD) requires kB(n,m, ǫ, k) & log(1/δ) (essentially via Lemma 15).

D.4.1 Case m ≤ n ≤ k Suppose that m ≤ n ≤ k/2, and let p, q be two random variables defined
as

(p, q) =





( 1n ,
1
n) with probability n

k ,

( ǫk ,
2ǫ
k ) with probability 1

2 (1− n
k ),

( ǫk , 0) with probability 1
2 (1− n

k ).

Note that E[p] = E[q] = Θ(1/k) and |E[p − q]| = Θ(ǫ/k). Let X,Y ∈ R3 be random, whose
distribution is given by

X|(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

Y |(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mq).

Now, for any (a, b, c) ∈ N3 we have

P(X = (a, b, c)) =
1

a!b!c!

(n
k
e−2−m

n

(m
n

)c
+

1

2
(1− n

k
)e−(3n+m)ǫ/k

(ǫn
k

)a(2ǫn

k

)b (ǫm
k

)c

+
1

2
(1− n

k
)e−(n+m)ǫ/k

(ǫn
k

)a
1b=0

(ǫm
k

)c )
.

Similarly, for Y we get

P(Y = (a, b, c)) =
1

a!b!c!

(n
k
e−2−m

n

(m
n

)c
+

1

2
(1− n

k
)e−(3n+2m)ǫ/k

(ǫn
k

)a(2ǫn

k

)b(2ǫm

k

)c

+
1

2
(1− n

k
)e−nǫ/k

(ǫn
k

)a
1b=c=0

)
.

In particular, we have

P(Y = (a, b, c)) = Ω

(
1

a!b!c!

){
1 if (a, b, c) = (0, 0, 0),
n
k

(
m
n

)c
otherwise.

Notice also that

P(X = (a, b, c)) − P(Y = (a, b, c))

=
1

a!b!c!

1

2
(1− n

k
)e−nǫ/k

︸ ︷︷ ︸
=Θ(1)

( ǫ
k

)a+b+c
na+bmc

[
2be−(2n+m)ǫ/k

(
1− 2ce−mǫ/k

)
+ 1b=0

(
e−mǫ/k − 1c=0

)]

︸ ︷︷ ︸
,Ibc

=
Θ(1)

a!b!c!

( ǫ
k

)a+b+c
na+bmcIbc,
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where

|Ibc| .





nmǫ2

k2
if b = c = 0,

2bmǫ
k if b ≥ 1, c = 0,

nǫ
k if b = 0, c = 1,

2b+c otherwise.

(D.5)

We now turn to bounding the χ2-divergence between X and Y . Using the estimates (D.5), we obtain

χ2(X‖Y ) =
∑

(a,b,c)∈N3

(P(X = (a, b, c)) − P(Y = (a, b, c)))2

P(Y = (a, b, c))

. I200 +


 ∑

b=c=0,a≥1

+
∑

a≥0,b+c≥1




1
a!b!c!

(
ǫ
k

)2a+2b+2c
n2a+2bm2cI2bc

n
k

(
m
n

)c

= I200


1 +

∑

a≥1

1

a!

ǫ2an2a−1

k2a−1


+


∑

a≥0

1

a!

ǫ2an2a

k2a


 ∑

b+c≥1

1

b!c!

ǫ2b+2cn2b+c−1mc

k2b+2c−1
I2bc

.
n2m2ǫ4

k4

(
1 +

nǫ2

k
eǫ

2n2/k2
)

︸ ︷︷ ︸
=Θ(1)

+ eǫ
2n2/k2

︸ ︷︷ ︸
=Θ(1)

∑

b+c≥1

1

b!c!

ǫ2b+2cn2b+c−1mc

k2b+2c−1
I2bc.

Focusing on the sum and decomposing it as
∑

b+c≥1 =
∑

c=0,b≥1+
∑

b=0,c=1+
∑

b=0,c≥2+
∑

b,c≥1

we have the estimates

∑

b+c≥1

1

b!c!

ǫ2b+2cn2b+c−1mc

k2b+2c−1
I2bc

.
∑

c=0,b≥1

1

b!

ǫ2b+2n2b−14bm2

k2b+1
+
ǫ4mn2

k3
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b=0,c≥2

1

c!

ǫ2cnc−1mc4c

k2c−1
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1
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.
ǫ4m2n

k3
+
ǫ4mn2

k3
+
ǫ4m2n

k3
+
ǫ4mn2

k3
.
ǫ4mn2

k3
.

As m ≤ k, we obtain

χ2(X‖Y ) .
ǫ4mn2

k3
.

By (D.4) we conclude that in the regime m ≤ n ≤ k, (n,m) ∈ RLF(ǫ, δ,PD) requires n2m &
k2 log(1/δ)/ǫ4, as desired.

D.4.2 Case n ≤ m ≤ k This case is entirely analogous to the previous case with minor modifi-
cations. Suppose that n ≤ m ≤ k/2, and let p, q be two random variables defined as

(p, q) =





( 1
m ,

1
m ) with probability m

k ,

( ǫk ,
2ǫ
k ) with probability 1

2(1− m
k ),

( ǫk , 0) with probability 1
2(1− m

k ).
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Let X,Y ∈ R3 be random, whose distribution is given by

X|(p, q) ∼ Poi(np)⊗ Poi(nq)⊗ Poi(mp),

Y |(p, q) ∼ Poi(nq)⊗ Poi(np)⊗ Poi(mp).

Now, for any (a, b, c) ∈ N3 we have

P(X = (a, b, c)) =
1

a!b!c!

(m
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e−

2n
m
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( n
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)c )
.

Similarly, for Y we get

P(Y = (a, b, c)) =
1

a!b!c!

(m
k
e−

2n
m

−1
( n
m

)a+b
+

1

2
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.

In particular, we have

P(Y = (a, b, c)) = Ω

(
1

a!b!c!

){
1 if (a, b, c) = (0, 0, 0),
m
k

(
n
m

)a+b
otherwise.

Notice that

P(X = (a, b, c)) − P(Y = (a, b, c))

=
1

a!b!c!

1

2
(1− m

k
)e−(n+m)ǫ/k

( ǫ
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)a+b+c
na+bmc
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)
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,Jab

=
Θ(1)

a!b!c!

( ǫ
k

)a+b+c
na+bmcJab,

where

|Jab| .





0 if a+ b = 0,
nǫ
k if a+ b = 1,

2a+b if a+ b ≥ 2.

(D.6)

We now turn to bounding the χ2-divergence between X and Y . We have

χ2(X‖Y ) =
∑

(a,b,c)∈N3

(
P(X = (a, b, c)) − P(Y = (a, b, c))

)2

P(Y = (a, b, c))
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,
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where the last step follows from Jab = 0 if a = b = 0. Now writing t = a+ b and distinguishing into
cases t = 1 and t ≥ 2, by (D.6) we have

χ2(X‖Y ) .
ǫ4n3

k3
+
∑

t≥2

2t

t!

ǫ2tntmt−14t

k2t−1
.
ǫ4n3

k3
+
ǫ4n2m

k3
.
ǫ4n2m

k3
,

where the last line uses that n ≤ m. Once again, we can conclude by (D.4) that n2m & log(1/δ)k2/ǫ4

is a lower bound for the sample complexity of LFHT.
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