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Abstract
We study the weak recovery problem on the r-uniform hypergraph stochastic block model (r-
HSBM) with two balanced communities. In HSBM a random graph is constructed by placing
hyperedges with higher density if all vertices of a hyperedge share the same binary label, and weak
recovery asks to recover a non-trivial fraction of the labels. We introduce a multi-terminal version
of strong data processing inequalities (SDPIs), which we call the multi-terminal SDPI, and use it
to prove a variety of impossibility results for weak recovery. In particular, we prove that weak
recovery is impossible below the Kesten-Stigum (KS) threshold if r = 3, 4, or a strength parameter
λ is at least 1

5 . Prior work Pal and Zhu (2021) established that weak recovery in HSBM is always
possible above the KS threshold. Consequently, there is no information-computation gap for these
cases, which (partially) resolves a conjecture of Angelini et al. (2015). To our knowledge this is the
first impossibility result for HSBM weak recovery.

As usual, we reduce the study of non-recovery of HSBM to the study of non-reconstruction in
a related broadcasting on hypertrees (BOHT) model. While we show that BOHT’s reconstruction
threshold coincides with KS for r = 3, 4, surprisingly, we demonstrate that for r ≥ 7 reconstruction
is possible also below KS. This shows an interesting phase transition in the parameter r, and sug-
gests that for r ≥ 7, there might be an information-computation gap for the HSBM. For r = 5, 6
and large degree we propose an approach for showing non-reconstruction below KS, suggesting
that r = 7 is the correct threshold for onset of the new phase.
Keywords: hypergraph stochastic block model, weak recovery, broadcasting on hypertrees, multi-
terminal strong data processing inequalities, information-computation gap

1. Introduction

Hypergraph stochastic block model. The stochastic block model (SBM) is a random graph
model with community structures. It exhibits many interesting behaviors and has received a lot of
attention in the last decade (see Abbe (2017) for a survey). The hypergraph stochastic block model
(HSBM) is a generalization of SBM to hypergraphs, which arguably models real social networks
better due to the existence of small clusters. It was first considered in Ghoshdastidar and Dukkipati
(2014) and has been studied in a number of works, e.g., Angelini et al. (2015); Ghoshdastidar and
Dukkipati (2015a,b, 2017); Chien et al. (2018, 2019); Lin et al. (2017); Ahn et al. (2018); Kim et al.
(2018); Cole and Zhu (2020); Pal and Zhu (2021); Dumitriu et al. (2021); Zhang and Tan (2022);
Zhang et al. (2022); Dumitriu and Wang (2023).

We consider the r-uniform HSBM, where all hyperedges have the same size r. The model has
two parameters a > b ∈ R≥0. The HSBM hypergraph is generated as follows: Let the vertex set
be V = [n]. Generate a random label Xu for all vertices u ∈ V i.i.d. ∼ Unif({±}). Then, for
every S ∈

(
V
r

)
, if all vertices in S have the same label, add hyperedge S with probability a

( n
r−1)

;
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otherwise add hyperedge S with probability b

( n
r−1)

. We denote the model as HSBM(n, 2, r, a, b)

(where 2 means there are two communities).
For SBM and HSBM the most important problem is to recover X from observing only G. Due

to symmetry in the labels, we can only hope for recovering the communities up to a global sign flip.
Thus we define the distance between two labelings X,Y ∈ {±}V as

dH(X,Y ) = min
s∈{±}

∑
u∈V

1{Xi ̸= sYi}. (1)

There are three kinds of recovery guarantees commonly seen in the literature.

• Exact recovery (strong consistency): The goal is to recover the labels exactly, i.e., to design
an estimator pX = pX(G) such that

lim
n→∞

P[dH( pX,X) = 0] = 1. (2)

• Almost exact recovery (weak consistency): The goal is the recover almost all labels, i.e., to
design an estimator pX = pX(G) such that

lim
n→∞

P[dH( pX,X) = o(n)] = 1. (3)

• Weak recovery (partial recovery): The goal is to recover a non-trivial fraction of the labels,
i.e., to design an estimator pX = pX(G) such that there exists a constant c < 1

2 such that

lim
n→∞

P[dH( pX,X) ≤ (c+ o(1))n] = 1. (4)

Note that a trivial algorithm achieves c = 1
2 .

Different recovery questions are relevant in different parameter regimes. For exact recovery and
almost exact recovery, the phase transition occurs at expected degree of order log n (i.e., a, b =
Θ(log n) grows with n). In this paper, we focus on the constant degree regime (a, b are absolute
constants), where the weak recovery problem is relevant.

The phase transition for exact recovery is known Kim et al. (2018); Zhang and Tan (2022) for
more general HSBMs. For weak recovery, Angelini et al. (2015) conjectured that a phase transition
occurs at the Kesten-Stigum threshold. The positive (algorithm) part of their conjecture has been
proved by Pal and Zhu (2021); Stephan and Zhu (2022) in vast generality, giving an efficient weak
recovery algorithm above the Kesten-Stigum threshold. Despite the progress on the positive part,
to the best of our knowledge, there are no negative (impossibility) results for any r ≥ 3 before the
current work.

For the graph (SBM) case r = 2, the positive part was proved by Massoulié (2014); Mossel
et al. (2018) and the negative part was established by Mossel et al. (2015, 2018) via reduction to
the broadcasting on trees (BOT) model. Therefore a natural idea is to study the reconstruction
problem for a suitable hypergraph generalization of the BOT model, which we call the broadcasting
on hypertrees (BOHT) model. Zhang et al. (2022) mentioned that the difficulty in proving negative
results lies in analyzing the BOHT model. In this paper we prove impossibility of weak recovery
results by proving non-reconstruction results for BOHT.

Before describing the BOHT model, we define the following useful parameters for HSBM.
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• For every vertex u, the expected number of hyperedges containing u is d± o(1), where

d =
(a− b) + 2r−1b

2r−1
. (5)

• Expected number of vertices adjacent to u is α± o(1), where

α = (r − 1)d = (r − 1)
(a− b) + 2r−1b

2r−1
. (6)

• Expected number of neighbors in the same community minus the number of neighbors in the
other community is β ± o(1) where

β = (r − 1)
a− b

2r−1
. (7)

• Strength of the broadcasting channel is characterized by λ ∈ [0, 1], defined as

λ =
β

α
=

a− b

a− b+ 2r−1b
. (8)

• Signal-to-noise ratio (SNR), which is conjectured to govern the algorithmic weak recovery
threshold for HSBM:

SNR := αλ2 = (r − 1)dλ2 =
(r − 1)(a− b)2

2r−1((a− b) + 2r−1b)
. (9)

The Kesten-Stigum (KS) threshold is at SNR = 1.

Broadcasting on hypertrees. We define a general broadcasting on hypertrees (BOHT) model.
Let q ≥ 2 (alphabet size), r ≥ 2 (hyperedge size) be integers. Let π ∈ P([q]) be a distribution
of full support (where P([q]) denotes the space of distributions on [q]). Let B : [q] → [q]r−1 be a
probability kernel (called the broadcasting channel), satisfying∑

k∈[q]

πk
∑

x∈[q]r−1

xi=j

B(x1, . . . , xr−1|k) = πj ∀i ∈ [r − 1], j ∈ [q]. (10)

Let T be a (possibly random) r-uniform linear1 hypertree rooted at ρ. The model BOHT(T, q, r, π,B)
generates a label σu for every vertex u ∈ T via a downward process: (1) generate σρ ∼ π (2) given
σu, for every downward hyperedge S = {u, v1, . . . , vr−1}, generate σv1 , . . . , σvr−1 according to
B(·|σu), i.e., for every y, x1, . . . , xr−1 ∈ [q], we have

P[σvi = xi∀i ∈ [r − 1]|σu = y] = B(x1, . . . , xr−1|y). (11)

We often consider the case where T is a Galton-Watson hypertree, meaning that every vertex inde-
pendently has t ∼ D downward hyperedges, where D is a distrbution on Z≥0. We denote the re-
sulting model as BOHT(q, r, π,B,D). An important case is D = Pois(d), the Poisson distribution
with mean d. When D is a singleton at d ∈ Z≥0 we also denote the model as BOHT(q, r, π,B, d).

1. Linear means that the intersection of two distinct hyperedges has size at most one.
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For HSBM(n, 2, r, a, b), the corresponding BOHT model has q = 2, π = Unif({±}), and
B = Br,λ (λ ∈ [0, 1] is given by (8)) where

Br,λ(x1, . . . , xr−1|y) =
{

λ+ 1
2r−1 (1− λ), if xi = y∀i ∈ [r − 1],

1
2r−1 (1− λ), otherwise.

(12)

We denote this model as BOHT(2, r, λ,D) and call it the special BOHT model.
The reconstruction problem asks whether we can gain any non-trivial information about the root

given observation of far away vertices. In other words, whether the limit

lim
k→∞

I(σρ;Tk, σLk
) (13)

is non-zero, where Lk is the set of vertices at distance k to the root ρ, and Tk is the set of vertices
at distance ≤ k to ρ. When the limit is non-zero, we say reconstruction is possible for the BOHT
model; when the limit is zero, we say reconstruction is impossible. It is known Pal and Zhu (2021)
that the r-neighborhood (for any constant r) of a random vertex converges (in the sense of local
weak convergence) to the Poisson hypertree described above. Therefore non-reconstruction on a
Poisson hypertree implies impossibility of weak recovery for the corresponding HSBM.

For the case r = 2, the reconstruction threshold for the symmetric BOT model was established
by Bleher et al. (1995); Evans et al. (2000). People have also studied generalizations of the BOT
model with larger alphabet or asymmetric broadcasting channel, e.g., Mossel (2001); Mossel and
Peres (2003); Mézard and Montanari (2006); Borgs et al. (2006); Bhatnagar et al. (2010); Sly (2009,
2011); Külske and Formentin (2009); Liu and Ning (2019); Gu and Polyanskiy (2020); Mossel et al.
(2022). Nevertheless, to our knowledge, there has been no previous work studying the reconstruc-
tion problem for BOHT.

Belief propagation. The BOT and BOHT models can be studied using the belief propagation
operator. Consider the model BOHT(q, r, π,B,D). Let Mk denote the channel σρ 7→ (Tk, σLk

).
Then (Mk)k≥0 satisfies the following recursion, called the belief propagation recursion:

Mk+1 = Et∼D

(
M

×(r−1)
k ◦B

)⋆t
, (14)

where (·)×(r−1) denotes tensorization power, and (·)⋆t denotes ⋆-convolution power (see Section 2).
Let BP be the operator

BP(P ) := Et∼D

(
P×(r−1) ◦B

)⋆t
(15)

defined on the space of channels with input alphabet [q]. Then the reconstruction problem is equiv-
alent to asking whether the limit BP∞(Id) := limk→∞BPk(Id) is trivial, where Id stands for the
identity channel Id(y|x) = 1{x = y}.

Strong data processing inequalities. A useful tool for studying BOT models is the strong data
processing inequalities (SDPIs). They are quantitative versions of the data processing inequality
(DPI), the most fundamental inequality in information theory. The input-restricted version of SDPI
states that for any Markov chain U −X − Y , we have

I(U ;Y ) ≤ ηKL(PX , PY |X)I(U ;X) (16)
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where ηKL(PX , PY |X) is a constant (called the contraction coefficient) depending only on PX and
PY |X . We always have ηKL(PX , PY |X) ≤ 1 by DPI, and the inequality is usually strict. For any f -
divergence, there is a corresponding version of SDPI, by replacing I with If and ηKL with another
constant ηf in (16).

To apply SDPI to reconstruction problems on trees, the following equivalent form is more useful:
for any Markov chain Y −X − U , we have

I(U ;Y ) ≤ η
(p)
KL(PY , PX|Y )I(U ;X), (17)

where η
(p)
KL(PY , PX|Y ) is a constant depending only on PY and PX|Y . (17) is called the post-

SDPI in Polyanskiy and Wu (2023+). Comparing (16) and (17) we see that ηKL(PX , PY |X) =

η
(p)
KL(PY , PX|Y ).

Now consider a BOT model BOHT(q, 2, π,B, d). Note that in this case B is a Markov kernel
from [q] to [q] and πB = π. Then the post-SDPI says that for any channel P with input alphabet
[q], we have

I(π, P ◦B) ≤ η
(p)
KL(π,B)I(π, P ), (18)

where I(π, P ) denotes the mutual information I(X;Y ) between two variables where PX = π and
PY |X = P . By subadditivity of mutual information under ⋆-convolution, we have

I(π,BP(P )) ≤ dI(π, P ◦B) ≤ dη
(p)
KL(π,B)I(π, P ). (19)

When dη
(p)
KL(π,B) < 1, we have limk→∞ I(π,BPk(P )) = 0 and reconstruction is impossible.

This argument first appeared in Külske and Formentin (2009); Formentin and Külske (2009)
with SKL information, and Gu et al. (2020) used it with mutual information to give currently
best known non-reconstruction results for the Potts model in some parameter regimes. Although
we introduced the method with BOHT(q, 2, π,B, d) model, with slight modification it works for
BOHT(q, 2, π,B,D) or BOHT(T, q, 2, π,B).

Multi-terminal SDPI. We generalize the above method to BOHT models with r ≥ 3. To this
end, we introduce a multi-terminal version of the post-SDPI. Let π ∈ P([q]) be a distribution and
B : [q] → [q]r−1 be a probability kernel satisfying (10). We define the multi-terminal contrac-
tion coefficient η(m)

KL (π,B) (where m stands for “multi”) as the smallest constant such that for any
channel P with input alphabet [q], we have

I(π, P×(r−1) ◦B) ≤ (r − 1)η
(m)
KL (π,B)I(π, P ). (20)

(See Figure 1 for an illustration.) Then with a similar argument as the r = 2 case, we can prove
non-reconstruction for BOHT whenever (r − 1)dη

(m,s)
KL (B) < 1.

In the single-terminal setting, we usually distinguish pre-SDPI and post-SDPI. In our multi-
terminal setting, B has one input and multiple outputs, so a multi-terminal version of post-SDPI
makes more sense than that of pre-SDPI. Therefore we call Eq. 20 multi-terminal SDPI rather than
multi-terminal post-SDPI.

For a BOHT model, if q = 2, π = Unif({±}), and B : {±} → {±}r−1 together with the
sign flip {±}r−1 → {±}r−1 is a BMS channel (see Section 2), then we say the model is binary
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symmetric. For such models, the BP operator sends BMS channels to BMS channels. So we
could restrict P to be a BMS channel and define η

(m,s)
KL (B) (where s stands for “symmetric”) to

be the smallest constant such that (20) holds for all BMS channels P . By definition η
(m,s)
KL (B) ≤

η
(m)
KL (π,B), so it might be able to give better non-reconstruction results than the non-BMS version.

Furthermore, due to a large number of tools dealing with BMS channels, η(m,s)
KL (B) is often easier

to compute than η
(m)
KL (π,B).

We could replace KL divergence in the above discussion by other f -divergences, and define the
corresponding multi-terminal contraction coefficients. See Section 3 for more discussions.

Our results. Our first result is non-reconstruction for BOHT based on multi-terminal SDPIs.

Theorem 1 (Non-reconstruction for BOHT) Consider the model BOHT(q, r, π,B,D) where
Et∼Dt = d.

(i) If

(r − 1)dη
(m)
KL (π,B) < 1, (21)

or (r − 1)dη
(m)
SKL(π,B) < 1 and ISKL(π,B) < ∞, (22)

then reconstruction is impossible.

(ii) Suppose the BOHT model is binary symmetric. If

(r − 1)dη
(m,s)
KL (B) < 1, (23)

or (r − 1)dη
(m,s)
χ2 (B) < 1, (24)

or (r − 1)dη
(m,s)
SKL (B) < 1 and CSKL(B) < ∞, (25)

then reconstruction is impossible.

Our method can be modified to give non-reconstruction results for the BOHT(T, q, r, π,B) model.
See Section A.

We apply Theorem 1 to the special case where π = Unif({±}) and B = Br,λ. We compute
η
(m,s)
f (Br,λ) for several cases and prove the following result.

Theorem 2 (Non-reconstruction for special BOHT) Consider the special BOHT model BOHT(2, r, λ,D)
where Et∼Dt = d.

(i) For r = 3, 4, if (r − 1)dλ2 ≤ 1, then reconstruction is impossible.

(ii) For any r ≥ 5, if

(r − 1)d sup
0<ϵ≤1

fr,λ(ϵ) < 1, (26)

where fr,λ(ϵ) :=
1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)
(1− ϵ)r−1−iϵi−1 λ2

λ+ (1− λ)21−i
, (27)

then reconstruction is impossible.
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(iii) For any r ≥ 5, if λ ≥ 1
5 and (r − 1)dλ2 ≤ 1, then reconstruction is impossible.

Note that Theorem 2(iii) is non-trivial even for (r − 1)λ2 > 1, because BOHT(2, r, λ,D) allows
non-integer d and the hypertree is infinite with positive probability whenever (r − 1)d > 1. The
constant 1

5 in Theorem 2(iii) can be improved for any fixed r. For example, for r = 5, the constant
can be improved to 1

7 .
By a standard reduction, our non-reconstruction results for BOHT implies impossibility of weak

recovery for the corresponding HSBM.

Theorem 3 (Impossibility of weak recovery for HSBM) Consider the model HSBM(n, 2, r, a, b).
Let BOHT(2, r, λ,Pois(d)) be the corresponding BOHT model. If any of the conditions in Theo-
rem 2(i)(ii)(iii) holds, then weak recovery is impossible.

In fact, the reduction holds for more general HSBMs. See Section D.
It is known that for any BOHT model above the Kesten-Stigum threshold, reconstruction is

possible. By Theorem 2, for the special BOHT model, the KS threshold is tight for r = 3, 4 or
λ ≥ 1

5 . Surprisingly, we show that for r ≥ 7 and large d, reconstruction is possible below the KS
threshold.

Theorem 4 (Reconstruction for BOHT with r ≥ 7 and large d) Consider the model BOHT(2, r, λ, d)
or BOHT(2, r, λ,Pois(d)). For r ≥ 7, there exists a constant d0 = d0(r) such that for all d ≥ d0,
there exists λ ∈ [0, 1] such that (r − 1)dλ2 < 1 and reconstruction is possible.

Our technique. Our main technique for proving the non-reconstruction results is the multi-terminal
SDPIs. Theorem 1 is a simple application of the multi-terminal SDPIs and subadditivity properties
(under ⋆-convolution) of the relevant information measures.

Theorem 2 is by applying Theorem 1 and computing the relevant multi-terminal contraction
coefficients, except for the critical case (r − 1)dλ2 = 1. For Theorem 2(i) we compute the SKL
multi-terminal contraction coefficients for r = 3, 4. For Theorem 2(ii) we compute the χ2-multi-
terminal contraction coefficients. Theorem 2(iii) is a corollary of (ii). To compute the contraction
coefficients, we write down an explicit description of the BP operator, and use properties of BMS
channels such as BSC mixture representation and extremal BMS channels.

It turns out that for the special BOHT model, the tight reconstruction threshold can be achieved
for r = 3 using SKL or χ2-contraction, and for r = 4 using SKL. KL contraction does not
give tight threshold for any r ≥ 3 and χ2-contraction fails for r ≥ 4. In particular, there exists
λ ∈ (0, 1) such that η(m,s)

χ2 (B4,λ) > η
(m,s)
SKL (B4,λ) = λ2. This shows an important difference be-

tween single-terminal and multi-terminal SDPIs, because for single-terminal SDPIs we always have
ηχ2(π, P ) ≤ ηSKL(π, P ) (e.g., Cohen et al. (1998); Raginsky (2016); Polyanskiy and Wu (2017)).
Furthermore, before our work, to the best of our knowledge, non-reconstruction results proved via
SKL information could always be also shown via other information measures (χ2-information Evans
et al. (2000), KL information Gu and Polyanskiy (2020), etc.). It appears, thus, that BOHT is the
first example where contraction via SKL information gives better results than any other information
measures we have tried.

For the critical case in Theorem 2(i)(iii), some extra argument is needed. Roughly speaking, we
show that the multi-terminal SDPI achieves equality only when the input channel P is trivial. So
any fixed point of the BP operator must be trivial.
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Theorem 3 is a corollary of Theorem 2 via a standard reduction which says non-reconstruction
for BOHT implies impossibility of weak recovery for the corresponding HSBM. This reduction was
first proved by Mossel et al. (2015, 2018) for the two-community SBM, and we extend it to handle
general HSBM.

Theorem 4 is proved using Gaussian approximation at large d and contraction of χ2-information.
This is a method introduced by Sly (2009, 2011) and has proved successful in several settings Liu
and Ning (2019); Mossel et al. (2022).

Structure of the paper. In Section 2, we review preliminaries on information channels. In Sec-
tion 3, we introduce the multi-terminal SDPI and prove Theorem 1. In Section 4 we study the
special BOHT model BOHT(2, r, λ,D) and prove Theorem 2. In Section 5, we discuss a possible
approach to resolve the r = 5, 6 case of the special BOHT model.

In Section A, we prove non-reconstruction results for BOHT models on a fixed hypertree. In
Section B, we compute SKL multi-terminal contraction coefficients for Br,λ with r = 3, 4. In Sec-
tion C, we compute χ2-multi-terminal contraction coefficients for several binary-input symmetric
channels. In Section D, we give a general reduction from HSBM to BOHT, and prove Theorem 3.
In Section E, we prove Theorem 4, that the KS threshold is not tight for the special BOHT model
with r ≥ 7 and large d.

2. Preliminaries

We give necessary preliminaries on information channels, especially BMS channels. Most material
in this section can be found in Polyanskiy and Wu (2023+) or (Richardson and Urbanke, 2008,
Chapter 4).

Definition 5 (BMS channels) A channel P : {±} → Y is called a binary memoryless symmetric
(BMS) channel if there exists a measurable involution σ : Y → Y such that P (E|+) = P (σ(E)|−)
for all measurable subsets E ⊆ Y .

Binary erasure channels (BECs) and binary symmetric channels (BSCs) are the simplest examples
of BMS channels. Channel Br,λ : {±} → {±}r−1 defined in (12) (together with coordinate-wise
sign flip) is also naturally a BMS channel.

BMS channels are equivalent to distributions on the interval
[
0, 12

]
, via the following lemma.

Lemma 6 (BSC mixture representation of BMS channels) Every BMS channel P is equivalent
to a channel X → (∆, Z) where ∆ ∈

[
0, 12

]
is independent of X and PZ|∆,X = BSC∆(·|X).

In the setting of Lemma 6, we say ∆ is the ∆-component of P . We define θ = 1 − 2∆ ∈ [0, 1] to
be the θ-component of P , because it sometimes simplifies the notation.

Degradation is a very useful relationship between channels.

Definition 7 (Degradation) Let P : X → Y and Q : X → Z be two channels with the same input
alphabet. We say P is a degradation of Q, denoted P ≤deg Q, if there exists channel R : Z → Y
such that P = R ◦Q.

For any f -divergence, distrbution π ∈ P(X ) and channel P : X → Y , we define If (π, P )
as the f -information If (X;Y ) where X is a random variable with distribution π and Y is the
output of P when given input X . Every f -information respects degradation: if P ≤deg Q, then
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If (π, P ) ≤ If (π,Q) for any f and π. For our purpose, the most important f -divergences are
the KL divergence f(x) = x log x, χ2-divergence f(x) = (x − 1)2, and symmetric KL (SKL)
divergence f(x) = (x − 1) log x. We denote the corresponding f -information as I , Iχ2 and ISKL

respectively.
When P is a BMS channel and π = Unif({±}), we use Cf (P ) to denote If (π, P ). We can

compute Cf (P ) using the ∆-component. In particular, we have the following information measures.

Definition 8 (Information measures for BMS channels) Let P be a BMS channel, ∆ be its ∆-
component, and θ be its θ-component. We define the following information measures.

C(P ) = E[log 2 + ∆ log∆ + (1−∆) log(1−∆)], (capacity)

Cχ2(P ) = Eθ2, (χ2-capacity)

CSKL(P ) = E
[(

1

2
−∆

)
log

1−∆

∆

]
= E [θ arctanh θ] . (SKL capacity)

Let P : X → Y and Q : X ′ → Y ′ be two channels. We define the tensor product channel
P × Q : X × X ′ → Y × Y ′ by letting P and Q acting on the two inputs independently. For
n ∈ Z≥1, we use P×n : X n → Yn to denote the n-th tensor power of P .

Let P : X → Y and Q : X → Z be two channels with the same input alphabet. We define the
⋆-convolution P ⋆Q : X → Y ×Z by letting P and Q acting on the same input independently. For
n ∈ Z≥0, we use P ⋆n : X → Yn to denote the n-th ⋆-power of P .

Mutual information and SKL information are useful for the study of BOHT models because
they are subadditive under ⋆-convolution (SKL information is even additive). For any two channels
P,Q with input alphabet X and any π ∈ P(X ), we have

I(π, P ⋆ Q) ≤ I(π, P ) + I(π,Q), ISKL(π, P ⋆ Q) = ISKL(π, P ) + ISKL(π,Q). (28)

The mutual information part is standard, and the SKL information part first appeared in Külske and
Formentin (2009). For χ2-information, subadditivity does not hold in general, but Abbe and Boix-
Adserà (2019) proved that subadditivity holds when X = {±} and π = Unif({±}). That is, for
any two binary-input channels P,Q, we have

Iχ2(Unif({±}), P ⋆ Q) ≤ Iχ2(Unif({±}), P ) + Iχ2(Unif({±}), Q). (29)

3. Multi-terminal SDPI

Let q ≥ 2, r ≥ 2 be integers, π ∈ P([q]), and B : [q] → [q]r−1 be a channel satisfying (10). For
any f -divergence, we define the multi-terminal contraction coefficient as

η
(m)
f (π,B) := sup

P

If (π, P
×(r−1) ◦B)

(r − 1)If (π, P )
(30)

where P goes over all channels with input alphabet [q] for which 0 < If (π, P ) < ∞.
In other words, η(m)

f (π,B) is the smallest constant such that for any diagram as in Figure 1
where PX = π, PY r−1|X = B, PUi|Yi

= P , we have

If (X;U r−1) ≤ (r − 1)η
(m)
f (π,B)If (Y1;U1). (31)

9
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X B

Y1

...

Yr−1

P

...

P

U1

...

Ur−1

Figure 1: Setting for homogeneous multi-terminal SDPI

In the above definition, we assume PUi|Yi
are the same for all i ∈ [r−1]. Therefore (30) defines

a homogeneous multi-terminal contraction coefficient. It is also possible to define a heterogeneous
version, where the input channels can be different. We define

η
(m,ht)
f (π,B) := sup

P1,...,Pr−1

If (π, (P1 × · · · × Pr−1) ◦B)∑
i∈[r−1] If (π, Pi)

(32)

where P1, . . . , Pr−1 goes over all channels with input alphabet [q] for which 0 <
∑

i∈[r−1] If (π, Pi) <

∞ (here ht stands for “heterogeneous”). In other words, η(m,ht)
f (π,B) is the smallest constant such

that for any diagram as in Figure 2 where PX = π, we have

If (X;U r−1) ≤ η
(m,ht)
f (π,B)

∑
i∈[r−1]

If (Yi;Ui). (33)

X B

Y1

...

Yr−1

P1

...

Pr−1

U1

...

Ur−1

Figure 2: Setting for heterogeneous multi-terminal SDPI

It is clear from definition that

η
(m)
f (π,B) ≤ η

(m,ht)
f (π,B). (34)

Unlike the usual contraction coefficients, it is not true in general that η(m)
f (π,B) ≤ 1. Nev-

ertheless, this holds when the f -information is subadditive under ⋆-convolution. For the mutual
information, we have

I(X;U r−1) ≤ I(Y r−1;U r−1) ≤
∑

i∈[r−1]

I(Y r−1;Ui) =
∑

i∈[r−1]

I(Yi, Ui), (35)

where the first step is by DPI and the second step is by subadditivity. Therefore

η
(m)
KL (π,B) ≤ η

(m,ht)
KL (π,B) ≤ 1. (36)

10
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The same holds for the SKL mutual information, so

η
(m)
SKL(π,B) ≤ η

(m,ht)
SKL (π,B) ≤ 1. (37)

When q = 2, π = Unif({±}), and B together with the sign flip is a BMS channel, for any BMS
channels P1, . . . , Pr−1, the combined channel (P1×· · ·×Pr−1) ◦B is also a BMS channel. In this
case we can define versions of multi-terminal contraction coefficients restricted to BMS channels.
We define

η
(m,s)
f (B) := sup

P

Cf (P
×(r−1) ◦B)

(r − 1)Cf (P )
(38)

where P goes over BMS channels with 0 < Cf (P ) < ∞, and

η
(m,ht,s)
f (B) := sup

P1,...,Pr−1

Cf ((P1 × · · · × Pr−1) ◦B)∑
i∈[r−1]Cf (Pi)

(39)

where P1, . . . , Pr−1 goes over BMS channels with 0 <
∑

i∈[r−1]Cf (Pi) < ∞. Because χ2-
capacity is subadditive over BMS channels, by a similar computation as (35) we have

η
(m,s)
χ2 (B) ≤ η

(m,ht,s)
χ2 (B) ≤ 1. (40)

With these definitions, it is very easy to prove Theorem 1.
Proof [Proof of Theorem 1] Let Mk denote the channel σρ 7→ (Tk, σLk

). Then (Mk)k≥0 satisfies
the BP recursion Mk+1 = BP(Mk), where BP is defined in (15).

Part (i), mutual information: For any channel P with input alphabet [q] we have

I(π,BP(P )) ≤ dI(π, P×(r−1) ◦B) ≤ (r − 1)dη
(m)
KL (π,B)I(π, P ), (41)

where the first step is by subadditivity of mutual information, and the second step is by definition
of multi-terminal contraction coefficients. If (21) holds, then I(π,Mk+1) ≤ cI(π,Mk) for c =

(r − 1)dη
(m)
KL (π,B) < 1. Because I(π,M0) < ∞, we have limk→∞ I(π,Mk) = 0 and non-

reconstruction holds.

Part (i), SKL information: If (22) holds, then

ISKL(π,M1) = dISKL(π, P
×(r−1) ◦B) ≤ dISKL(π,B) < ∞, (42)

where the first step is by additivity of SKL information, and the second step is by DPI. The rest of
the proof is similar to the previous case.

Part (ii), KL and SKL capacity: The channels Mk are all BMS channels, so we can use the BMS
version of multi-terminal contraction coefficients. The rest of the proof is the same as Part (i).

Part (ii), χ2-capacity: Use subadditivity of χ2-capacity for BMS channels and the proof is similar
to previous cases.

See Section A for a variation of Theorem 1 to the fixed-hypertree model BOHT(T, q, r, π,B).
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4. Non-reconstruction for the special BOHT model

In this section we focus on the special BOHT model BOHT(2, r, λ,D), which is the BOHT model
with q = 2, π = Unif({±}), and B = Br,λ as defined in (12). We prove non-reconstruction
results for this model using Theorem 1(ii) by computing the relevant multi-terminal contraction
coefficients.

To compute the contraction coefficients, we need to descibe P×(r−1) ◦ Br,λ (where P is a
BMS channel) in a more explicit way. By BSC mixture representation, we only need to describe
(BSC∆1 × · · · × BSC∆r−1) ◦Br,λ. Let θi := 1− 2∆i for i ∈ [r − 1]. For x ∈ {±}r−1, we have

((BSC∆1 × · · · × BSC∆r−1) ◦Br,λ)(x1, . . . , xr−1|+) (43)

=
∑

y∈{±}r−1

Br,λ(y1, . . . , yr−1|+)
∏

i∈[r−1]

BSC∆i(xi|yi)

= λ
∏

i∈[r−1]

BSC∆i(xi|+) +
1

2r−1
(1− λ)

∏
i∈[r−1]

∑
yi∈{±}

BSC∆i(xi|yi)

= λ
∏

i∈[r−1]

(
1

2
+

(
1

2
−∆i

)
xi

)
+

1

2r−1
(1− λ)

= λ
∏

i∈[r−1]

(
1

2
+

1

2
θixi

)
+

1

2r−1
(1− λ).

So (BSC∆1 × · · · × BSC∆r−1) ◦Br,λ is a mixture of 2r−2 BSCs, indexed by the set{
x : x ∈ {±}r−1, x1 = +

}
, (44)

where the BSC corresponding to x has weight (probability)λ
∏

i∈[r−1]

(
1

2
+

1

2
θixi

)
+

1

2r−1
(1− λ)

+

λ
∏

i∈[r−1]

(
1

2
− 1

2
θixi

)
+

1

2r−1
(1− λ)


(45)

= λ

 ∏
i∈[r−1]

(
1

2
+

1

2
θixi

)
+

∏
i∈[r−1]

(
1

2
− 1

2
θixi

)+
1

2r−2
(1− λ)

and θ parameter equal to the absolute value of(
λ
∏

i∈[r−1]

(
1
2 + 1

2θixi
)
+ 1

2r−1 (1− λ)
)
−
(
λ
∏

i∈[r−1]

(
1
2 − 1

2θixi
)
+ 1

2r−1 (1− λ)
)

(
λ
∏

i∈[r−1]

(
1
2 + 1

2θixi
)
+ 1

2r−1 (1− λ)
)
+
(
λ
∏

i∈[r−1]

(
1
2 − 1

2θixi
)
+ 1

2r−1 (1− λ)
) (46)

=
λ
(∏

i∈[r−1]

(
1
2 + 1

2θixi
)
−
∏

i∈[r−1]

(
1
2 − 1

2θixi
))

λ
(∏

i∈[r−1]

(
1
2 + 1

2θixi
)
+
∏

i∈[r−1]

(
1
2 − 1

2θixi
))

+ 1
2r−2 (1− λ)

=
λ
(∏

i∈[r−1] (1 + θixi)−
∏

i∈[r−1] (1− θixi)
)

λ
(∏

i∈[r−1] (1 + θixi) +
∏

i∈[r−1] (1− θixi)
)
+ 2(1− λ)

.

12
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Although we need to take absolute value, information measures (except for Pe) in Definition 8 are
all even functions in θ. So we do not need to worry about the sign.

Using this explicit description of P×(r−1) ◦Br,λ, we are able to compute several multi-terminal
contraction coefficients of Br,λ.

For Theorem 2(i), we compute the SKL contraction coefficients.

Proposition 9 (SKL contraction coefficient) Fix r = 3 or 4 and λ ∈ [0, 1]. Then

η
(m,ht,s)
SKL (Br,λ) = λ2. (47)

Furthermore, if 0 < λ < 1 and P1, . . . , Pr−1 are BMS channels with at least one Pi non-trivial,
then

CSKL((P1 × · · · × Pr−1) ◦Br,λ) < λ2
∑

i∈[r−1]

CSKL(Pi). (48)

Proof of Prop. 9 is deferred to Section B.
Proof [Proof of Theorem 2(i)] If (r − 1)d ≤ 1, then the BOHT model extincts almost surely (e.g.,
(Lyons and Peres, 2017, Prop. 5.4)). This resolves the case λ = 1. In the following, assume that
0 ≤ λ < 1.

For 0 ≤ λ < 1, we have CSKL(Br,λ) < ∞. Therefore Theorem 1(ii) together with Prop. 9
implies that non-reconstruction holds for (r − 1)dλ2 < 1.

For the critical case (r − 1)dλ2 = 1 we need some extra argument. See Section B.3.

For Theorem 2(ii), we compute the χ2-contraction coefficients.

Proposition 10 (χ2-contraction coefficient) Fix r ∈ Z≥3. Then

η
(m,s)
χ2 (Br,λ) = sup

0<ϵ≤1
fr,λ(ϵ), (49)

where fr,λ is defined in (27).

Proof of Prop. 10 is deferred to Section C.
Proof [Proof of Theorem 2(ii)] Follows from Theorem 1(ii) and Prop. 10.

Interestingly, RHS of (49) can be computed exactly when λ is not too small.

Lemma 11 Fix r ∈ Z≥3 and λ ∈
[
1
5 , 1

]
. For all 0 < ϵ ≤ 1, we have fr,λ(ϵ) < λ2.

Proof of Lemma 11 is deferred to Section C.
Proof [Proof of Theorem 2(iii)] Prop. 10 together with Lemma 11 implies that for λ ∈

[
1
5 , 1

]
we

have

η
(m,s)
χ2 (Br,λ) = λ2. (50)

(For the lower bound, take ϵ → 0+ in (49).) Then Theorem 1(ii) implies that non-reconstruction
holds for (r − 1)dλ2 < 1.

For the critical case (r − 1)dλ2 = 1 we need some extra argument. See Section C.4.
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5. Discussions

For the special BOHT model, we have left the r = 5, 6 case open. Our preliminary computations
suggest that for r = 5, 6, there exists an absolute constant d0 ∈ R≥0 such that the BOHT model
has non-reconstruction when d ≥ d0 and (r − 1)dλ2 ≤ 1. We believe that a generalization of Sly’s
method Sly (2011); Mossel et al. (2022) can be used to prove this. In Sly’s method, we compute the
first few orders of the BP recursion formula. Combined with Gaussian approximation this would
imply contraction of χ2-capacity. One technical challenge is that in the BOHT case we need a
two-step application of Sly’s method, in contrast with previous works.
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Appendix A. Non-reconstruction for the fixed-hypertree BOHT model

In this section we give a fixed-hypertree version of Theorem 1. Consider the model BOHT(T, q, r, π,B)
where T is a fixed rooted r-uniform linear hypertree. Recall the definition of the branching number.

Definition 12 (Branching number Lyons (1990)) Let T be a possibly infinite tree rooted at ρ.
Define a flow to be a function f : V (T ) → R≥0 such that for every vertex u, we have

fu =
∑

v∈c(u)

fv. (51)

Define br(T ) to be the sup of all numbers λ such that there exists a flow f with fρ > 0, and
fu ≤ λ−d(u) for all vertices u, where d(u) denotes the depth of u (i.e., distance to ρ).

For an r-uniform linear hypertree, we can split every downward hyperedge into (r − 1) downward
edges, and apply the above definition. In this way we extend the definition of branching number to
linear hypertrees.

Theorem 13 (Non-reconstruction for BOHT) Consider the model BOHT(T, q, r, π,B).

(i) If

br(T )η
(m,ht)
KL (π,B) < 1, (52)

or br(T )η
(m,ht)
SKL (π,B) < 1, ISKL(π,B) < ∞, and T has bounded maximum degree,

(53)

then reconstruction is impossible.

(ii) Suppose the BOHT model is binary symmetric. If

br(T )η
(m,ht,s)
KL (B) < 1, (54)

or br(T )η
(m,ht,s)
χ2 (B) < 1, (55)

or br(T )η
(m,ht,s)
SKL (B) < 1, CSKL(B) < ∞, and T has bounded maximum degree, (56)

then reconstruction is impossible.
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Proof The proof is a generalization of the argument from Gu and Polyanskiy (2020).
Part (i), mutual information: For any vertex u, let Lu,k denote the set of descendants of u at

distance k to ρ. Define

au := H(π)−1
(
η
(m,ht)
KL (π,B)

)d(u)
lim
k→∞

I(σu;σLu,k
). (57)

By DPI, I(σu;σLu,k
) is non-increasing for k ≥ d(u), so the limit exists.

Let γ(u) denote the set of downward hyperedges of u and c(u) denotes the set of children of
u. For any e = {u, v1, . . . , vr−1} ∈ γ(u), we have a diagram as in Figure 3, where Pσu = π,
Pi = PσLvi,k

|σvi
. Define Le\u,k :=

⋃
i∈[r−1] Lvi,k. By definition of multi-terminal contraction

σu B

σv1

...

σvr−1

P1

...

Pr−1

σLv1,k

...

σLvr−1,k

Figure 3: Apply multi-terminal SDPI to BOHT with a fixed hypertree

coefficients, we have

I(σu;σLe\u,k) ≤ η
(m,ht)
KL (π,B)

∑
i∈[r−1]

I(σvi ;σLvi,k
). (58)

Summing over all e ∈ γ(u) and using subadditivity, we have

I(σu;σLu,k
) ≤

∑
e∈γ(u)

I(σu;σLe\u,k) ≤ η
(m,ht)
KL (π,B)

∑
v∈c(u)

I(σv;σLv,k
). (59)

Comparing (57) and (59) we see that

au ≤
∑

v∈c(u)

av. (60)

By definition, we have

au ≤
(
η
(m,ht)
KL (π,B)

)d(u)
. (61)

However, a is not a flow yet. We define a flow b from a. For a vertex u, let u0 = ρ, . . . , uℓ = u be
the shortest path from ρ to u. Define

bu := au
∏

0≤j≤ℓ−1

auj∑
v∈c(uj)

av
. (62)

(If the denominator is zero, let bu = 0.) Then we have

bu =
∑

v∈c(u)

bv, and bu ≤ au ≤
(
η
(m,ht)
KL (π,B)

)d(u)
. (63)
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By definition of branching number, we have bρ = 0. Therefore

lim
k→∞

I(σρ;σLk
) = 0 (64)

and non-reconstruction holds.
Part (i), SKL information: Suppose every vertex u has at most γmax downward hyperedges.

Then

lim
k→∞

ISKL(σu;σLu,k
) ≤ ISKL(σu;σLu,d(u)+1

) = |γ(u)|ISKL(π,B) ≤ γmaxISKL(π,B) < ∞.

(65)

We define

au := (γmaxISKL(π,B))−1
(
η
(m,ht)
SKL (π,B)

)d(u)
lim
k→∞

ISKL(σu;σLu,k
). (66)

By (65), we have

au ≤
(
η
(m,ht)
SKL (π,B)

)d(u)
. (67)

The rest of the proof is similar to the mutual information case.
Part (ii), KL and SKL capacity: In this case, channels appeared in the above proof (e.g.,

σu 7→ σLu,k
) are all BMS channels. Using the same proof with BMS version of multi-terminal

contraction coefficients leads to the desired result.
Part (ii), χ2-capacity: Note that Cχ2(P ) ≤ 1 for all BMS channels P . So we can define

au :=
(
η
(m,ht,s)
χ2 (B)

)d(u)
lim
k→∞

Cχ2(σLu,k
) (68)

and it satisfies

au ≤
(
η
(m,ht,s)
χ2 (π,B)

)d(u)
. (69)

The rest of the proof is similar to the previous cases.

Appendix B. Computation of SKL contraction coefficients

In this section we prove Prop. 9, which says that for any BMS channels P1, . . . , Pr−1 we have

CSKL((P1 × · · · × Pr−1) ◦Br,λ) ≤ λ2
∑

i∈[r−1]

CSKL(Pi). (70)

By BSC mixture representation of BMS channels, (70) is equivalent to

CSKL

(
(BSC∆1 × · · · × BSC∆r−1) ◦Br,λ

)
≤ λ2

∑
i∈[r−1]

CSKL(BSC∆i) (71)

for all ∆1, . . . ,∆r−1 ∈
[
0, 12

]
.
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B.1. Case r = 3

We first prove the r = 3 case.

Lemma 14 For any ∆1,∆2 ∈
[
0, 12

]
, we have

CSKL((BSC∆1 ×BSC∆2) ◦Br,λ) ≤ λ2(CSKL(BSC∆1) + CSKL(BSC∆2)). (72)

Furthermore, the inequality is strict when 0 < λ < 1 and min{∆1,∆2} < 1
2 .

Proof We expand LHS of (72) using the BP recursion formula established in Section 4. Let θi =
1− 2∆i for i = 1, 2. Then

CSKL((BSC∆1 ×BSC∆2) ◦Br,λ) (73)

=
∑

x1=+,x2∈{±}

1

2
λ(θ1x1 + θ2x2) arctanh

λ(θ1x1 + θ2x2)

λ(1 + θ1x1θ2x2) + (1− λ)

= λ

(
1

2
(θ1 + θ2) arctanh

λ(θ1 + θ2)

1 + λθ1θ2
+

1

2
(θ1 − θ2) arctanh

λ(θ1 − θ2)

1− λθ1θ2

)
= λ

(
1

2
(θ1 + θ2)Fλ(θ1, θ2) +

1

2
(θ1 − θ2)Fλ(θ1,−θ2)

)
where

Fλ(θ1, θ2) := arctanh
λ(θ1 + θ2)

1 + λθ1θ2
. (74)

Note that by definition, Fλ(θ1, θ2) = −Fλ(−θ1,−θ2) and Fλ(θ1, θ2) = Fλ(θ2, θ1).
We have

1

2
(θ1 + θ2)Fλ(θ1, θ2) +

1

2
(θ1 − θ2)Fλ(θ1,−θ2) (75)

=
1

2
θ1(Fλ(θ1, θ2) + Fλ(θ1,−θ2)) +

1

2
θ2(Fλ(θ1, θ2) + Fλ(−θ1, θ2))

≤ θ1Fλ(θ1, 0) + θ2Fλ(0, θ2)

= θ1 arctanh(λθ1) + θ2 arctanh(λθ2)

≤ λ(θ1 arctanh θ1 + θ2 arctanh θ2)

= λ(CSKL(BSC∆1) + CSKL(BSC∆2)),

where the second step follows from Lemma 15, and the fourth step follows convexity of arctanh in
[0, 1]. Combining (73)(75) we finish the proof.

Lemma 15 For λ, θ1, θ2 ∈ [0, 1], we have

1

2
(Fλ(θ1, θ2) + Fλ(θ1,−θ2)) ≤ Fλ(θ1, 0). (76)

Furthermore, the inequality is strict when 0 < λ < 1 and θ1, θ2 > 0.
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Proof We use the formula

arctanhx+ arctanh y = arctanh
x+ y

1 + xy
(77)

to expand both sides of (76). LHS is

Fλ(θ1, θ2) + Fλ(θ1,−θ2) (78)

= arctanh
λ(θ1 + θ2)

1 + λθ1θ2
+ arctanh

λ(θ1 − θ2)

1− λθ1θ2

= arctanh
2λθ1(1− λθ22)

λ2(θ21 − θ22) + 1− λ2θ21θ
2
2

.

RHS is

2Fλ(θ1, 0) = arctanh
2λθ1

1 + λ2θ21
. (79)

By comparing (78)(79) and using monotonicity of arctanh, it suffices to prove that

1− λθ22
λ2(θ21 − θ22) + 1− λ2θ21θ

2
2

≤ 1

1 + λ2θ21
. (80)

We have

(λ2(θ21 − θ22) + 1− λ2θ21θ
2
2)− (1− λθ22)(1 + λ2θ21) = λ(1− λ)(1− λθ21)θ

2
2 ≥ 0. (81)

This finishes the proof.

Proof [Proof of Prop. 9, case r = 3] By BSC mixture representation of BMS channels (Lemma 6)
and Lemma 14.

B.2. Case r = 4

Now we prove the r = 4 case.

Lemma 16 For all ∆1,∆2,∆3 ∈
[
0, 12

]
, we have

CSKL((BSC∆1 ×BSC∆2 ×BSC∆3) ◦Br,λ) ≤ λ2
∑
i∈[3]

CSKL(BSC∆i). (82)

Furthermore, the inequality is strict when 0 < λ < 1 and min{∆1,∆2,∆3} < 1
2 .

The proof is based on the following inequality. In a preliminary version of the current paper, we pro-
posed this inequality as a conjecture based on numerical computation. Shortly after that, Marwaha
(2023) gave a beautiful analytical proof.
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Lemma 17 (Marwaha (2023)) For λ, θ1, θ2, θ3 ∈ [0, 1], we have

1

4
(Gλ(θ1, θ2, θ3) +Gλ(θ1,−θ2, θ3) +Gλ(θ1, θ2,−θ3) +Gλ(θ1,−θ2,−θ3)) (83)

≤ λ
∑
i∈[3]

θi arctanh θi,

where

Gλ(θ1, θ2, θ3) := (θ1 + θ2 + θ3 + θ1θ2θ3)Fλ(θ1, θ2, θ3), (84)

Fλ(θ1, θ2, θ3) := arctanh
λ(θ1 + θ2 + θ3 + θ1θ2θ3)

1 + λ(θ1θ2 + θ2θ3 + θ3θ1)
. (85)

Furthermore, the inequality is strict when 0 < λ < 1 and max{θ1, θ2, θ3} > 0.

Proof [Proof of Lemma 16] We expand LHS of (82) using BP recursion formula established in
Section 4. Let θi = 1− 2∆i for i ∈ [3]. Then

CSKL((BSC∆1 ×BSC∆2 ×BSC∆3) ◦Br,λ) (86)

=
∑

x1=+,x2,x3∈{±}

1

4
λ(θ1x1 + θ2x2 + θ3x3 + θ1θ2θ3x1x2x3)

· arctanh λ(θ1x1 + θ2x2 + θ3x3 + θ1θ2θ3x1x2x3)

1 + λ(θ1x1θ2x2 + θ2x3θ3x3 + θ3x3θ1x1)

=
λ

4
(Gλ(θ1, θ2, θ3) +Gλ(θ1,−θ2, θ3) +Gλ(θ1, θ2,−θ3) +Gλ(θ1,−θ2,−θ3))

where

Gλ(θ1, θ2, θ3) := (θ1 + θ2 + θ3 + θ1θ2θ3)Fλ(θ1, θ2, θ3), (87)

Fλ(θ1, θ2, θ3) := arctanh
λ(θ1 + θ2 + θ3 + θ1θ2θ3)

1 + λ(θ1θ2 + θ2θ3 + θ3θ1)
. (88)

By Lemma 17, we have

1

4
(Gλ(θ1, θ2, θ3) +Gλ(θ1,−θ2, θ3) +Gλ(θ1, θ2,−θ3) +Gλ(θ1,−θ2,−θ3)) (89)

≤ λ
∑
i∈[3]

θi arctanh θi

= λ
∑
i∈[3]

CSKL(BSC∆i).

Combining (86)(89) we finish the proof.

Proof [Proof of Prop. 9, case r = 4] By BSC mixture representation of BMS channels (Lemma 6)
and Lemma 16.
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B.3. Handle the critical case

In section we prove the critical case of Theorem 2(i), that for r = 3, 4 and (r − 1)dλ2 = 1,
reconstruction is impossible for the BOHT model BOHT(2, r, λ,D).

Before giving the proof, we introduce some more preliminaries on BMS channels.

Definition 18 (Limit of BMS channels) Let (Pk)k≥0 be a sequence of BMS channels and P∞
be a BMS channel. For k ∈ Z≥0 ∪ {∞}, let ∆k ∈

[
0, 12

]
denote the ∆-component of Pk and

P∆k
∈ P

([
0, 12

])
denote its distribution. We say (Pk)k≥0 converges weakly to P∞ if (P∆k

)k→∞
converges weakly to P∆∞ as distributions on

[
0, 12

]
.

The following lemma is a direct consequence of (Gu, 2023, Lemma 11.2) (see also (Richardson
and Urbanke, 2008, Theorem 7.24)).

Lemma 19 Let (Pk)k≥0 be a sequence of BMS channels. If Pk+1 ≤deg Pk for all k ≥ 0, then
(Pk)k≥0 converges weakly to some BMS channels P∞.

Recall that Mk is the BMS channel σρ 7→ (Tk, σLk
). Then Mk+1 ≤deg Mk. By Lemma 19,

the limit M∞ := limk→∞Mk exists. For k ∈ Z≥0 ∪ {∞}, let ∆k denote the ∆-component of Mk.
Then P∆k

converges weakly to P∆∞ as k → ∞.
The proof idea is as follows. By definition of the limit, we have BP(M∞) = M∞. If M∞ is

non-trivial, then by Eq. (48), we have CSKL(BP(M∞)) < CSKL(M∞), which leads to contradic-
tion. The actual argument is more involved because SKL capacity can be infinite for some BMS
channels.
Proof [Proof of Theorem 2(i) critical case] The case λ = 1 is already handled in Section 4. So we
can wlog assume 0 < λ < 1.

Suppose for the sake of contradiction that reconstruction holds. Then the limit channel M∞ is
non-trivial.

We first prove that P[∆∞ = 0] = 0. If not, then by weak convergence, there exists δ > 0
such that for all ϵ > 0, limk→∞ P[∆k < ϵ] > δ. Because limϵ→0+ CSKL(BSCϵ) = ∞, this
implies limk→∞CSKL(Mk) = ∞. However, for all k ≥ 1, we have CSKL(Mk) ≤ CSKL(M1) =
dCSKL(Br,λ) < ∞. Contradiction. So P[∆∞ = 0] = 0.

Because M∞ is non-trivial, P
[
∆∞ = 1

2

]
< 1. So P

[
0 < ∆∞ < 1

2

]
> 0. By weak conver-

gence, there exists c > 0 and a closed interval I ⊆
(
0, 12

)
such that P[∆k ∈ I] ≥ c for k large

enough. By Prop. 9, ∀δ1, . . . , δr−1 ∈ I , we have

CSKL((BSCδ1 × · · · × BSCδr−1) ◦Br,λ) < λ2
∑

i∈[r−1]

CSKL(BSCδi). (90)

Because I is compact, there exists ϵ > 0 such that ∀δ1, . . . , δr−1 ∈ I ,

CSKL((BSCδ1 × · · · × BSCδr−1) ◦Br,λ) ≤ λ2
∑

i∈[r−1]

CSKL(BSCδi)− ϵ. (91)
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For any k satisfying P[∆k ∈ I] ≥ c, we have

CSKL(BP(Mk)) (92)

= dCSKL

(
M

×(r−1)
k ◦Br,λ

)
= d E

δ1,...,δr−1∼P∆k

CSKL((BSCδ1 × · · · × BSCδr−1) ◦Br,λ)

≤ d E
δ1,...,δr−1∼P∆k

λ2
∑

i∈[r−1]

CSKL(BSCδi)− ϵ1{δ1, . . . , δr−1 ∈ I}


≤ d((r − 1)λ2CSKL(Mk)− ϵcr−1)

= CSKL(Mk)− dϵcr−1.

So for k large enough,

CSKL(Mk+1) ≤ CSKL(Mk)− dϵcr−1. (93)

Because dϵcr−1 > 0 and CSKL(Mk) < ∞ for all k ≥ 1, this implies CSKL(Mk) < 0 for k large
enough, which cannot be true. This finishes the proof.

Appendix C. Computation of χ2-contraction coefficients

In this section we prove Prop. 10 and Lemma 11, which computes the χ2-multi-terminal contraction
coefficient η(m,s)

χ2 (Br,λ). In fact, our method works for the more general setting where B : {±} →
{±}r−1 together with the sign flip {±}r−1 → {±}r−1 is a BMS channel.

C.1. Less-noisy preorder

Our method uses the less-noisy preorder, a very useful channel preorder, especially for BMS chan-
nels.

Definition 20 (Less-noisy preorder Körner and Marton (1977)) Let P : X → Y and Q : X →
Z be two channels with the same input alphabet. We say P is less noisy than Q, denoted P ≥ln Q,
if for every measurable space W , distribution π ∈ P(W), and channel R : W → X , we have
I(π, P ◦R) ≥ I(π,Q ◦R).

Less-noisy preorder behaves nicely under channel transformations, summarized as follows.

• (Composition) Let P,Q be two channels with the same input alphabet X . Let R : W → X
be a channel. If P ≤ln Q, then P ◦R ≤ln Q ◦R.

• (Tensorization) Sutter and Renes (2014); Polyanskiy and Wu (2017) Let P1 and Q1 be two
channels with the same input alphabet X , and P2 and Q2 be two channels with the same input
alphabet Y . If P1 ≤ln Q1 and P2 ≤ln Q2, then P1 ×Q1 ≤ln P2 ×Q2.

• (⋆-convolution) Let P1, P2, Q1, Q2 be four channels with the same input alphabet. If P1 ≤ln

Q1 and P2 ≤ln Q2, then P1 ⋆ Q1 ≤ln P2 ⋆ Q2.
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Although defined using mutual information, less-noisy preorder is closely related to χ2-divergence.
(Makur and Polyanskiy, 2018, Theorem 1) implies that for BMS channels P,Q, if P ≤ln Q, then
Cχ2(P ) ≤ Cχ2(Q). Furthermore, under χ2-capacity constraint, BEC and BSC are the extremal
channels in less-noisy preorder.

Lemma 21 ((Roozbehani and Polyanskiy, 2019, Lemma 2)) Among all BMS channels with the
same χ2-capacity Cχ2(W ) = η the least noisy one is BEC and the most noisy one is BSC, i.e.

BSC1/2−√
η/2 ≤ln W ≤ln BEC1−η . (94)

C.2. Binary symmetric model

We consider the more general setting where B : {±} → {±}r−1 is a BMS channel. Recall that this
is the setting for the binary symmetric BOHT model.

Proposition 22 Suppose B : {±} → {±}r−1 together with the sign flip {±}r−1 → {±}r−1 is a
BMS channel. Then

η
(m,s)
χ2 (B) = sup

0<ϵ≤1
fB(ϵ) (95)

where

fB(ϵ) :=
1

(r − 1)ϵ
Cχ2

(
BEC

×(r−1)
1−ϵ ◦B

)
(96)

is a polynomial of degree r − 2.

Proof Let P be a non-trivial BMS channel and ϵ = Cχ2(P ). By Lemma 21, P ≤ln BEC1−ϵ.
Because less-noisy preorder is preserved under tensorization and composition, we have

P×(r−1) ◦B ≤ln BEC
×(r−1)
1−ϵ ◦B. (97)

Then by (Makur and Polyanskiy, 2018, Theorem 1) we have

Cχ2(P×(r−1) ◦B) ≤ Cχ2

(
BEC

×(r−1)
1−ϵ ◦B

)
. (98)

So

η
(m,s)
χ2 (B) = sup

P

Cχ2(P×(r−1) ◦B)

(r − 1)Cχ2(P )
= sup

0<ϵ≤1

Cχ2

(
BEC

×(r−1)
1−ϵ ◦B

)
(r − 1)Cχ2(BEC1−ϵ)

= sup
0<ϵ≤1

fB(ϵ). (99)

It remains to prove that fB(ϵ) is a polynomial of degree of r−2. By BSC mixture representation,
we have

ϵfB(ϵ) =
1

r − 1
Cχ2

(
BEC

×(r−1)
1−ϵ ◦B

)
(100)

=
1

r − 1

∑
x∈{0,1}r−1

 ∏
i∈[r−1]

(
ϵxi(1− ϵ)1−xi

)Cχ2

 ∏
i∈[r−1]

BSC(1−xi)/2

 ◦B

 ,
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which is a degree-(r − 1) polynomial. Furthermore, the constant coefficient of ϵfB(ϵ) is

1

r − 1
Cχ2

(
BSC

×(r−1)
1/2 ◦B

)
= 0. (101)

So fB(ϵ) is a polynomial of degree r − 2.

For r = 2, fB(ϵ) is a constant, and we get η(m,s)
χ2 (B) = fB(1) = Cχ2(B). For r = 3, fB(ϵ) is

a linear function, so η
(m,s)
χ2 (B) = max{fB(0), fB(1)}.

Prop. 22 immediately leads to the following corollary.

Corollary 23 (Non-reconstruction for binary symmetric BOHT) Consider a binary symmetric
BOHT model BOHT(2, r,Unif({±}), B,D) where Et∼Dt = d. If

(r − 1)d sup
0<ϵ≤1

fB(ϵ) < 1, (102)

where fB is defined in (96), then reconstruction is impossible.

Proof By Theorem 1(ii) and Prop. 22.

C.3. Special BOHT model

We apply Prop. 22 to the special case where B = Br,λ.
Proof [Proof of Prop. 10] It suffices to prove that fBr,λ

= fr,λ, where LHS is defined in (96) and
RHS is defined in (27). We have

fBr,λ
(ϵ) (103)

=
1

(r − 1)ϵ

∑
x∈{0,1}r−1

 ∏
i∈[r−1]

(
ϵxi(1− ϵ)1−xi

)Cχ2

 ∏
i∈[r−1]

BSC(1−xi)/2

 ◦Br,λ


=

1

(r − 1)ϵ

∑
1≤i≤r−1

(
r − 1

i

)
ϵi(1− ϵ)r−1−iCχ2

((
Id×i×0×(r−1−i)

)
◦Br,λ

)
=

1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)
ϵi−1(1− ϵ)r−1−iCχ2

((
Id×i×0×(r−1−i)

)
◦Br,λ

)
,

where Id = BSC0 denotes the identity channel and 0 = BSC1/2 denotes the trivial channel. Using
the BP recursion formula established in Section 4, we have

Cχ2

((
Id×i×0×(r−1−i)

)
◦Br,λ

)
=

λ2

λ+ (1− λ)21−i
(104)

for 1 ≤ i ≤ r − 1. Therefore

fBr,λ
(ϵ) =

1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)
ϵi−1(1− ϵ)r−1−i λ2

λ+ (1− λ)21−i
= fr,λ(ϵ). (105)
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This finishes the proof.

Proof [Proof of Lemma 11] Note that fr,λ(0) = λ2. Let us compute f ′
r,λ(ϵ).

f ′
r,λ(ϵ) =

1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)(
d

dϵ

(
(1− ϵ)r−1−iϵi−1

)) λ2

λ+ (1− λ)21−i
(106)

=
1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)(
(i− 1)(1− ϵ)r−1−iϵi−2

−(r − 1− i)(1− ϵ)r−2−iϵi−1
) λ2

λ+ (1− λ)21−i

=
1

r − 1

∑
1≤i≤r−1

(
r − 1

i

)
(i− 1)(1− ϵ)r−1−iϵi−2 λ2

λ+ (1− λ)21−i

− 1

r − 1

∑
2≤i≤r

(
r − 1

i− 1

)
(r − i)(1− ϵ)r−1−iϵi−2 λ2

λ+ (1− λ)22−i

=
1

r − 1

∑
2≤i≤r−1

(
r − 1

i

)
(1− ϵ)r−1−iϵi−2

(
(i− 1)λ2

λ+ (1− λ)21−i
− iλ2

λ+ (1− λ)22−i

)
.

When λ ∈
[
1
5 , 1

]
, we have

i− 1

λ+ (1− λ)21−i
≤ i

λ+ (1− λ)22−i
(107)

for all integer i ≥ 2, and the inequality is strict for i ∈ {2} ∪ Z≥5. Therefore f ′
r,λ(ϵ) < 0 for all

ϵ ∈ [0, 1]. So for 0 < ϵ ≤ 1 we have fr,λ(ϵ) < fr,λ(0) = λ2.

We remark that for fixed r, the range λ ∈
[
1
5 , 1

]
could be improved. For example, for r = 5 and

λ ∈
[
1
7 , 1

]
we have fr,λ(ϵ) ≤ λ2 for all ϵ ∈ [0, 1].

C.4. Handle the critical case

In this section we prove the critical case of Theorem 2(iii), that for λ ∈
[
1
5 , 1

]
and (r − 1)dλ2 = 1,

reconstruction is impossible.
The proof idea is similar to the SKL case (Section B.3). Because χ2-capacity is a bounded

function for BMS channels, the proof is easier than the SKL case.
Proof [Proof of Theorem 2(iii) critical case] Suppose for the sake of contraction that reconstruction
holds. Then the limit channel M∞ := limk→∞Mk is non-trivial. Let ϵ := Cχ2(M∞) > 0. Then
M∞ ≤ln BEC1−ϵ, and thus BP(M∞) ≤ln BP(BEC1−ϵ). So

Cχ2(BP(M∞)) ≤ Cχ2(BP(BEC1−ϵ)) ≤ dCχ2

(
BEC

×(r−1)
1−ϵ ◦Br,λ

)
(108)

≤ (r − 1)dϵfr,λ(ϵ) < (r − 1)dλ2ϵ = ϵ = Cχ2(M∞), (109)

where the first step is by (Makur and Polyanskiy, 2018, Theorem 1), the second step is by sub-
additivity, the third step is by fr,λ = fBr,λ

, the fourth step is by Lemma 11, the fifth step is by
(r − 1)dλ2 = 1, and the sixth step is by definition of ϵ. On the other hand, BP(M∞) = M∞, so
Cχ2(BP(M∞)) = Cχ2(M∞). Contradiction.
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Appendix D. Weak recovery threshold for HSBM

In this section we prove Theorem 3. Our proof uses a reduction from HSBM to BOHT, which works
in a very general setting. Let us define the general HSBM.

Definition 24 (General HSBM Angelini et al. (2015); Stephan and Zhu (2022)) Let n ≥ 1 (num-
ber of vertices), q ≥ 2 (number of communities), r ≥ 2 (hyperedge size) be integers. Let π ∈ P([q])

be a distribution with full support. Let A ∈
(
Rq
≥0

)⊗r
be a tensor satisfying

ai1,...,ir = aiσ(1),...,iσ(r)
(110)

for any i1, . . . , ir ∈ [q], σ ∈ Aut([r]). The hypergraph stochastic block model HSBM(n, q, r, π,A)
is defined as follows: Let V = [n] be the set of vertices. Generate a random label Xu for all vertices
u ∈ V i.i.d. ∼ π. Then for every S = {u1, . . . , ur} ∈

(
V
r

)
, add hyperedge S to the hypergraph with

probability
aXu1 ,...,Xur

( n
r−1)

. The resulting pair (X,G = (V,E)) is the output of the model.

Clearly the above definition generalizes the model HSBM(n, 2, r, a, b) defined in the introduction.
Let (X,G) ∼ HSBM(n, q, r, π,A). We say the model admits weak recovery if there exists an

estimator outputting a subset S ⊆ V such that for some ϵ > 0, with probability 1 − o(1), there
exists i, j ∈ [q] such that

#{v ∈ S : Xv = i}
#{v ∈ V : Xv = i}

− #{v ∈ S : Xv = j}
#{v ∈ V : Xv = j}

≥ ϵ. (111)

For HSBM(n, 2, r, a, b), this definition agrees with the one we gave in the introduction.
In the HSBM, the expected degree (number of hyperedges containing a vertex) of a vertex with

label i ∈ [q] is di ± o(1), where

di =
∑

i1,...,ir−1∈[q]

ai,i1,...,ir−1

∏
j∈[r−1]

πij . (112)

If di ̸= dj for some i, j ∈ [q], we can distinguish community i and j using a classifier based
on degree, which trivially solves the weak recovery problem. Therefore, we make the following
standard assumption.

Condition 25 We say the model HSBM(n, q, r, π,A) is degree indistinguishable if di = dj for all
i, j ∈ [q], where di is defined in Eq. (112). For such models, we define d = di for any i.

For a degree indistinguishable HSBM, the local neighborhood of any vertex corresponds to a
BOHT model. This relationship was first shown in Massoulié (2014); Mossel et al. (2015) in the
case of two-community symmetric SBMs, and later generalized to various settings Bordenave et al.
(2015); Caltagirone et al. (2017); Stephan and Massoulié (2019, 2022); Gu and Polyanskiy (2020);
Chin and Sly (2020, 2021); Mossel et al. (2022); Pal and Zhu (2021); Stephan and Zhu (2022).

Proposition 26 (HSBM-BOHT coupling (Stephan and Zhu, 2022, Prop. 3)) Let (X,G) ∼ HSBM(n, q, r, π,A)
be a model satisfying Condition 25. Let v ∈ V and k = c log n for some small enough constant
c > 0 not depending on n. Let B(v, k) be the set of vertices with distance ≤ k to v.
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Let (T, σ) ∼ BOHT(q, r, π,M,Pois(d)), and

Mi,(i1,...,ir−1) =
1

d
ai,i1,...,ir−1

∏
j∈[r−1]

πj . (113)

Let ρ be the root of T , and Tk be the set of vertices at distance ≤ k to ρ.
Then (G|B(v,k), XB(v,k)) can be coupled to (Tk, σTk

) with o(1) TV distance.

In the setting of Prop. 26, we say the model BOHT(q, r, π,M,Pois(d)) is the BOHT model corre-
sponding to HSBM(n, q, r, π,A).

Now we can state the general reduction. This reduction was first established by Mossel et al.
(2015) in the case of two-community symmetric SBMs, and later generalized to various settings Gu
and Polyanskiy (2020); Mossel et al. (2022).

Theorem 27 ((Gu, 2023, Theorem 5.15)) Let HSBM(n, q, r, π,A) be a model satisfying Condi-
tion 25. Let BOHT(q, r, π,M,Pois(d)) be the corresponding BOHT model. If reconstruction for
the BOHT model is impossible, then weak recovery for the HSBM is impossible.

The proof of Theorem 27 uses Prop. 26 and that HSBMs have no long range correlations, a fact first
established by Mossel et al. (2015) in the case of two-community symmetric SBMs.

Proposition 28 ((Gu, 2023, Prop. 5.6)) Let (X,G = (V,E)) ∼ HSBM(n, q, r, π,A). Let A =
A(G), B = B(G), C = C(G) ⊆ V be a (random) partition of V such that B separates A and C
in G (i.e., there exists no hyperedges S ∈ E intersecting both A and C). If |A∪B| = o(

√
n) a.a.s.,

then

P(XA|XB∪C , G) = (1± o(1))P(XA|XB, G) a.a.s. (114)

We omit the proofs of Theorem 27 and Prop. 28 and refer the reader to Gu (2023),
Using Theorem 27 and multi-terminal contraction coefficients we can prove impossibility of

weak recovery results for HSBMs.

Corollary 29 (Impossibility of weak recovery for general HSBM) Let HSBM(n, q, r, π,A) be
a model satisfying Condition 25. Let BOHT(q, r, π,M,Pois(d)) be the corresponding BOHT
model. If any of the conditions in Theorem 1(i)(ii) holds, then weak recovery is impossible.

Proof By Theorem 27 and Theorem 1.

In particular, for HSBM(n, 2, r, a, b), we get Theorem 3.
Proof [Proof of Theorem 3] By Theorem 27 and Theorem 2.

Appendix E. Reconstruction below the KS threshold

In this section we prove Theorem 4, that for the special BOHT model on a regular or Poisson hy-
pertree, reconstruction is possible below the KS threshold for r ≥ 7 and d large enough. Our proof
is an analysis of evolution of χ2-capacity (also called magnetization in literature) and Gaussian
approximation for large degree.
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E.1. Behavior of χ2-capacity

Proposition 30 (Large degree asymptotics) Fix r ∈ Z≥2. For any ϵ > 0, there exists d0 =
d0(r, ϵ) > 0 such that for any d ≥ d0 and λ ∈ [0, 1] with (r − 1)dλ2 ≤ 1, for any BMS channel P
we have

|Cχ2(BP(P ))− gr,d,λ(Cχ2(P ))| ≤ ϵ, (115)

where

gr,d,λ(x) := EZ∼N (0,1) tanh

(
sr,d,λ(x) +

√
sr,d,λ(x)Z

)
, (116)

sr,d,λ(x) := dλ2 · 1
2

(
(1 + x)r−1 − (1− x)r−1

)
. (117)

The rest of this section is devoted to the proof of Prop. 30.
We first describe BP(P ) in terms of the θ-component. Let P be a BMS channel and Pθ be the

θ-component of P . Let t be the offspring (t = d for regular hypertrees, t ∼ Pois(d) for Poisson

hypertrees). Let (θij)i∈[t],j∈[r−1] generated i.i.d.∼ Pθ, where θij is the θ-component of the j-th vertex
in the i-th downward hyperedge. Let θi be the θ-component of i-th hyperedge P×(r−1) ◦ B. As
discussed in Section 4, given (θij)j∈[r−1], θi is equal to (the absolute value of)

λ
(∏

j∈[r−1] (1 + θijxij)−
∏

j∈[r−1] (1− θijxij)
)

λ
(∏

j∈[r−1] (1 + θijxij) +
∏

j∈[r−1] (1− θijxij)
)
+ 2(1− λ)

. (118)

with probability

λ

 ∏
j∈[r−1]

(
1

2
+

1

2
θijxij

)
+

∏
j∈[r−1]

(
1

2
− 1

2
θijxij

)+ 22−r(1− λ) (119)

for (xij)j∈[r−1] ∈ {±}r−1, xi1 = +.
Let θ be the θ-component of the full channel BP(P ). Let Pθ denote the distribution of θ. Then

given (θi)i∈[t], θ is equal to (the absolute value of)

∏
i∈[t](1 + θixi)−

∏
i∈[t](1− θixi)∏

i∈[t](1 + θixi) +
∏

i∈[t](1− θixi)
(120)

with probability

∏
i∈[t]

(
1

2
+

1

2
θixi

)
+

∏
i∈[t]

(
1

2
− 1

2
θixi

)
(121)
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for (x1, . . . , xt) ∈ {±}t, x1 = +. In other words,

Pθ|θ1,...,θi (122)

=
∑

(x1,...,xt)∈{±}t

∏
i∈[t]

(
1

2
+

1

2
θixi

)1

{∣∣∣∣∣
∏

i∈[t](1 + θixi)−
∏

i∈[t](1− θixi)∏
i∈[t](1 + θixi) +

∏
i∈[t](1− θixi)

∣∣∣∣∣
}

=
∑

(x1,...,xt)∈{±}t

∏
i∈[t]

(
1

2
+

1

2
θixi

)1


∣∣∣∣∣∣tanh

∑
i∈[t]

arctanh(θixi)

∣∣∣∣∣∣
 .

Write θ̃i = θixi. Then P[θ̃i = sθi|θi] = 1
2 + 1

2θis for s ∈ {±}. So θ̃i for i ∈ [t] are iid generated
from the same distribution. Let us call this distribution D. Then

Pθ = EtE
θ̃1,...,θ̃t

i.i.d.∼ D
1


∣∣∣∣∣∣tanh

∑
i∈[t]

arctanh θ̃i

∣∣∣∣∣∣
 (123)

This allows us to use central limit theorems to control the behavior of
∑

i∈[t] arctanh θ̃i.

Lemma 31 There exists a constant d0 = d0(r) > 0 such that for any d > d0, λ ∈ [0, 1] with
(r − 1)dλ2 ≤ 1, and any BMS channel P , we have∣∣∣Cχ2(P×(r−1) ◦B)− sr,λ(Cχ2(P ))

∣∣∣ ≤ Or(λ
3), (124)

sr,λ(x) := λ2 · 1
2

(
(1 + x)r−1 − (1− x)r−1

)
. (125)

where Or hides a multiplicative factor depending only on r.

Proof We have

Cχ2(P×(r−1) ◦B)

= Eθ2i
= E

θi1,...,θi,r−1
i.i.d.∼ Pθ

∑
(xij)j∈[r−1]∈{±}r−1

xi1=+21−r ·
λ2

(∏
j∈[r−1] (1 + θijxij)−

∏
j∈[r−1] (1− θijxij)

)2

λ
(∏

j∈[r−1] (1 + θijxij) +
∏

j∈[r−1] (1− θijxij)
)
+ 2(1− λ)


= E

θi1,...,θi,r−1
i.i.d.∼ Pθ

∑
(xij)j∈[r−1]∈{±}r−1

xi1=+2−rλ2

 ∏
j∈[r−1]

(1 + θijxij)−
∏

j∈[r−1]

(1− θijxij)

2+Or(λ
3).
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The inner summation satisfies

∑
(xij)j∈[r−1]∈{±}r−1

xi1=+

 ∏
j∈[r−1]

(1 + θijxij)−
∏

j∈[r−1]

(1− θijxij)

2

=
1

2

∑
(xij)j∈[r−1]∈{±}r−1

 ∏
j∈[r−1]

(1 + θijxij)−
∏

j∈[r−1]

(1− θijxij)

2

=
1

2

∑
(xij)j∈[r−1]∈{±}r−1

 ∏
j∈[r−1]

(
1 + 2θijxij + θ2ij

)
− 2

∏
j∈[r−1]

(
1− θ2ij

)

+
∏

j∈[r−1]

(
1− 2θijxij + θ2ij

)
= 2r−1

 ∏
j∈[r−1]

(1 + θ2ij)−
∏

j∈[r−1]

(1− θ2ij)

 .

Therefore

E
θi1,...,θi,r−1

i.i.d.∼ Pθ

∑
(xij)j∈[r−1]∈{±}r−1

xi1=+

 ∏
j∈[r−1]

(1 + θijxij)−
∏

j∈[r−1]

(1− θijxij)

2

= 2r−1 E
θi1,...,θi,r−1

i.i.d.∼ Pθ

 ∏
j∈[r−1]

(1 + θ2ij)−
∏

j∈[r−1]

(1− θ2ij)


= 2r−1

((
1 + Cχ2(P )

)r−1 −
(
1− Cχ2(P )

)r−1
)
.

Combining everything we finish the proof.

Lemma 32 There exists a constant d0 = d0(r) > 0 such that for any d > d0, λ ∈ [0, 1] with
(r − 1)dλ2 ≤ 1, and any BMS channel P , we have∣∣∣E arctanh θ̃i − sr,λ(Cχ2(P ))

∣∣∣ = Or(λ
3), (126)∣∣∣Var(arctanh θ̃i)− sr,λ(Cχ2(P ))

∣∣∣ = Or(λ
3). (127)

Proof Note that θi = Or(λ) almost surely. When d is large enough, λ is small enough, and
arctanh θi = θi +Or(λ

3) almost surely by Taylor expansion. Then

E arctanh θ̃i = E[θi arctanh θi] = Eθ2i +Or(λ
4), (128)

E(arctanh θ̃i)2 = E(arctanh θi)2 = Eθ2i +Or(λ
4). (129)
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By Lemma 31, we have

Eθ2i = sr,λ(Cχ2(P )) +Or(λ
3). (130)

This already implies the statement on E arctanh θ̃i. For the statement on Var(arctanh θ̃i), we note
that

E arctanh θ̃i = sr,λ(Cχ2(P )) +Or(λ
3) = Or(λ

2). (131)

So

Var(arctanh θ̃i) = E(arctanh θ̃i)2 −
(
E arctanh θ̃i

)2
(132)

= sr,λ(Cχ2(P )) +Or(λ
3).

This finishes the proof.

Now we recall a normal approximation result from (Mossel et al., 2022, Prop. 5.3). We only
need the scalar version of it.

Lemma 33 (Mossel et al. (2022)) Let ϕ : R → R be a thrice differentiable and bounded function
with bounded derivatives up to third order. Let V1, . . . , Vt ∈ R be independent random real num-
bers. Suppose there exists deterministic numbers µ, σ ∈ R such that the following holds: for some
constant C > 0, almost surely

max


∣∣∣∣∣∣
∑
j∈[t]

EVj − µ

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
∑
j∈[t]

Var(Vj)− σ2

∣∣∣∣∣∣
 ≤ Ct−1/2, (133)

max
{
|µ|, |σ2|

}
≤ C, max

j∈[t]
|Vj | ≤ Ct−1/2. (134)

Then for any ϵ > 0, there exists t0 = t0(ϵ, ϕ, C) such that if t > t0, then∣∣∣∣∣∣Eϕ
∑

j∈[t]

Vj

− EW∼N (µ,σ2)ϕ(W )

∣∣∣∣∣∣ ≤ ϵ. (135)

We now have everything we need for the proof of Prop. 30.
Proof [Proof of Prop. 30] Regular hypertree: Define θ̃ as P[θ̃ = sθ|θ] = 1

2 + θs for s ∈ {±}.
Then

Cχ2(BP(P )) = Eθ̃ = E
θ̃1,...,θ̃t

i.i.d.∼ D
tanh

∑
i∈[t]

arctanh θ̃i

 . (136)

In fact, the equality holds with tanh replaced by tanh2. We use the tanh form here because it is
slightly simpler.

Now we apply Lemma 33 with

ϕ(x) = tanhx, Vi = arctanh θ̃i, µ = σ2 = dsr,λ(Cχ2(P )) = sr,d,λ(Cχ2(P )). (137)
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The conditions in Lemma 33 are satisfied by Lemma 32 and because λ = O(d−1/2). This finishes
the proof.

Poisson hypertree: Fix ϵ > 0. Let t ∼ Pois(d). By Poisson tail bounds, we have P[|t − d| >
d0.6] < ϵ/3 for large enough d (depending only on ϵ). We apply Lemma 33 for every t ∈ [d −
d0.6, d+ d0.6], with µ = σ2 = sr,t,λ(Cχ2(P )) and error tolerance ϵ/3. Note that∣∣sr,d,λ(Cχ2(P ))− sr,t,λ(Cχ2(P ))

∣∣ = Or(d
−0.4). (138)

So for d large enough (depending only on ϵ, r), we have∣∣gr,d,λ(Cχ2(P ))− gr,t,λ(Cχ2(P ))
∣∣ ≤ ϵ/3 (139)

by continuity of gr (Lemma 34).
Therefore we have∣∣Cχ2(BP(P ))− gr,d,λ(Cχ2(P ))

∣∣
=

∣∣∣Et∼Pois(d)Cχ2((P×(r−1) ◦B)⋆t)− gr,d,λ(Cχ2(P ))
∣∣∣

≤ Et∼Pois(d)1{|t− d| ≤ d0.6}
∣∣∣Cχ2((P×(r−1) ◦B)⋆t)− gr,t,λ(Cχ2(P ))

∣∣∣
+ Et∼Pois(d)1{|t− d| ≤ d0.6}

∣∣gr,t,λ(Cχ2(P ))− gr,d,λ(Cχ2(P ))
∣∣

+ Et∼Pois(d)1{|t− d| > d0.6}|Cχ2((P×(r−1) ◦B)⋆t)− gr,d,λ(Cχ2(P ))|
≤ ϵ/3 + ϵ/3 + ϵ/3 = ϵ.

Note that Cχ2(P ) ∈ [0, 1] for any BMS channel P , and gr,d,λ(x) ∈ [0, 1] for all x ∈ [0, 1].

E.2. Properties of functions

Theorem 4 then follows from analyzing properties of the function gr,d,λ. For r ≥ 2, we define

gr(x) := EZ∼N (0,1) tanh
(
sr(x) +

√
sr(x)Z

)
, (140)

sr(x) :=
1

2(r − 1)

(
(1 + x)r−1 − (1− x)r−1

)
. (141)

Lemma 34 For any r ≥ 2, the function gr is strictly increasing and continuous differentiable on
[0, 1].

Proof Note that sr(x) is continuous and increasing on [0, 1]. Therefore it suffices to prove that

g(s) := EZ∼N (0,1) tanh
(
s+

√
sZ

)
(142)

is continuous and increasing on R≥0. This statement is in fact equivalent to the q = 2 case in (Sly,
2011, Lemma 4.4), after a suitable change of variables.

Lemma 35 For r ≥ 7, there exists x ∈ (0, 1) such that gr(x) > x.

Proof We can numerically verify that g7(0.8) > 0.8. Note that sr(0.8) is increasing for r ≥ 7.
Therefore for r ≥ 7, we have gr(0.8) ≥ g7(0.8) > 0.8.
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E.3. Proof of Theorem 4

We are now ready to prove Theorem 4.
Proof [Proof of Theorem 4] Choose x ∈ (0, 1) so that gr(x) > x via Lemma 35. By continuity of
gr (Lemma 34), there exists ϵ > 0 such that gr,d,λ(x) > x + ϵ for (r − 1)dλ2 = 1 − ϵ. Note that
gr,d,λ(x)’s dependence on d and λ is only through dλ2.

Take d0 = d0(r, ϵ) in Prop. 30. For any d > d0, choose λ ∈ [0, 1] such that (r− 1)dλ2 = 1− ϵ.
By Prop. 30, choice of ϵ, and Lemma 34, for all BMS P with Cχ2(P ) ≥ x we have

Cχ2(BP(P )) ≥ gr,d,λ(Cχ2(P ))− ϵ ≥ x. (143)

Therefore

lim
k→∞

Iχ2(σρ;Tk, σLk
) = lim

k→∞
Cχ2(Mk) ≥ x. (144)

Finally

lim
k→∞

I(σρ;Tk, σLk
) ≥ lim

k→∞

log e

2
Iχ2(σρ;Tk, σLk

) ≥ x log e

2
, (145)

where the first step is because C(P ) ≥ log e
2 Cχ2(P ) for any BMS P .
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