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Abstract

Consider an empirical measure Pn induced by n iid samples from a d-dimensional K-subgaussian
distribution P and let γ = N (0, σ2Id) be the isotropic Gaussian measure. We study the speed of conver-
gence of the smoothed Wasserstein distance W2(Pn ∗ γ,P ∗ γ) = n−α+o(1) with ∗ being the convolution
of measures. For K < σ and in any dimension d ≥ 1 we show that α = 1

2
. For K > σ in dimension

d = 1 we show that the rate is slower and is given by α = (σ2+K2)2

4(σ4+K4)
< 1/2. This resolves several open

problems in [GGNWP20], and in particular precisely identifies the amount of smoothing σ needed to
obtain a parametric rate. In addition, we also establish that DKL(Pn ∗ γ‖P ∗ γ) has rate O(1/n) for

K < σ but only slows down to O( (log n)d+1

n
) for K > σ. The surprising difference of the behavior of W 2

2

and KL implies the failure of T2-transportation inequality when σ < K. Consequently, the requirement
K < σ is necessary for validity of the log-Sobolev inequality (LSI) for the Gaussian mixture P∗N (0, σ2),
closing an open problem in [WW+16], who established the LSI under precisely this condition.

1 Introduction and main results

Given n iid samples X1, . . . , Xn from a probability measure P on Rd let us denote by Pn = 1
n

∑n
i=1 δXi

the empirical distribution. As n → ∞ it is well known that Pn → P according to many different notions of
convergence. The literature on the topic is voluminous. Here we are interested in convergence in Wasserstein
Wp-distances, cf. [Vil03, Chapter 1], defined for p ≥ 1 as

Wp(P,Q)p = inf
PX,Y

{E[‖X − Y ‖p] : PX = P, PY = Q} ,

where ‖ · ‖ is Euclidean norm. Already in [Dud69] it was shown that

W1(Pn,P) = Θ(n−1/d) ,

for d ≥ 2 and compactly supported P absolutely continuous with respect to Lebesgue measure. Dudley’s
technique relied on the characterization (special to p = 1) of W1 as the supremum over expectations of Lips-
chitz functions. His idea of recursive partitioning was cleverly adapted to the realm of couplings in [BLG14],
recovering Dudley’s convergence rate of n−1/d also for p > 1. See [DSS13, FG15, WB19] for more on this
line of work, and also for a thorough survey of the recent literature.

Somewhat surprisingly, it was discovered in [GGNWP20] that the rate of convergence improves all the
way to (dimension-independent) n−1/2 if one merely regularizes both Pn and P by convolving with the

Gaussian density.1 More precisely, let ϕσ2(x) , (2πσ2)−d/2e−
‖x‖2
2σ2 be the density of N (0, σ2Id), and for any

probability measure P on Rd we define the convolved measure via

P ∗ N (0, σ2Id)(E) =

∫

E

dzE [ϕσ2 (X − z)] , X ∼ P,

1Of course, the price to pay for this fast rate is a constant in front of n−1/2, which can be exponential in d for certain P,
cf [GGNWP20].
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where E is any Borel set. Then [GGNWP20, Prop. 6] shows

E[W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))] ≤

C(d, σ,K)

n
, (1)

whenever P is K-subgaussian and K < σ
2 . We recall that X ∼ P is K-subgaussian if

E[e(λ,X−E[X])] ≤ e
1
2K

2‖λ‖2 ∀λ ∈ Rd . (2)

Note that in (1) constant C does not depend on P. Estimate (1) is most exciting for large d, but even for
d = 1 and P = N (0, 1) it is non-trivial as E[W 2

2 (Pn,P)] ≍ log logn
n . Another surprising feature is [GGNWP20,

Corollary 2]: for K ≥
√
2σ there exists a K-subgaussian distribution P in R1 such that

lim
n→∞

nE[W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))] = ∞, (3)

where the expectation is with respect to n samples according to P. We say that the rate of convergence is
“parametric” if (1) holds and otherwise call it “non-parametric”. Thus, the results of [GGNWP20] show
that parametric rate for smoothed-W2 is only attained by sufficiently light-tailed distributions P, e.g. the
subgaussian constant of distribution P is less than the scale of noise over two.

In this paper we prove three principal results:

1. Theorem 1 resolves the gap between the location of the parametric and non-parametric region: it
turns out that for K < σ we always have (1), while for K > σ we have (3) for some K-subgaussian
distribution P in R1. (We remark that for W1 we always have parametric rate n−1/2 for all K,σ > 0,
cf [GGNWP20, Proposition 1].)

2. In the region of non-parametric rates (K > σ) a natural question arises: what rates of convergence are
possible? In other words, what is the value of

α = α(K,σ, d) , lim
n→∞

inf
P−K-subgaussian

− logE[W2(Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))]

logn
(4)

Previously, it was only known that 1
4 ≤ α ≤ 1

2 for all K > σ (note that (3) strongly suggests but does
not formally imply α < 1

2 ). Theorem 2 shows that for d = 1 we have

α(K,σ, d = 1) =
(σ2 +K2)2

4(σ4 +K4)
.

3. We can see that for a class ofK-subgaussian distributions, the convergence rate ofW2(Pn∗N (0, σ2Id),P∗
N (0, σ2Id)) changes from n−1/4 to n−1/2 as σ increases from 0 toK, after which the rate remains n−1/2.
Our final result (Theorem 3) shows that, despite being intimately related to W2, the Kullback-Leibler
(KL) divergence behaves rather differently: For all K-subgaussian P we have

E[DKL(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id))] ≤
{

C(σ,K,d) logd n
n , K > σ

C(σ,K,d)
n , K < σ

, (5)

where DKL(µ‖ν) =
∫

dνf(x) log f(x), f , dµ
dν whenever µ is absolutely continuous with respect to

ν. Now from the proof of Theorem 1 we also know that for K > σ, KL-divergence is ω( 1n ). Thus,
while at K > σ both W2 and KL switch to the non-parametric regime, the W2 distance experiences a
polynomial slow-down in rate, while KL only gets hit by (at most) a poly-logarithmic penalty.

To better understand the relationship between the W2 results and the KL one, let us recall an important
result of Talagrand (known as T2-transportation inequality). A probability measure ν is said to satisfy the
T2 inequality if there exists a finite constant C such that

∀Q : W 2
2 (Q, ν) ≤ C ·DKL(Q‖ν) .
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The infimum over all such constants is denoted by T2(ν). Talagrand originally demonstrated that T2(N (0, σ2Id)) <
∞ It turns out that T2(P ∗ N (0, σ2Id)) < ∞ as well for compactly supported P [Zim13] and K-subgaussian
P with K < σ [WW+16] (in fact, both papers establish a stronger log-Sobolev inequality (LSI)). Also
in [CCNW21], sharper LSI constants for distribution P ∗ N (0, σ2Id) are given where P is with compact
support or subgaussianity.

Now comparing (5) and the lower bound for allK > σ established in Theorem 2 we discover the following.

Corollary 1. For any K > σ there exists a K-subgaussian P on R1 such that P ∗ N (0, σ2) does not satisfy
T2-transportation inequality (and hence does not satisfy the LSI either), that is T2(P ∗ N (0, σ2)) = ∞.

We remark that it is straightforward to show that

sup{T2(P ∗ N (0, σ2)) : P – K-subgaussian} = ∞

by simply considering P = (1 − ǫ)δ0 + ǫδN for ǫ → 0 and N → ∞ (cf. Appendix B). However, each of these
measures has T2 < ∞. Evidently, our corollary proves a stronger claim.

Incidentally, this strengthening resolves an open question stated in [WW+16], who proved the LSI (and

T2) for P ∗ N (0, σ2) assuming E[eaX
2

] < ∞ holds for some a > 1
2σ2 , where X ∼ P. They raised a question

whether this threshold can be reduced, and our Corollary shows the answer is negative. Indeed, one only
needs to notice that whenever X ∼ P is K-subgaussian it satisfies

E

[

eaX
2
]

< ∞ ∀a <
1

2K2
, (6)

which is proved in [BLM13, p. 26].

1.1 Main results and proof ideas

Our first result is the following:

Theorem 1. If K < σ, then for any K-subgaussian distribution P, we have

E
[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

= O
(

1

n

)

,

where Pn is the empirical measure of P with n samples, and the expectation is over these n samples. If
K > σ, then there exists a K-subgaussian distribution P such that

E
[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

= ω

(

1

n

)

.

Previous results. [GGNWP20] shows when K < σ/2, E
[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

converges

with rate O
(

1
n

)

; when K >
√
2σ, E

[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

converges with rate ω
(

1
n

)

. Here

is an obvious gap between K < σ/2 and K >
√
2σ, and our results close this gap. Moreover, [GGNWP20]

shows that E
[

W2(Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))
]

converges with rate O
(

1
n1/4

)

for any K and σ > 0.

Proof Idea. Let us introduce the χ2-mutual information for a pair of random variables S, Y as

Iχ2 (S;Y ) , χ2(PS,Y ‖PS ⊗ PY ) ,

where χ2(P‖Q) =
∫

(

dP
dQ

)2

dQ− 1.

We will consider the case where S ∼ P, Y = S + Z with Z ∼ N (0, σ2) independent to S. According
to [GGNWP20], the convergence rate of smoothed empirical measure under W2, KL-divergence and the
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χ2-divergence is closely related to Iχ2(S;Y ):
(Proposition 6 in [GGNWP20]) If P is K-subgaussian with K < σ and Iχ2(S;Y ) < ∞, then

E
[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

= O
(

1

n

)

.

(Corollary 2 in [GGNWP20]) If Iχ2 (S;Y ) = ∞, then for any τ < σ,

E
[

W 2
2 (Pn ∗ N (0, τ2Id),P ∗ N (0, τ2Id))

]

= ω

(

1

n

)

.

Hence our results follow from the following main technical propositions.

Proposition 1. When K < σ, for any K-subgaussian d-dimensional distribution P, we have Iχ2 (S;Y ) < ∞,
where S ∼ P, Z ∼ N (0, σ2Id), S ⊥⊥ Z and Y = S + Z.

Proposition 2. When K > σ, there exists some 1-dimensional K-subgaussian distribution P such that
Iχ2 (S;Y ) = ∞ for S ∼ P, Z ∼ N (0, σ2), S ⊥⊥ Z and Y = S + Z.

We will prove these two propositions in the following two sections separately.
We note that results from [GGNWP20] and Proposition 1 also imply that E[DKL(Pn ∗ N (0, σ2Id)‖P ∗

N (0, σ2Id))] and E[χ2(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id))] both converge with rate O
(

1
n

)

. Our second Propo-
sition 2 implies that for the special P constructed there we have

E[DKL(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id)) = ω

(

1

n

)

Eχ2(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id)) = ∞ .

Next, we give a tight characterization on the W2-convergence rate in dimension d = 1.

Theorem 2. [Improved bounds for dimension-1] Fix K > σ > 0 and let

α =
(σ2 +K2)2

4(σ4 +K4)
.

1. (Lower Bound) With the choice of δn = 1
3
√
log logn

, which converges to 0 as n goes to infinity, there

exists some K-subgaussian distribution P over R such that

lim sup
n→∞

nα+δnE
[

W2(Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))
]

> 0 .

2. (Upper Bound) There exists a sequence 0 < δn → 0 such that for any 1-dimensional K-subgaussian P

over R and n ≥ 2, we have

E
[

W 2
2 (P ∗ N (0, σ2),Pn ∗ N (0, σ2))

]

≤ n−2α+δn (7)

Remark 1. With more work we believe that our proof gives δn = 1
3
√
logn

in the upper bound part.

Remark 2. According to the Cauchy-Schwarz inequality, we have

E
[

W2(P ∗ N (0, σ2),Pn ∗ N (0, σ2))
]

≤
√

E [W 2
2 (P ∗ N (0, σ2),Pn ∗ N (0, σ2))].
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Therefore, the lower bound part in Theorem 2 indicates that for any K and ǫ > 0, there exists some K-
subgaussian distribution P and σ > 0 such that

lim sup
n→∞

n2α+2δnE
[

W 2
2 (Pn ∗ N (0, σ2Id),P ∗ N (0, σ2Id))

]

> 0. (8)

and upper bound part in Theorem 2 indicates that

E
[

W2(P ∗ N (0, σ2),Pn ∗ N (0, σ2))
]

≤ n−α+δn/2.

Finally we provide an upper bound on the convergence of smoothed empirical measures under KL diver-
gence:

Theorem 3. Suppose P is a d-dimensional K-subgaussian distribution, then for any σ > 0, we have

E
[

DKL

(

Pn ∗ N (0, σ2Id)
∥

∥P ∗ N (0, σ2Id
)

)
]

= O
(

(log n)d

n

)

.

Remark 3. From Proposition 1 and 2 and also results from [GGNWP20], we know that when σ > K, the
convergence rate is O

(

1
n

)

. From the above theorem, we know that when σ ≤ K, the convergence rate is

between ω
(

1
n

)

and O
(

(logn)d

n

)

. Hence at K = σ, the KL divergence also experiences a change to a non-

parametric convergence rate, although with only a poly-logarithmic slow-down. As we discussed in Corollary 1
this precludes a general, finite logarithmic-Sobolev constant for a Gaussian mixture P∗N (0, σ2) when σ < K.

1.2 Organization of this Paper

In Section 2 we will present the proof of Proposition 1. In Section 3 we will present the proof of Proposition
2. The proof of the lower bound part and the upper bound part of Theorem 2 will be presented in Section
4 and 5. Finally in Section 6, we will present the proof of Theorem 3.

1.3 Notations

Throughout this paper, we use ∗ to denote convolutions of two random variables, i.e. for X ∼ P, Y ∼
Q, X ⊥⊥ Y , we have X + Y ∼ P ∗ Q; we use ⊗ to denote the product of two random variables’s laws, i.e.
for X ∼ P, Y ∼ Q, X ⊥⊥ Y , we have (X,Y ) ∼ P⊗Q; we use ◦ to denote the composition between a Markov
kernel PY |X and a distribution PX , e.g. for Y generated according to PY |X with X ’s prior distribution PX ,
then Y ∼ PY |X ◦ PX .

Furthermore, we use P(E) to denote the probability of event E, EP[·] to denote the expectation with
respect to distribution P. We use An = O(Bn), An = Ω(Bn) to denote that An ≤ CBn and An ≥ CBn for
some positive constant C independent of n. We use A = Õ(B) to denote that An ≤ CBn · logl n for some
positive constant C, l. We further use ‖ ·‖2 to denote Euclidean norm, and use Id to denote the d×d identity
matrix.

We will use ϕσ2 (·) to denote the density of d-dimensional multivariate normal distribution N (0, σ2Id).
And for 1-dimensional distributions we use Φσ to denote the CDF of N (0, σ2).

2 Proof of Proposition 1

In this section, we provide a proof of Proposition 1. The proof idea is to notice that we can write Iχ2(S;Y )
as E

[

χ2
(

N (S, σ2Id)‖EN (S, σ2Id)
)]

, then we decompose Rd into several cubes ci with finite diameters, and

we prove an upper bound of E
[

1S∈ciχ
2
(

N (S, σ2Id)‖EN (S, σ2Id)
)]

for each i.

5



Proof. We suppose that the distribution P is d-dimensional. Then with S ∼ P, Z ∼ N (0, σ2Id), S ⊥⊥ Z and
Y = S + Z, we have

Iχ2 (S;Y ) = E
[

χ2
(

N (S, σ2Id)‖EN (S, σ2Id)
)]

(9)

= E

[∫

Rd

ϕσ2Id(y − S)2

Eϕσ2Id(y − S)
dy − 1

]

(10)

= (
√
2πσ)−dE

[

∫

Rd

exp
(

−‖y − S‖22/σ2
)

ρ(y)
dy

]

− 1, (11)

where S ∼ P and
ρ(y) = E exp

(

−‖y− S‖22/(2σ2)
)

. (12)

Let us decompose Rd =
⋃

i ci as a union of cubes of diameter 2. Since K < σ, we have K
σ < 1. Hence we

can choose small δ, δ′ > 0 such that
√

1

(1 + δ)2(1 + δ′)
>

K

σ
.

Notice that, due to the K-subgaussianity of S, we have [BLM13, p. 26]

E[exp

(

(1 + δ′)(1 + δ)2

2σ2
‖S‖2

)

] < ∞ (13)

We will use the following lower bounds on ρ(y):2

ρ(y) & exp

(

−1 + δ′

2σ2
‖y‖2

)

, (14)

ρ(y) & P[S ∈ ci] exp

(

− 3

4σ2
‖y − s‖2

)

∀s ∈ ci . (15)

Assuming these inequalities, the proof proceeds as follows. Fix an arbitrary s ∈ Rd and notice that from (14)
whenever ‖y‖ ≤ (1 + δ)‖s‖ we have

ρ(y) & exp

(

− (1 + δ′)(1 + δ)2

2σ2
‖s‖2

)

which implies that

∫

‖y‖≤(1+δ)‖s‖

exp
(

−‖y − s‖22/σ2
)

ρ(y)
dy . exp

(

(1 + δ′)(1 + δ)2

2σ2
‖s‖2

)

, (16)

since the numerator integrates over Rd to (πσ2)d/2. On the other hand, from (15) if s ∈ ci then

exp
(

−‖y− s‖22/σ2
)

ρ(y)
. P[S ∈ ci]

−1 exp

(

−‖y− s‖2
4σ2

)

. (17)

Note also that when ‖y‖ ≥ (1+ δ)‖s‖ we have ‖y− s‖ ≥ δ‖s‖. Thus, integrating the right-hand side of (17)
over {y : ‖y − s‖ ≥ δ‖s‖} we obtain

P[S ∈ ci]
−1

∫

‖y−s‖≥δ‖s‖
exp

(

−‖y − s‖2
4σ2

)

. P[S ∈ ci]
−1P

[

Ud >
δ2‖s‖2√

2σ2

]

,

2Notation & and . in this proof denote inequalities up to constants that may depend on K,σ, d and distribution P .
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where Ud denotes a χ2(d) random variable with d degrees of freedom. Using Chernoff inequality P[Ud >

r] ≤ 2
d
2 e−r/4 we obtain

max
s∈ci

P

[

Ud >
δ2‖s‖2√

2σ2

]

. exp(−C‖xi‖2) ,

where xi is the center of the cube ci and C is some constant.
Thus, together with (16) we obtain that for any s ∈ ci:

χ2(N (s, σ2Id)‖PY ) .

∫

Rd

exp
(

−‖y− s‖22/σ2
)

ρ(y)
dy . P[S ∈ ci]

−1 exp(−C‖xi‖2)+exp

(

(1 + δ′)(1 + δ)2

2σ2
‖s‖2

)

.

Taking expectation of the latter over S, the second term is finite because of (13), while the first one is
bounded because the number of cubes with ‖xi‖ ≤ r is O(rd). This completes the proof of finiteness of (9),
assuming (14) and (15). We now establish these.

To show (14) set t to be any value such that P[‖S‖ < t] ≥ 1
2 and notice that

ρ(y) & E[exp

(

−‖y− S‖2
2σ2

)

|‖S‖ < t] . (18)

Next, notice that for any t and δ′ > 0 we can find some constant C′ such that

(a+ t)2 ≤ (1 + δ′)a2 + C′, ∀a ∈ R . (19)

Thus for any ‖s‖ < t we have

exp

(

−‖y− s‖2
2σ2

)

≥ exp

(

− (‖y‖+ ‖s‖)2
2σ2

)

& exp

(

−‖y‖2(1 + δ′)

2σ2

)

.

Using this estimate in (18) recovers (14).
To show (15) we start similarly:

ρ(y) ≥ P[S ∈ ci]E[exp

(

−‖y − S‖2
2σ2

)

|S ∈ ci] (20)

Now fix any (non-random) s ∈ ci and notice that under the conditioning above we have ‖S− s‖ ≤ 2 because
the cube ci has diameter 2. Then from triange inequality and (19) with δ′ = 1/2 we obtain

‖y − S‖2 ≤ (‖y − s‖+ 2)2 ≤ 3

2
‖y− s‖2 + C′′ .

Using this bound in (20) yields (15).

For future reference we also need to show that the Rényi mutual information Iλ(S;Y ) is also finite for
all 1 < λ < 2. The Rényi mutual information is defined as follows:

Definition 1 (Rényi Divergence and Rényi Mutual Information [Rén61]). Assume random variables (X,Y )
have joint distribution PX,Y . For any λ > 1, the Rényi divergence and Rényi Mutual Information of order
λ are defined as

Iλ(X ;Y ) , Dλ(PX,Y ‖PX ⊗ PY ),

where we use PX , PY to denote the marginal distribution with respect to X and Y , and PX ⊗ PY denotes
the joint distribution of (X ′, Y ′) where X ′ ∼ PX , Y ′ ∼ PY are independent to each other, and the Rényi

divergence between two distributions P and Q is defined as Dλ(P‖Q) , 1
λ−1 logEQ

[

(

dP
dQ

)λ
]

.

We summarize the result below.
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Lemma 1. Suppose random variables S ∼ P, Z ∼ N (0, σ2Id) are independent of each other. Let Y = S+Z.
Fix 1 < λ < 2 and let l = l(λ) = λ−1

2−λ(d + 1). If the random variable S ∼ P has finite moment l-th moment

M , E[‖S‖l2]2−λ, then for any σ > 0 there exists a constant C = C(P, σ) > 0 such that:

Iλ(S;Y ) ≤ 1

λ− 1
log (CM) .

Moreover, if P is a K-subgaussian distribution, we have for all 1 < λ < 2

Iλ(S;Y ) ≤ 1

λ− 1
log

(

C′

(2− λ)d

)

for some constant C′ = C(P,K, σ) > 0.

Proof. According to the definition of Rényi divergence, we have

Iλ(S;Y ) =
1

λ− 1
log

(

C0E

[

∫ ρλY |S(y|S)
ρY (y)λ−1

dy

])

,

for some positive constant C0, where ρY |S(y|S) = exp(− ‖y−S‖2

2σ2 ) and ρY (y) is from (12) Therefore, we only
need to prove

E

[

∫ ρλY |S(y|S)
ρY (y)λ−1

dy

]

. M

for distributions P with finite l-th moment, and

E

[

∫ ρλY |S(y|S)
ρY (y)λ−1

dy

]

.
1

(2 − λ)d

for K-subgaussian distribution P.
We write R =

⋃

i ci as a union of cubes of diameter 2. For any s ∈ ci, we have

ρY (y) = E

[

exp

(

−‖y− S‖2
2σ2

)]

≥ P[S ∈ ci]E

[

exp

(

−‖y − S‖2
2σ2

) ∣

∣

∣

∣

S ∈ ci

]

.

We further notice that for any S, s ∈ ci, we have ‖S − s‖ ≤ 2, implying

exp

(

−‖y− S‖2
2σ2

)

≥ exp

(

−3‖y− s‖2
4σ2

− 12

2σ2

)

= exp

(

− 6

σ2

)

exp

(

−3‖y− s‖2
4σ2

)

following from inequality

‖y − S‖2 ≤ (‖y − s‖+ 2)2 = ‖y− s‖2 + 4‖y − s‖+ 4 ≤ 3

2
‖y − s‖2 + 12 .

Hence we obtain that

ρY (y) ≥ exp

(

− 6

σ2

)

P[S ∈ ci] exp

(

−3‖y− s‖2
4σ2

)

,

which indicates that

exp
(

−λ‖y − s‖22/(2σ2)
)

ρY (y)λ−1
≤ exp

(

6(λ− 1)

σ2

)

P[S ∈ ci]
1−λ exp

(

− (3− λ)‖y − s‖2
4σ2

)

≤ exp

(

6

σ2

)

P[S ∈ ci]
1−λ exp

(

−‖y − s‖2
4σ2

)

8



after noticing the fact that 1 ≤ λ < 2. Therefore for any s ∈ Rd we have

∫

Rd

exp
(

−λ‖y − s‖22/(2σ2)
)

ρY (y)λ−1
dy . P[S ∈ ci]

1−λ

∫

Rd

exp

(

−‖u‖2
4σ2

)

du . P[S ∈ ci]
1−λ,

where we use . to hide constant factors depending on σ, d. Taking the expectation over S, we obtain that

E

[

ρλY |S(y|S)
ρY (y)λ−1

]

.
∑

i

P[S ∈ ci]
2−λ. (21)

Next, we use Lr to denote the set of cubes whose centers belong to {r − 1 ≤ ‖xi‖ < r}. Then we have
|Lr| = O(rd−1). We further let pr =

∑

ci∈Mr
P[S ∈ ci], then according to Jensen’s inequality we obtain that

∑

ci∈Lr

P[S ∈ ci]
2−λ ≤ Lr ·

(

1

Lr

∑

ci∈Mr

P[S ∈ ci]

)2−λ

= Lr ·
(

pr
Lr

)2−λ

= Lλ−1
r p2−λ

r .

Assuming M (λ−1)(d+1)
2−λ

< ∞, we have for any 1 < λ < 2,

∑

i=1

P[S ∈ ci]
2−λ =

∞
∑

r=1

∑

ci∈Mr

P[S ∈ ci] .
∞
∑

r=1

r(λ−1)(d−1)p2−λ
r

≤
( ∞
∑

r=1

r
(λ−1)(d−1)+2(λ−1)

2−λ pr

)2−λ( ∞
∑

r=1

1

r2

)λ−1

. E[‖S‖l2]2−λ = M

where in the second last inequality we use the Hölder inequality. As for the K-subgaussian cases, we notice

that pr . exp
(

− r2

2K2

)

. Therefore, we obtain that

∑

i=1

P[S ∈ ci]
2−λ =

∞
∑

r=1

∑

ci∈Mr

P[S ∈ ci]
2−λ ≤

∞
∑

r=1

|Mr|p2−λ
r .

∞
∑

r=1

rd−1 exp

(

− (2− λ)r2

2K2

)

≤
∞
∑

r=1

rd−1 exp

(

− (2− λ)r

2K2

)

≤ d!

(

1− exp

(

−2− λ

2K2

))−d

.
1

(2− λ)d
,

where we use the fact that
∑∞

k=0(k+1)dc−k ≤ d!c−k−1 for any 0 < c < 1, and 1− exp(−x) ≤ 1− (1−x) = x
holds for any x ∈ R.

Based on these two upper bounds on
∑

P[S ∈ ci]
2−λ, (21) yields the desired bounds on Iλ(S;Y ).

3 Proof of Proposition 2

In this section, we will present a proof of Proposition 2. The main idea of this proof is to construct a
hard example P =

∑∞
k=0 pkδrk with subgaussian tails, where ri and rj are far away from each other so that

δrj ∗ N (0, σ2) with j 6= i has very little effects on the density of P ∗ N (0, σ2) near ri. Therefore we can
uniformly lower bound E

[

1S=riχ
2
(

N (S, σ2Id)‖EN (S, σ2Id)
)]

for each i, and if we sum up over all i we can
prove the infiniteness of Iχ2 (S;Y ).

Proof. Without loss of generality we assume σ = 1, and we only need to prove the proposition for K > 1.
(Otherwise we consider S′ = S/σ, Z ′ = Z/σ and Y ′ = Y/σ, and we will have S′ is a K/σ-subgaussian
distribution, Z ′ ∼ N (0, 1) and Iχ2 (S;Y ) = Iχ2 (S′;Y ′).)
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We construct a 1-dimensional distribution P similarly to [GGNWP20] as follows:

P =

∞
∑

k=0

pkδrk ,

where we choose r0 = 0, p0 = 1−∑∞
k=1 pk and for some positive constant c1 to be determined we choose

pk = c1 exp

(

− r2k
2K2

)

, k ≥ 1. (22)

Here we let ri be a geometric sequence:

r1 = 1, ri+1 = cri, ∀i ≥ 1,

where c > 2 is a constant to be specified later. We restrict that c1 only depends on K and

c1 ·
∞
∑

k=1

exp

(

− r2k
2K2

)

< 1.

Then we will have p0 = 1−∑∞
k=1 pk > 0 making P a well-defined distribution. In Appendix A we show that

there exists a c1 > 0 such that for any constant c > 2 the distribution P is K-subgaussian.
In the following, we establish a weaker claim that S ∼ P satisfies

∀α : E[exp (αS)] ≤ 2 exp

(

α2K2

2

)

.

Note that this is slightly weaker than the definition of K-subgaussianity (2). Indeed, we notice that

E[exp (αS)] = p0 + c1

∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2
)

exp

(

K2α2

2

)

.

We suppose k0 to be the smallest k such that rk−αK2 to be positive. Since rk+1−rk ≥ 1 for every k, we have
for k ≥ k0, rk −αK2 ≥ k−k0+ rk0 −αK2 ≥ k−k0, and for k < k0, rk −αK2 ≤ rk0−1−αK− (k0− 1−k) ≤
−(k0 − 1− k) since rk0−1 − αK2 ≤ 0. Hence, we have

∑

k<k0

+
∑

k≥k0

e−
1

2K2 (rk−αK2)2 ≤
∑

k<k0

e−
(k0−1−k)2

2K2 +
∑

k≥k0

e−
(k−k0)2

2K2

≤ 2
∞
∑

k=0

e−
k

2K2 =
2

1− exp
(

− 1
2K2

) .

Therefore, if we choose c1 =
1−exp(− 1

2K2 )
2 , and notice that p0 ≤ 1 ≤ exp

(

K2α2

2

)

, we would have

E[exp (αS)] ≤ exp

(

K2α2

2

)

+ exp

(

K2α2

2

)

= 2 exp

(

K2α2

2

)

.

For now we proceed assuming that c1 is already chosen such that for any c > 2, we have that P is a
K-subgaussian distribution. Then, our goal is to specify a value of constant c such that Iχ2(S;Y ) = ∞.
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From the definition of Iχ2 , we have the following chain:

Iχ2 (S;Y ) ,

∫

R

Eϕ2
1(y − S)

Eϕ1(y − S)
dy − 1

=

∫

R

∑∞
k=0 pkϕ 1√

2
(y − rk)

∑∞
k=1 pkϕ1(y − rk)

dy

=
∞
∑

k=0

∫

R

ϕ 1√
2
(y − rk)

ϕ1(y − rk)
· 1

1 +
∑

j 6=k
pj

pk

ϕ1(y−rj)
ϕ1(y−rk)

dy

≥
∞
∑

k=0

∫ rk+δ

rk−δ

ϕ 1√
2
(y − rk)

ϕ1(y − rk)
· 1

1 +
∑

j 6=k
pj

pk

ϕ1(y−rj)
ϕ1(y−rk)

dy . (23)

where we fixed arbitary δ > 0. Below, we will show that for some δ ∈ (0, 1) and C′ > 0 we have for all k and
|y − rk| < δ:

1 +
∑

j 6=k

pj
pk

ϕ1(y − rj)

ϕ1(y − rk)
≤ C +

∞
∑

j=1,j 6=k

exp(−j/2) < C′. (24)

Assuming this, we continue (23) as follows:

≥ 1

C′

∞
∑

k=0

∫ rk+δ

rk−δ

ϕ 1√
2
(y − rk)

ϕ1(y − rk)
dy =≥ 1

C′

∞
∑

k=0

∫ +δ

−δ

ϕ 1√
2
(y)

ϕ1(y)
dy = ∞ .

To show (24) we first consider j = 0 and |z − rk| ≤ δ, we have

pj
pk

ϕ1(y − rj)

ϕ1(y − rk)
≤ ϕ1(y)

pkϕ1(y − rk)
≤ 1

c1
exp

(

−y2

2
+

r2k
2K2

+
(y − rk)

2

2

)

≤ 1

c1
exp

(

− (rk − δ)2

2
+

r2k
2K2

+
δ2

2

)

≤ 1

c1
exp



− (rk − δ)2

2
+

(

(rk − δ)2 + K2δ2

1−K2

)(

1 + 1−K2

K2

)

2K2
+

δ2

2





=
1

c1
exp

(

K2δ2

2(1−K2)
+

δ2

2

)

, C.

For j ≥ 1 and |y− rk| ≤ δ, we have by bounding y(rj − rk) ≤ −r2k + rkrj + δ|rk − rj | the following chain

pj
pk

ϕ1(y − rj)

ϕ1(y − rk)
= exp

((

1

2K2
+

1

2

)

(r2k − r2j )− y(rk − rj)

)

≤ exp

((

1

2K2
+

1

2

)

(r2k − r2j )− r2k + rkrj + δ|rk − rj |
)

≤ exp

((

1

2K2
+

1

2
− 1

)

r2k −
(

1

2K2
+

1

2

)

r2j + rkrj + δrk + δrj

)

= exp(A+B + C − r2j /4)

where we denoted

A ,
l

2
r2k − 1

2K2
r2j + rkrj ℓ ,

1

2K2
− 1

2

B ,
ℓ

2
r2k + δrk

C , −1

4
r2j + δrj .
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Note that K > 1 and, thus, ℓ < 0. We show that by choosing c and δ it is possible to make sure A,B,C ≤ 0
for all k, j. First, notice that because rk ≥ 1 or rk = 0 by setting δ = min

(

− ℓ
2 ,

1
4

)

we have B,C ≤ 0.

Second, we have A = r2j f(rk/rj) where f(y) = ℓ
2y

2 + y − 1
2K2 . Since f(0) < 0 and f(+∞) = −∞ (recall

ℓ < 0) we must have that for some sufficiently large c > 0 we have f(y) < 0 if y ≤ 1/c or y ≥ c. For
convenience we take this c > 2 as well. Since rk/rj is always either ≤ 1/c or ≥ c we conclude A ≤ 0.

Continuing, we obtained that with our choice of c, for j 6= k, j ≥ 1 and |y − rk| ≤ δ we have

pj
pk

ϕ1(y − rj)

ϕ1(y − rk)
≤ exp

(

A+B + C −
r2j
4

)

≤ exp

(

−
r2j
4

)

≤ exp

(

−cj

4

)

≤ exp

(

−2j

4

)

≤ exp(−j/2),

which indicates that ∃C′ such that (24) holds. Therefore,

∞
∑

k=0

∫

R

ϕ 1√
2
(y − rk)

ϕ1(y − rk)
· 1

1 +
∑

j 6=k
pj

pk

ϕ1(y−rj)
ϕ1(y−rk)

dy

≥
∞
∑

k=0

∫ rk+δ

rk−δ

ϕ 1√
2
(y − rk)

ϕ1(y − rk)
· 1

1 +
∑

j 6=k
pj

pk

ϕ1(y−rj)
ϕ1(y−rk)

dy

≥
(

∫ δ

−δ

ϕ 1√
2
(y)

ϕ1(y)
dy

)

·
∞
∑

k=0

1

C′

= ∞

And we have proved that Iχ2(S;Y ) = ∞.

4 Proof of the Lower Bound in Theorem 2

To begin with, we consider a simple Bernoulli distribution case, which shares lots properties in common with
the counter example we construct in order to prove the lower bound of Theorem 2.

4.1 A Warmup Example: Simple Bernoulli Distribution Case

We consider a Bernoulli distribution Ph = (1 − ph)δ0 + phδh with ph = exp
(

− h2

2K2

)

. The behavior of the

lower bound of
sup
h

E
[

W2(Ph ∗ N (0, σ2),Ph,n ∗ N (0, σ2))
]

shares the same rate as the lower bound in Theorem 2.

Proposition 3. For some h > 0, we define Ph = (1−p)δ0+pδh, with p = e−h2/(2K2), then for any K,σ > 0
and ǫ > 0,

sup
h

E
[

W2(Ph ∗ N (0, σ2),Ph,n ∗ N (0, σ2))
]

= Ω
(

n−α−ǫ
)

,

where Ph,n is the empirical measure constructed from n i.i.d. samples from Ph.

Our proof will rely on the following auxiliary lemma.

Lemma 2. Suppose two 1-dimensional distribution µ, ν with CDFs Fµ, Fν satisfy Fµ(t) ≥ Fν(t + 2), then
we have

W2(µ, ν)
2 ≥ P(Y ∈ [t+ 1, t+ 2]), Y ∼ ν.

12



Proof. We consider the optimal coupling between (X,Y ), then the optimal coupling is the quantile-quantile
coupling since µ, ν are 1-dimensional distributions. Noticing that Fµ(t) ≥ Fν(t + 2), all mass between
[t+ 1, t+ 2] in ν will transport to places below t. Therefore, we have

W2(µ, ν)
2 ≥ P(Y ∈ [t+ 1, t+ 2]).

Proof of Proposition 3. Given h > 0, we assume Ph,n = (1− p̂h)δ0 + p̂hδh, where p̂h = 1
n (
∑n

k=1 1Xk=h), and

X1, · · · , Xn ∼ Ph are i.i.d. In the following proof, when there is no danger of confusion, we use F̃n,σ, Fσ,Φσ

to denote the CDF of Ph,n ∗ N (0, σ2),Ph ∗ N (0, σ2),N (0, σ2). We will prove the results for ǫ sufficiently
small, since cases of larger ǫ are direct corollary of cases of small ǫ.

We fix σ,K, and let δ = δ(σ,K, ǫ) such that

(1 + δ)(1 + σ2/K2)2

2(1− δ)(1 + σ2/K2)− 4δσ2/K2
=

(1 + σ2/K2)2

2 + 2σ2/K2
+ 2ǫ, (25)

and we let ζ =

(

1
2+

σ2

2K2

)2

2σ2 . Then we know that

lim
ǫ→0

δ(σ,K, ǫ) = 0,

and ζ − 1
2K2 =

(

1
2− σ2

2K2

)2

2σ2 > 0 With loss of generality we assume δ < 1
2 . Therefore, for sufficiently small

ǫ > 0, we will have δ = δ(σ,K, ǫ) < min
{

1
2 , 1− 1

2K2ζ

}

.

We first show that for sufficiently large h and some specific choice of t ∈ (0, h− 2), we will have

P(X ∈ [t, t+ 2]) ≤ 4√
2πσ

exp
(

−(1− δ)ζh2
)

P(X ∈ [t+ 1, t+ 2]) ≥ 1

2
√
2πσ

exp
(

−(1 + δ)ζh2
)

.

Actually, we have the following estimation of the probability of Ph ∗ N (0, σ2) within the intervals [t, t + 2]
and [t+ 1, t+ 2]: for X ∼ Ph ∗ N (0, σ2) and t ∈ (0, h− 2), we have

P(X ∈ [t, t+ 2]) ≤ 2 · max
t′∈[t,t+2]

[

1− ph√
2πσ

exp

(

− t′2

2σ2

)

+
ph√
2πσ

exp

(

− (h− t′)2

2σ2

)]

(26)

≤ 2√
2πσ

·
[

exp

(

− t2

2σ2

)

+ exp

(

− h2

2K2
− (h− t− 2)2

2σ2

)]

, (27)

P(X ∈ [t+ 1, t+ 2]) ≥ min
t′∈[t+1,t+2]

[

1− ph√
2πσ

exp

(

− t′2

2σ2

)

+
ph√
2πσ

exp

(

− (h− t′)2

2σ2

)]

(28)

≥ 1

2
√
2πσ

exp

(

− (t+ 2)2

2σ2

)

, (29)

where we have use the fact that 1− ph ≥ 1
2 for all h ≥ 2K. Next, we would like to select the value of t such

that

− h2

2K2
− (h− t)2

2σ2
= − t2

2σ2
.

That is,

t =
h

2
+

σ2h

2K2
.
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Since σ < K, we notice that ∃h̄ > 0 depending on σ,K such that for h > h̄, we have t ∈ (0, h− 2), and when
h goes to infinity, both t and h− t go to infinity as well. Hence for any 0 < δ < 1 there exists C1, Ch only
depending on K,σ and δ such that when h > Ch, we have

(h− t− 2)2

2σ2
≤ (1 − δ)(h− t)2

2σ2
and

(t+ 2)2

2σ2
≤ (1 + δ)t2

2σ2
,

which indicates that

P(X ∈ [t, t+ 2]) ≤ 4√
2πσ

· exp
(

− (1− δ)t2

2σ2

)

=
4√
2πσ

exp






−
(1− δ)

(

1
2 + σ2

2K2

)2

h2

2σ2






, (30)

P(X ∈ [t+ 1, t+ 2]) ≥ 1

2
√
2πσ

· exp
(

− (1 + δ)t2

2σ2

)

=
1

2
√
2πσ

exp






−
(1 + δ)

(

1
2 + σ2

2K2

)2

h2

2σ2






(31)

holds for all h > Ch. We let C1 , 4√
2πσ

.

We next show that fix h > 0, for any n such that nph ≥ 128 and 0 < t < h− 2, we have with probability
at least 1

16 ,

F̃n,σ(t)− Fσ(t) ≥
1√
18n

exp

(

− h2

4K2

)

.

We first notice that for 0 < t < h,

F̃n,σ(t)− Fσ(t) = (p̂h − ph)(Φσ(t− h)− Φσ(t)).

Letting Ui = 1Xk=h, according to Berry-Esseen Theorem [Ber41, Ess56, Dur19], for V ∼ N (0, 1), we have

sup
x

∣

∣

∣

∣

∣

P

(

1
√

nVar[U1]

n
∑

l=1

[Ul − EU1] ≤ −x

)

−P(V ≤ −x)

∣

∣

∣

∣

∣

≤ E|U1 − E[U1]|3

2
√
n
√

Var[U1]
3 .

When ph < 1/2, we have

E[U1] = ph,

Var[U1] = ph(1− ph) ≥
1

2
ph,

E|U1 − E[U1]|3 ≤ E|U1|3 = E[U1] = ph.

We choose x = 1, and noticing that P (V > 1) ≥ 1
8 we obtain

P

(

p̂h − ph ≤ −
√

ph
2n

)

= P

(

1

n

n
∑

l=1

Ul − E[U1] ≤ −
√

p

2n

)

≥ 1

8
− E|U1 − E[U1]|3

2
√
n
√

Var[U1]
3 ≥ 1

8
− 1√

2nph
.

This indicates that

p̂h − ph ≤ − 1√
2n

exp

(

− h2

4K2

)

holds with probability at least 1
8 − 1√

2nph
. Then due to the fact that when 0 < t < h − 2 and h > σ,

Φσ(t− h)− Φσ(t) ≤ Φσ(0)− Φσ(h) ≤ − 1
3 , we have with probability at least 1

8 − 1√
2nph

,

F̃n,σ(t)− Fσ(t) ≥
1√
18n

exp

(

− h2

4K2

)

.
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Therefore when nph ≥ 128 we will have the above inequality holds with probability at least 1
16 .

Combine these two results above, we know that whenever h > max{Ch, h̄, σ} and n satisfies that

nph ≥ 128,
1√
18n

exp

(

− h2

4K2

)

=
4√
2πσ

exp
(

−(1− δ)ζh2
)

, (32)

we will have for t = h
2 + σ2h

2K2 ,

F̃n,σ(t)− Fσ(t) ≥
1√
18n

exp

(

− h2

4K2

)

≥ 4√
2πσ

exp
(

−(1− δ)ζh2
)

≥ P(X ∈ [t, t+ 2])

and hence F̃n,σ(t) ≥ Fσ(t + 2) holds with probability at least 1
16 . Hence Lemma 2 indicates that with

probability at least 1
16 we have

W2(Ph ∗ N (0, σ2),Ph,nh
∗ N (0, σ2))2 ≥ P(X ∈ [t+ 1, t+ 2]) ≥ 1

2
√
2πσ

exp
(

−(1 + δ)ζh2
)

and hence

E
[

W2(Ph ∗ N (0, σ2),Ph,nh
∗ N (0, σ2))

]

≥ 1

16
√

2
√
2πσ

exp

(

− (1 + δ)ζh2

2

)

= C1n
−α−ǫ, (33)

where C1 = C1(K,σ, δ) is a positive constant. Here we use the fact that

ζ =

(

1
2 + σ2

2K2

)2

2σ2
≥ (σ/K)2

2σ2
=

1

2K2

the second equation in (32) indicates that

h =

√

(

(1 − δ)ζ − 1

4K2

)−1

log
12

√
n√

πσ
(34)

and when δ < 1
2 and n ≥ πσ2/144 this is well-defined. Bringing in this formula of n into exp

(

− (1+δ)ζh2

2

)

will result in the RHS in (33), after noticing the definition of δ in (25).
Finally we show that for sufficiently large n, there always exists an h such that both (32) and also

h > max{Ch, h̄, σ} holds. For n ≥ √
πσ/12, we choose h in (34) and the second equation in (32) holds, and

also when δ < 1
2 there exists n0 such that for any n > n0 we have h > max{Ch, h̄, σ}. With this choice of

h, we further have

nph = n exp

(

− h2

2K2

)

≍ n1−(4K2(1−δ)ζ−1)−1

,

and since δ satisfies that δ < 1− 1
2ζK2 we know that

1− (4K2(1 − δ)ζ − 1)−1 > 0.

Hence there exists a threshold n0 such that for any n > n1, we will have

nph ≥ 128.

Therefore, when n > max{n0, n1}, with the choice of h in (34), we will have both (32) and also h >
max{Ch, h̄, σ} holds.

Therefore, for any ǫ > 0, we have

E
[

W2(Ph ∗ N (0, σ2),Ph,n ∗ N (0, σ2))
]

= Ω
(

n−α−ǫ
)

.

This completes the proof of Proposition 3.
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4.2 Main Proof of the Lower Bound Part

The proof idea is similar to the above proof of Proposition 3. We summarize the properties of Ph for all
h > 0 into one K-subgaussian distribution, such that this subgaussian distribution is a hard example for
smoothed empirical W2 convergence.

We construct the following discrete distribution

P =

∞
∑

k=0

pkδrk , pk ≥ 0,

∞
∑

k=1

pk = 1, (35)

where we choose rk = c1c2c3 · · · ck−1 for k ≥ 1 for some positive constant 3 ≤ c1 ≤ c2 ≤ c3 ≤ · · · to be
determined later, and

pk =
C√
2πK

exp

(

− r2k
2K2

)

, k ≥ 1, p0 = 1−
∞
∑

k=1

pk (36)

where C is a small enough constant such that
∑∞

k=1 pk ≤ 1. Then similar to the proof in Appendix A, we
can prove that P is a K-subgaussian distribution.

We let κ = σ2

K2 ∈ (0, 1), and

tk =
1

2
(ck + 1) (1 + κ) ≥ 1

2
(ck + 1) ≥ 2.

First we will provide two propositions, which upper and lower bound the probability of P ∗ N (0, σ2) near
tkrk.

Proposition 4 (Probability Lower Bound). There exists some positive constant Cl only depending on σ and
K such that

P(X ∈ [tkrk + 1, tkrk + 2]) ≥ Cl exp

(

−
(

t2k − κck − ck
)

· (rk + 2)2

2σ2

)

, X ∼ P ∗ N (0, σ2).

Proof. We let X = Y + Z, where Y ∈ P, Z ∼ N (0, σ2) are independent. Then we have

P(X ∈ [tkrk + 1, tkrk + 2]) ≥ P(Y = rk, Z ∈ [(tk − 1)rk + 1, (tk − 1)rk + 2])

≥ pk ·P(Z ∈ [(tk − 1)rk + 1, (tk − 1)rk + 2])

=
1√
2πσ

pk exp

(

− ((tk − 1)rk + 2)2

2σ2

)

=
C

2πσK
exp

(

− r2k
2K2

− (tk − 1)2(rk + 2)2

2σ2

)

≥ C

2πσK
exp

(

−
(

κ+ (tk − 1)2
)

· (rk + 2)2

2σ2

)

=
C

2πσK
exp

(

−
(

t2k − κck − ck
)

· (rk + 2)2

2σ2

)

≥ 1

2πσK
exp

(

−
(

t2k − κck − ck
)

· (rk + 2)2

2σ2

)

,

where we use the fact that C ≥ 1. Therefore, if we choose Cl =
1

2πσK , we have the desired lower bound in
this proposition.

Proposition 5 (Probability Upper Bound). When ck ≥ max
{√

2
κ ,

κ+3
1−κ

}

, there exists some constant Cu

only depending on K and σ such that

P(X ∈ [trk, trk + 2]) ≤ Cu exp

(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

, X ∼ P ∗ N (0, σ2).
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Proof. We let X = Y + Z, where Y ∈ P, Z ∼ N (0, σ2) are independent. And we notice that

P(X ∈ [tkrk, tkrk + 2]) =

∞
∑

j=0

P(Y = rj , Z ∈ [tkrk − rj , tkrk − rj + 2])

=

∞
∑

j=0

pj ·P(Z ∈ [tkrk − rj , tkrk − rj + 2])

≤ 1√
2πσ

∞
∑

j=0

2pj max

{

exp

(

− (tkrk − rj)
2

2σ2

)

, exp

(

− (tkrk − rj + 2)2

2σ2

)}

≤ 2√
2πσ

k
∑

j=0

pj exp

(

− (tkrk − rj)
2

2σ2

)

+
2√
2πσ

∞
∑

j=k+1

pj exp

(

− (tkrk − rj + 2)2

2σ2

)

≤
k−1
∑

j=1

2C

πσK
exp

(

−
r2j
2K2

− (tkrk − rj)
2

2σ2

)

+
2C

πσK
exp

(

− r2k
2K2

− (tkrk − rk)
2

2σ2

)

+
∞
∑

j=k+1

2C

πσK
exp

(

−
r2j
2K2

− (tkrk − rj + 2)2

2σ2

)

+
2p0√
2πσ

exp

(

− t2kr
2
k

2σ2

)

.

Then we upper bound these three terms in the sum separately:

1. For j = 0, since t2k ≥ t2k − ckκ− ck, with the choice C1 = 2√
2πσ

, we have

2p0√
2πσ

exp

(

− tkr
2
k

2σ2

)

≤ 2√
2πσ

exp

(

− tkr
2
k

2σ2

)

≤ C1 exp

(

− (t2k − κck − ck)(rk − 2)2

2σ2

)

.

2. For j > k, we have r2j ≥ r2k+1 + j − (k + 1). After noticing that ck ≥ κ+3
1−κ and hence ck − tk ≥ 1, we

have

(tkrk − rj + 2)2

2σ2
≥ (rk+1 − tkrk − 2)2

2σ2
=

((ck − tk)rk − 2)2

2σ2

≥ (ck − tk)
2(rk − 2)2

2σ2
= (t2k − ckκ− ck − c2kκ) ·

(rk − 2)2

2σ2
.

Therefore, choosing constant

C2 =
∞
∑

j=0

2
√
2K2π exp

(

1/2K2
)

πσK
exp

(

− j

2K2

)

< ∞
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and noticing that C ≤
√
2K2π exp

(

1/2K2
)

, we obtain:

∞
∑

j=k+1

2C

πσK
exp

(

−
r2j
2K2

− (tjrk − rj + 2)2

2σ2

)

≤
∞
∑

j=k+1

2C

πσK
exp

(

− j − (k + 1) + r2k+1

2K2
− (t2k − ckκ− ck − c2kκ)(rk − 2)2

2σ2

)

=

∞
∑

j=k+1

2C

πσK
exp

(

− j − (k + 1)

2K2
− κc2kr

2
k

2σ2
− (t2k − ckκ− ck − c2kκ)(rk − 2)2

2σ2

)

≤





∞
∑

j=k+1

2C

πσK
exp

(

− j − (k + 1)

2K2

)



 · exp
(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

≤





∞
∑

j=k+1

2
√
2K2π exp

(

1/2K2
)

πσK
exp

(

− j − (k + 1)

2K2

)



 · exp
(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

= C2 exp

(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

.

3. For j < k, since ck−1 ≥ 3, we first have

(

tk −
1

ck−1

)2

≥ t2k −
2tk
ck−1

= t2k −
(1 + κ)(1 + ck)

ck−1
≥ t2k − κck − ck,

where in the last inequality we use the fact that ck ≥ 1 hence 1+ck
ck−1

≤ 1+ck
2 ≤ ck. Therefore, noticing

that rj ≤ rk
ck−1

, we obtain

(tkrk − rj)
2 ≥

(

tk −
1

ck−1

)2

r2k ≥ (t2k − κck − ck)r
2
k.

Therefore, choosing constant C3 =
∑∞

j=1

2
√
2K2π exp(1/2K2)

πσK exp
(

− j
2K2

)

< ∞, we will obtain:

k−1
∑

j=1

2C

πσK
exp

(

−
r2j
2K2

− (tkrk − rj)
2

2σ2

)

≤
k−1
∑

j=1

2C

πσK
exp

(

− j

2K2
− (t2k − κck − ck)r

2
k

2σ2

)

=





k−1
∑

j=1

2C

πσK
exp

(

− j

2K2

)



 exp

(

− (t2k − κck − ck)r
2
k

2σ2

)

≤ C3 exp

(

− (t2k − κck − ck)r
2
k

2σ2

)

≤ C3 exp

(

− (t2k − κck − ck)(rk − 2)2

2σ2

)

.

4. For j = k, choosing C4 =
2
√
2K2π exp(1/2K2)

πσK and noticing tk = 1
2 (1 + ck)(1 + κ), we will obtain:

2C

πσK
exp

(

− r2k
2K2

− (tkrk − rk)
2

2σ2

)

≤ C4 exp

(

−
(

t2k − κck − ck
)

· r2k
2σ2

)

≤ C4 exp

(

−
(

t2k − κck − ck
)

· (rk − 2)2

2σ2

)

.
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Therefore, choosing Cu = C1 + C2 + C3 + C4, we obtain:

P(X ∈ [tkrk, tkrk + 2]) ≤ Cu exp

(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

.

We next present the following proposition, indicating that with positive probability the difference of

CDFs of P ∗ N (0, σ2) and Pn ∗ N (0, σ2) is larger than 1
2

√

pk+1

n , which we will show is, in turn, larger than

P ∗ N (0, σ2)([tkrk, tkrk + 2]) under some assumptions.

Proposition 6. Suppose ck ≥ κ+3
1−κ for every k. We use Fσ and F̃n,σ to denote the CDF of P ∗ N (0, σ2)

and Pn ∗ N (0, σ2) respectively. Then there exists k0 = k0(σ,K,C) > 0 such that ∀k ≥ k0 and n with
npk+1 ≥ 32768, with probability at least 1

64 we have

F̃n,σ(tkrk)− Fσ(tkrk) ≥
1

2

√

pk+1

n
.

Proof. First we can write

Fσ(tkrk) =

∞
∑

j=0

pjΦσ(tkrk − rj),

F̃n,σ(tkrk) =

∞
∑

j=0

p̂jΦσ(tkrk − rj),

where Φσ is CDF of N (0, σ2), and p̂j is the empirical estimation of pj with these n samples. Then we have

F̃n,σ(tkrk)− Fσ(tkrk) =

∞
∑

j=0

(p̂j − pj)Φσ(tkrk − rj)

=

k
∑

j=0

(p̂j − pj)(1 − (1− Φσ(tkrk − rj))) +

∞
∑

j=k+1

(p̂j − pj)Φσ(tkrk − rj)

≥
k
∑

j=0

p̂j −
k
∑

j=0

pj −
k
∑

j=0

|p̂j − pj |(1− Φσ(tkrk − rj))−
∞
∑

j=k+1

|p̂j − pj |Φσ(tkrk − rj)

From assumption ck ≥ κ+3
1−κ we know that ck ≥ tk + 1. Hence for any j ≥ k + 1 we have |tkrk − rj | ≥

|(ck − tk)rk| ≥ rk ≥ 1 and for any j ≤ k we have |tkrk − rj | ≥ (tk − 1)rj ≥ rj ≥ 1. According to the upper
bound of Gaussian tail function (Proposition 2.1.2 in [Ver18]), we have

1− Φσ(tkrk − rj) ≤
1√
2π

· σ

|tkrk − rj |
exp

(

− (tkrk − rj)
2

2σ2

)

≤ σ exp

(

− (tkrk − rj)
2

2σ2

)

, if tkrk − rj > 0,

Φσ(tkrk − rj) ≤
1√
2π

· σ

|tkrk − rj |
exp

(

− (tkrk − rj)
2

2σ2

)

≤ σ exp

(

− (tkrk − rj)
2

2σ2

)

, if tkrk − rj < 0.

In the next, given that npk+1 ≥ 32768, we will provide both a lower bound to
∑k

j=0 p̂j −
∑k

j=0 pj and

also an upper bound to |p̂k+1 − pk+1|. As for
∑k

j=0 p̂j −
∑k

j=0 pj , we can write it as

k
∑

j=0

p̂j −
k
∑

j=0

pj =
1

n

(

n
∑

l=1

Ul

)

− E[U1],
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where Ul ∼ Bern(
∑∞

j=k+1 pj) are i.i.d. Bernoulli random variables. According to the Berry-Esseen Theo-
rem [Dur19] we have

∣

∣

∣

∣

∣

P

(

1
√

nVar[U1]

n
∑

l=1

[Ul − EU1] ≥ 1

)

−P(V ≥ 1)

∣

∣

∣

∣

∣

≤ E|U1 − E[U1]|3

2
√
n
√

Var[U1]
3

where V ∼ N (0, 1). It is easy to check that
∑∞

j=k+1 pj ≤ 2pj+1 < 1/2 for k ≥ 2. Hence we have

Var[U1] =





∞
∑

j=k+1

pj







1−
∞
∑

j=k+1

pj



 ≥ 1

2





∞
∑

j=k+1

pj



 ≥ 1

2
pk+1

E|U1 − E[U1]|3 ≤ E|U1|3 = E[U1] =

∞
∑

j=k+1

pj ≤ 2pk+1.

Noticing that for standard Gaussian random variable V ∼ N (0, 1) we have P (V > 1) ≥ 1/8, we obtain that

P





k
∑

j=0

p̂j −
k
∑

j=0

pj ≥
√

pk+1

2n



 = P

(

1

n

n
∑

l=1

Ul − E[U1] ≥
√

pk+1

2n

)

≥ P

(

1
√

nVar[U1]

n
∑

l=1

Ul − E[U1] ≥ 1

)

≥ 1

8
− E|U1 − E[U1]|3

2
√
n
√

Var[U1]
3 ≥ 1

8
− 2

√
2√

npk+1
≥ 1

16
,

where we use the fact that npk+1 ≥ 32768. As for |p̂k+1 − pk+1|, if we let U ′
l ∼ Bern(pk+1), i.i.d, again

according to Berry-Esseen [Dur19] Theorem we obtain that

P

(

|p̂k+1 − pk+1| ≥ 8

√

pk+1

n

)

= P

(

1

n

n
∑

l=1

U ′
l − E[U ′

1] ≥ 8

√

pk+1

n

)

≤ P

(

1
√

nVar[U ′
1]

n
∑

l=1

U ′
l − E[U ′

1] ≥ 8

)

≤ 1

128
+

E|U ′
1 − E[U ′

1]|3

2
√
n
√

Var[U ′
1]

3 ≤
√
2E|U ′

1|3√
n
√
pk+1

3 ≤ 1

128
+

√
2√

npk+1
≤ 1

64

after noticing that Var[U1] = pk+1(1 − pk+1) ≤ pk+1 and also P (V > 8) ≤ 1/128 for V ∼ N (0, 1), and the
last inequality follows from npk+1 ≥ 32768.

We further notice that

E

[

max
j≥0

|p̂j − pj |2
]

≤ E





∞
∑

j=0

|p̂j − pj|2


 =

∞
∑

j=0

Var(p̂j) =

∞
∑

j=0

pj(1 − pj)

n
≤ 1

n
.

Hence by the Markov inequality we obtained that

P

(

max
j≥0

|p̂j − pj | ≤
4√
n

)

≥ 15

16
. (37)
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Therefore, if n ≥ 32768/pk+1, according to (37), with probability at least 1
64 we have

F̃n,σ(tkrk)− Fσ(tkrk) ≥
√

pk+1

2n
− 4σ√

n

k
∑

j=0

exp

(

− (tkrk − rj)
2

2σ2

)

− 4σ√
n

∞
∑

j=k+2

exp

(

− (tkrk − rj)
2

2σ2

)

(38)

− 8σ

√

pk+1

n
exp

(

− (tkrk − rk+1)
2

2σ2

)

. (39)

Additionally, we have

k
∑

j=0

exp

(

− (tkrk − rj)
2

2σ2

)

≤ k exp

(

− (tk − 1)2r2k
2σ2

)

.

And for any j ≥ k+2, we have rj − tkrk ≥ j− (k+2)+ rk+2− tkrk ≥ j− (k+2)+(tk−1)tk, which indicates
that

∞
∑

j=k+2

exp

(

− (tkrk − rj)
2

2σ2

)

≤





∞
∑

j=k+2

exp

(

− j − (k + 2)

2σ2

)



·exp
(

− (tk − 1)2r2k
2σ2

)

≤ Cj exp

(

− (tk − 1)2r2k
2σ2

)

,

where Cj is a constant only depending on σ. We also notice that
(tkrk−rk+1)

2

2σ2 ≥ r2k
2σ2 using the fact that

ck ≥ tk + 1, and that

exp

(

− (tk − 1)2r2k
2σ2

)

≤ exp

(

−c2kr
2
k

4K2
− c2kr

2
kκ

2

8σ2

)

=

√√
2πKpk+1

C
· exp

(

−c2kκ
2r2k

8σ2

)

using the fact that

2c2kκ+ c2kκ
2 ≤ c2kκ

2 + c2k + κ2 + 1− 2ck − 2κ+ 2c2kκ = (2tk − 2)2.

Hence we have

4σ√
n

k
∑

j=0

exp

(

− (tkrk − rj)
2

2σ2

)

+
4σ√
n

∞
∑

j=k+2

exp

(

− (tkrk − rj)
2

2σ2

)

+ 8σ

√

pk+1

n
exp

(

− (tkrk − rk+1)
2

2σ2

)

≤ 4

√

pk+1

n
· σ
(

Cj

√√
2πK + k√
C

exp

(

−c2kκ
2r2k

8σ2

)

+ exp

(

− r2k
2σ2

)

)

.

Since rk = c1c2 · · · ck−1 ≥ 3k−1, there exists some constant k0 only depending on K,σ,C such that for any
k ≥ k0, we have

σ

(

Cj

√√
2πK + k√
C

exp

(

−c2kκ
2r2k

8σ2

)

+ exp

(

− r2k
2σ2

)

)

≤ 1

4
√
2
− 1

8

Bringing this result to (38), we will obtain that for any k ≥ k0,

F̃n,σ(tkrk)− Fσ(tkrk) ≥
1

2

√

pk+1

n

holds. This completes the proof of this proposition.

With the above propositions, we are now ready to prove the lower bound part of Theorem 2.
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Proof of Lower Bound Part of Theorem 2. We let tk = 1
2 (1 + κ)(1 + ck) and

nk =

⌊

1

4C2
u

exp

(

(t2k − ckκ− ck) ·
(rk − 2)2

σ2
− c2kr

2
k

2K2

)⌋

, (40)

Then there exists some constant k′0 only depending on k, σ and C such that for any k ≥ k′0, we would have

nkpk+1 ≥ 32768.

Hence according to Proposition 6 we would have when k ≥ max{k0, k′0},

F̃nk,σ(tkrk)− Fσ(tkrk) ≥
1

2

√

pk+1

nk

holds with probability at least 1
64 . Moreover, with our choice of nk, it is easy to check that

1

2

√

pk+1

nk
≥ Cu exp

(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

.

Hence according to Proposition 5, with probability at least 1
64 we have for X ∼ P ∗ N (0, σ2),

F̃nk,σ(tkrk)− Fσ(tkrk) ≥ Cu exp

(

−(t2k − ckκ− ck) ·
(rk − 2)2

2σ2

)

≥ P(X ∈ [tkrk, tkrk + 2]).

Therefore we have
F̃nk,σ(tkrk) ≥ Fσ(tkrk + 2).

According to Lemma 2 and Proposition 4, this indicates that with probability at least 1
64 ,

W2(P ∗ N (0, σ2),Pnk
∗ N (0, σ2)) ≥

√

P(X ∈ [tkrk + 1, tkrk + 2])

≥
√

Cl exp

(

−(t2k − ckκ− ck) ·
(rk + 2)2

2σ2

)

,

where X ∼ Pnk
∗ N (0, σ2). Hence we obtain that

E[W2(P ∗ N (0, σ2),Pnk
∗ N (0, σ2))] ≥

√
Cl

64

√

exp

(

−(t2k − ckκ− ck) ·
(rk + 2)2

2σ2

)

,

which indicates that there exists some constant C5, C6 only depending on C,K, σ such that

E[W2(P ∗ N (0, σ2),Pnk
∗ N (0, σ2))]

n
− (t2−cκ−c)/(4σ2)

(t2−cκ−c)/σ2−c2/(2K2)

k

≥ C5 exp (−C6rk) ≥ n
−O

(

1√
log nk

)

k .

Next we remember that tk = 1
2 (1 + κ)(1 + ck), therefore if choosing c large enough, we will have

t2k − ckκ− ck =
(1 + κ)2(1 + ck)

2

4
− ck(1 + κ) =

(1 + κ)2c2k
4

+O(ck),

which indicates that

(t2 − cκ− c)/(4σ2)

(t2 − cκ− c)/σ2 − c2/(2K2)
=

(1 + κ)2c2k +O(ck)

4(1 + κ)2c2k +O(ck)− 8c2kκ
=

(1 + κ)2

4(1 + κ)2 − 8κ
+O

(

1

ck

)

= α+O
(

1

ck

)

.
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Therefore, choosing ck = Mk withM = max
{√

2
κ ,

κ+3
1−κ , 3

}

, then for every k we have ck ≥ max
{√

2
κ ,

κ+3
1−κ , 3

}

,

which indicates that this choice of ck satisfies all previous assumptions on ck. We further notice that

rk = M
k(k−1)

2 , hence

n
− (t2−cκ−c)/(4σ2)

(t2−cκ−c)/σ2−c2/(2K2)

k

n−α
k

≥ n
−O

(

1√
log log nk

)

k .

Therefore, we obtain that

nαE[W2(P ∗ N (0, σ2),Pnk
∗ N (0, σ2))] ≤ n

−O
(

1√
log log nk

)

k .

We let k goes to infinity, and obtain that

lim sup
n→∞

n
α+ 1

3√log log nE[W2(P ∗ N (0, σ2),Pn ∗ N (0, σ2))] ≥ lim sup
k→∞

n

1
3
√

log log nk
−O

(

1√
log log nk

)

k > 0.

And the proof of the lower bound part of Theorem 2 is completed.

5 Proof of the Upper Bound of Theorem 2

Without loss of generality, we consider the case σ = 1, as we can always reduce to this by rescaling. We
start the proof from the following observation [Vil03, Theorem 2.18]: for two distributions Q1,Q2 on R with
absolutely continuous CDFs F1(x), F2(x) the optimal coupling for the 2-Wasserstein distance is given by
F−1
2 (F1(x)), implying an explicit formula:

W2(Q1,Q2)
2 = E[

∣

∣F−1
2 (F1(T1))− T1

∣

∣

2
] , T1 ∼ Q1 ,

where F−1
2 (·) is the inverse function of F2(·). In our case we set Q1 = P ∗ N (0, 1) and Q2 = Pn ∗ N (0, 1),

and denote their CDFs by F and Fn respectively. In the following, we use N to denote N (0, 1). We also
denote by ρ(t) the pdf of F and by T the optimal transport map

T (t) , F−1
n (F (t)) .

Note that because of the randomness of Fn the map T is random as well. Our proof will proceed along the
following reductions:

1. (Conditioning) Note that if E is any event with probability at least 1−O( 1
n2 ) then we have

E[W 2
2 (P ∗ N ,Pn ∗ N )] ≤ E[W 2

2 (P ∗ N ,Pn ∗ N )|E] +O(
1

n
) (41)

This allows us to condition on a typical realization of the empirical measure Pn.

2. (Truncation) We will show that with high probability

|T (t)− t| . |t|+
√

logn ∀t ∈ R . (42)

Conditioning on this event, then, allows us to restrict evaluation of W 2
2 to a O(log n) range of t:

W 2
2 (P ∗ N ,Pn ∗ N ) = E[|T (X + Z)− (X + Z)|21{|X + Z| ≤ b

√

logn] +O(1/n) .
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3. (Key bound) So far we are left to bound the integral

∫

|t|≤b
√
logn

ρ(t)|T (t)− t|2dt (43)

and we only have the bound (42). The key novel ingredient is the following observation. The transport
distance can be bounded by

|T (t)− t| ≤ |F (t)− Fn(t)|
ρ(t)

(44)

This bound can be explained by the fact that if F (t) < Fn(t) then the distance we need to travel to

the right of t so that F (·) raise to the value of Fn(t) will be around |F (t)−Fn(t)|
ρ(t) . There are several

caveats in a rigorous statement of (44) (see Prop. 8 for details), but the most important one is that it
only holds provided the RHS of (44) is ≤ 1.

4. (Concentration) Next, we will show that with high probability

|Fn(t)− F (t)| . logn√
n

√

min(F (t), 1 − F (t)) ∨ 1

n
. (45)

It turns out that we also have min(F (t), 1 − F (t)) . ρ(t)
4K2

(1+K2)2 no(1). Hence, we have a transport
distance bound

|T (t)− t| . logn√
n

ρ(t)
2K2

(1+K2)2
−1

no(1) ,

provided the RHS is . 1, which is equivalent to say ρ(t) > n−α−o(1) for α = (1+K2)2

2(1+K4) . Note that in

this region the integral (43) becomes bounded by

no(1)

∫

|t|≤b
√
logn,ρ(t)>n−α

1

n
ρ

4K2

(1+K2)2
−1

(t) ≤ n−α+o(1) , (46)

since K > 1 and thus the power of ρ is negative.

5. (Final) The final step is to split the integral (43) into values of ρ(t) < n−α (for which we use the
bound (42) and |t| . √

logn) and ρ(t) > n−α (for which we use (46)). This gives us the contributions

n−αO(log n) + no(1)n−α

completing the proof.

If we can prove for any ǫ > 0, there exists Cǫ such that for any n and K-subgaussian distribution P,

E[W 2
2 (P ∗ N ,Pn ∗ N )] ≤ Cǫn

−2α+ǫ, (47)

then for every integer t and n we have

E[W 2
2 (P ∗ N ,Pn ∗ N )] ≤ C1/(2t)n

−2α+1/(2t).

WLOG we assume that C1/(2t) ≥ C1/(2s) ≥ 1 for every t > s. Therefore, when n ≥ C2t
1/(2t) we have

E[W 2
2 (P ∗ N ,Pn ∗ N )] ≤ n−2α+1/t for all K-subgaussian distribution P. We let δn = 1/(2t) for those

n ∈ (C
2(t−1)
1/(2(t−1)), C

2t
1/(2t)], and for those n ≤ C2

1/2, we choose δn = log2

[

max2≤n≤C2
1/2

E[W 2
2 (P ∗ N ,Pn ∗ N )]

]

,

we will have
E[W 2

2 (P ∗ N ,Pn ∗ N )] ≤ n−2α+δn

with limn→∞ δn = 0. Therefore, we only need to prove (47)
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Proposition 7. We denote the CDF, PDF of P∗N (0, 1) as F, ρ, respectively, and let X ∼ P. Suppose there
exist constants C,K > 0 such that for ∀r ≥ 0,

P(|X | ≥ r) ≤ C exp

(

− r2

2K2

)

.

For β = 4K2

(1+K2)2 and any 0 < ǫ < β, ∃M = M(K,C, ǫ) ≥ 1 such that for any K-subgaussian distribution P,

1− F (r) ≤ Mρ(r)β−ǫ, ∀r ≥ 0,

F (r) ≤ Mρ(r)β−ǫ, ∀r < 0.

Remark 4. We notice that this result is tight when considering Ph = (1−ph)δ0+phδh with ph = exp
(

− h2

2K2

)

and r = (K2+1)h
2K2 . Then we have ρ(r) ≍ exp

(

− (K2+1)2h2

8K4

)

and 1 − F (r) ≍ exp
(

− h2

2K2

)

. Hence the above

inequalities are tight.

First we present two lemmas:

Lemma 3. Suppose Φ1 to be the CDF of Gaussian distribution N (0, 1), then we have

1− Φ1(l) ≤ exp

(

− l2

2

)

, ∀l ≥ 0

Φ1(l) ≤ exp

(

− l2

2

)

, ∀l < 0

Proof. Since we have Φ1(l) = 1−Φ1(l) for any l ≥ 0, we only need to prove the results for l ≥ 0. According
to the upper bound on the tail of Gaussian distributions [Ver18, Proposition 2.1.2], we have for l ≥ 1,

1− Φ1(l) ≤
1

l
· 1√

2π
exp

(

− l2

2

)

≤ 1√
2π

exp

(

− l2

2

)

≤ exp

(

− l2

2

)

.

For 0 ≤ l ≤ 1, we have

1− Φ1(l) ≤ 1− 1

2
=

1

2
, exp

(

− l2

2

)

≥ exp(−1/2) ≥ 1

2
,

which indicates that

1− Φ1(l) ≤
1

2
≤ exp

(

− l2

2

)

.

Hence for ∀l ≥ 0,

1− Φ1(l) ≤ exp

(

− l2

2

)

.

Lemma 4. Suppose P is a 1-dimensional K-subgaussian distribution (for some constant C > 0 we have

P[X ≥ r] ≤ C exp
(

− r2

2K2

)

for every r ≥ 0, where X ∼ P), and ρ(·) is the PDF of P∗N . For any 0 < ǫ < β

we have
ρ(r) ≥ CǫP[X ≥ r]

1
β−ǫ ∀r ≥ 0

for some positive constant Cǫ = Cǫ(K,C).
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Proof. For X ∼ P, choosing M = M(K,C) , K
√

2 log(2C) > 0 then we have

P[X ∈ [−M,M ]] = 1−P[|X | > M ] ≤ 1− C exp

(

− M2

2K2

)

≥ 1

2
.

For 0 ≤ r ≤ M , we have

ρ(r) ≥
∫ M

−M

η(x)ϕ1(r − x)dx ≥ P[X ∈ [−M,M ]] · min
−M≤x≤M

ϕ(r − x) ≥ 1

2
ϕ1(2M),

where we use η(·) to denote the PDF of P (which can be a generalized function). Hence ρ(r) ≥ CǫP[X ≥ r]
1

β−ǫ

holds for all 0 ≤ r ≤ M if Cǫ ≤ 1
2ϕ1(2M).

Next we consider cases where r ≥ M . We let cr = log C
P[X≥r] . If cr ≥ log 1

ρ(r) , then we have

ρ(r) ≥ P[X ≥ r]

C
≥ 1

C
P[X ≥ r]

1
β−ǫ ,

where we use the fact that β − ǫ ≤ β ≤ 1 and hence 1
β−ǫ ≥ 1.

Next we consider cases where cr < log 1
ρ(r) . We let r1 =

√

2 log(2) + 2crK, then we have P[X ≥ r] =

Ce−cr , and

P[X ≥ r1] ≤ C exp

(

− r21
2K2

)

≤ C

2
e−cr .

Hence P[r < X ≤ r1] ≥ C
2 e

−cr , which indicates that

ρ(r) ≥
∫ M

−M

η(x)ϕ(r − x)dx +

∫ r1

r

η(x)ϕ(r − x)dx ≥ 1

2
ϕ(r +M) +

C

2
e−crϕ(r1 − r)

=
1

2
√
2π

exp

(

− (r +M)2

2

)

+
C

2
√
2π

exp

(

−cr −
(r1 − r)2

2

)

.

Next, we let cr =
x2r2

2K2 with x ≥ 1. We notice that when x ≥ 2K2

1+K2 we have x2

βK2 ≥ 1, hence − r2

2 ≥ − 1
β cr; and

when 1 ≤ x ≤ 2K2

1+K2 , we have
(

1
βK2 − 1

K2 − 1
)

x2+2x−1 ≥ 0 since −1 ≤ 1
βK2 − 1

K2 −1 = (K2+1)(1−3K2)
4K4 ≤ 0,

and hence −cr − (r−
√
2crK)2

2 ≥ − 1
β cr. Therefore, we have

max

{

−r2

2
,−cr −

(r −√
2crK)2

2

}

≥ − 1

β
cr

We further notice that

ρ(r) =

∫ ∞

−∞
η(x)ϕ1(r − x)dx =

∫ r/2

−∞
η(x)ϕ1(r − x)dx +

∫ ∞

r/2

η(x)ϕ1(r − x)dx (48)

≤ sup
x≤r/2

ϕ1(r − x) +P[X ≥ r/2] ≤ 1√
2π

exp

(

−r2

8

)

+ C exp

(

− r2

8K2

)

≤
(

1√
2π

+ C

)

exp

(

− r2

8K2

)

.

(49)

This indicates that r ≤ 2
√

K log C̄
ρ(r) with C̄ = 1√

2π
+ C, and hence exp(rM) = O(ρ(r)−ǫ′ ) for ∀ǫ′ > 0. We

further notice that exp
(

2
√

log(2)K2√cr

)

= O(ρ(r)−ǫ′ ) for ∀ǫ′ > 0 since cr ≤ log 1
ρ(r) . Therefore, we obtain

26



that

P[X ≥ r]
1
β = C(1/β) exp

(

− 1

β
cr

)

≤ C(1/β) max

{

exp

(

−r2

2

)

, exp

(

−cr −
(r −√

2crK)2

2

)}

≤ 2
√
2πC(1/β)

1 + C
·
(

1

2
√
2π

exp

(

−r2

2

)

+
C

2
√
2π

exp

(

−cr −
(r −√

2crK)2

2

))

≤ ρ(r) ·max

{

exp

(

Mr +
M2

2

)

, exp
(

√

2 log(2)K(
√
2crK − r) + 2K2 log 2

)

}

≤ ρ(r) ·max

{

exp

(

Mr +
M2

2

)

, exp
(

2
√

log(2)K2√cr + 2K2 log 2
)

}

≤ ρ(r) · Õ(ρ−ǫ′).

Choosing ǫ′ = ǫ
β , we know that there exists some positive constant Cǫ such that

ρ(r) ≥ CǫP[X ≥ r]
1

β−ǫ ∀r ≥ 0.

Proof of Proposition 7. We only prove this results for r ≥ 0, as the proof of r ≤ 0 is similar. First we can
write

1− F (r) =

∫ ∞

−∞
η(t)(1 − Φ1(r − t))dt, (50)

ρ(r) =

∫ ∞

−∞
η(t) · 1√

2π
exp

(

− (r − t)2

2

)

dt. (51)

Noticing that P(|X | ≥ r) ≤ C exp
(

− r2

2K2

)

, If we choose

K̃ = K
√

2(log(2C)),

we will obtain that

P(|X | ≥ K̃) ≤ C exp(− log(2C)) =
1

2

and hence P(|X | ≤ K̃) ≥ 1
2 . In the following, we will discuss cases where 0 ≤ r ≤ K̃ and r > K̃ separately.

If 0 ≤ r ≤ K̃, then we have

ρ(r) ≥
∫ K̃

−K̃

ρ(t) · 1√
2π

exp

(

− (r − t)2

2

)

dt

≥ 1√
2π

P(|X | ≤ K̃) · min
0≤r≤K̃,t∈[−K̃,K̃]

exp

(

− (r − t)2

2

)

=
1

2
√
2π

exp
(

−2K̃2
)

.

We further notice that 1 − F (r) ≤ 1. Hence for any ε > 0, if choosing M1 =
(

1
2
√
2π

exp
(

−2K̃2
))−β+ǫ

, we

will have
1− F (r) ≤ 1 ≤ M1ρ(r)

β−ǫ, ∀r ∈ [0, R0].

Next, we consider cases where r > K̃. According to the assumption, we have

P(X ≥ r) ≤ C exp

(

− r2

2K2

)

,
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which indicates that

1− F (r) =

∫ r

−∞
η(t)(1 − Φ1(r − t))dt +

∫ ∞

r

η(t)(1 − Φ1(r − t))dt

≤
∫ r

−∞
η(t)(1 − Φ1(r − t))dt +

∫ ∞

r

η(t)dt

≤
∫ r

−∞
η(t)(1 − Φ1(r − t))dt +P(X ≥ r).

For r > t, according to Lemma 3, we have 1− Φ1(r − t) ≤ exp
(

− (r−t)2

2

)

, which indicates that

1− F (r) ≤
∫ r

−∞
η(t) exp

(

− (r − t)2

2

)

dt+P(X ≥ r)

≤
∫ ∞

−∞
η(t) exp

(

− (r − t)2

2

)

dt+P(X ≥ r) =
√
2π · ρ(r) +P(X ≥ r).

Moreover, according to Lemma 4, we know that there exists constant Cǫ such that

ρ(r) ≥ CǫP[X ≥ r]
1

β−ǫ ,

which indicates that P(X ≥ r) ≤ C−β+ǫ
ǫ ρ(r)β−ǫ, which indicates that

1− F (r) ≤
√
2π · ρ(r) + C−β+ǫ

ǫ ρ(r)β−ǫ.

When ρ(r) ≤ 1, since β ∈ [0, 1], we have
√
2π · ρ(r) ≤

√
2π · ρ(r)β−ǫ.

Therefore,
1− F (r) ≤ (C−β+ǫ

ǫ +
√
2π) · ρ(r)β−ǫ.

When ρ(r) > 1, we will also have ρ(r)β−ǫ > 1. Hence the following inequality holds

1− F (r) ≤ 1 < ρ(r)β−ǫ.

Above all, if we choose M = max{M1, (C
−β+ǫ
ǫ +

√
2π), 1} ≥ 1, then we have

1− F (r) ≤ Mρ(r)β−ǫ, ∀r ≥ 0.

Proposition 8. Consider two distributions P,Q on R. Assume that the distribution Q has a strictly positive
PDF. We denote the PDF of P as ρP(·), and the CDFs of P,Q as FP, FQ, respectively. For a fixed h > 0
denote Lh(t) , supx∈[t−h,t+h] |FP(x)− FQ(x)| and ρ

h
(t) = infx∈[t−h,t+h] ρQ(x). If we have

∆h(t) ,
Lh(t)

ρ
h
(t)

≤ h,

then
∣

∣F−1
Q (FP(t)) − t

∣

∣ ≤ ∆h(t) .

Proof. Suppose that FP(t) > FQ(t) and let h′ = ∆h(t) ≤ h. Then we claim that

FP(t) ≤ FQ(t+ h′) . (52)

Indeed, we have FP(t + h′) ≥ FP(t) + ρ
h
(t)h′ = FP(t) + Lh(t). On the other hand, FP(t + h′) ≤ FQ(t +

h′) + Lh(t). Combining these two, we obtain (52). Now, since FQ(t) < FP(t) ≤ FQ(t + h′) we obtain that
0 < F−1

Q (FP(t))− t ≤ h′. The case of FP(t) < FQ(t) is treated similarly.
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Proposition 9. Assume distribution P,Q are K1,K2-subgaussian distributions respectively, e.g. for any
X ∼ P, Y ∼ Q we have

P(|X | ≥ r) ≤ C1 exp

(

− r2

2K2
1

)

, P(|Y | ≥ r) ≤ C2 exp

(

− r2

2K2
2

)

, ∀r > 0 .

Then for all x ∈ R, we have
∣

∣

∣F−1
Q,1(FP,1(x)) − x

∣

∣

∣ ≤ 2|x|+ 2 + K̃1 + K̃2(|x|+ 2 + K̃1) ,

where FP,1, FQ,1 denote the CDFs of X +Z and Y +Z, (X,Y ) ⊥⊥ Z ∼ N , and K̃1 , K1

√
2 log 2C1, K̃2(t) ,

K2t+K2

√

2 log (4tC2).

Proof. We let R = |x| and R̃ = R + 2 + K̃1. First we notice that the PDFs of distribution P ∗ N ,Q ∗ N at
any real number is positive, hence FP,1, FQ,1 are monotonically increasing in the entire real line. We have

P
(

|X | ≥ K̃1

)

≤ C1 exp (− log(2C1)) =
1

2
.

Therefore, we obtain that

P
(

|X | ≤ K̃1

)

≥ 1− 1

2
=

1

2
.

We further notice that if X ∼ P, Z ∼ N (0, 1) are independent, X + Z ∼ P ∗ N (0, 1). And also

{|X | ≤ K̃1} ∩ {Z ≤ −K̃1 −R} ⊂ {X + Z ≤ −R}
{|X | ≤ K̃1} ∩ {Z ≥ K̃1 +R} ⊂ {X + Z ≥ R} .

Recall that we use Φ1 to denote the CDF of distribution N (0, 1). Hence noticing that Φ1(−R − K̃1) =
1− Φ1(R + K̃1) = P(Z ≤ −K̃1 −R) = P(Z ≥ K̃1 +R), we have

1

2
Φ1(−R− K̃1) ≤ P

(

|X | ≥ K̃1

)

P(Z ≤ −K̃1 −R) ≤ P(X + Z ≤ −R) = FP,1(−R)

1

2
Φ1(−R− K̃1) ≤ P

(

|X | ≥ K̃1

)

P(Z ≥ K̃1 +R) ≤ P(X + Z ≥ R) = 1− FP,1(R),

which indicates that

1

2
Φ1(−R− K̃1) ≤ FP,1(−R) ≤ FP,1(R) ≤ 1− 1

2
Φ1(−R− K̃1).

Next, if Y ∼ Q, Z ∼ N (0, 1) are independent, we have Y + Z ∼ Q ∗ N (0, 1). Noticing that,

{

Y + Z ≤ −R̃− K̃2(R̃)
}

⊂ {Z ≤ −R̃} ∪ {Y ≤ −K̃2(R̃)},
{

Y + Z ≥ R̃+ K̃2(R̃)
}

⊂ {Z ≥ R̃} ∪ {Y ≥ K̃2(R̃)},

we obtain that

FQ,1(−R̃− K̃2(R̃)) ≤ Φ1(−R̃) +P(|Y | ≥ K̃2(R̃)),

1− FQ,1(R̃ + K̃2(R̃)) ≤ 1− Φ1(R̃) +P(|Y | ≥ K̃2(R̃)) = Φ1(−R̃) +P(|Y | ≥ K̃2(R̃)).

According to Proposition 2.1.2 in [Ver18], we have

Φ1(−R̃) ≥
(

1

R̃
− 1

R̃3

)

· 1√
2π

exp

(

− R̃2

2

)

.
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Hence since R̃ = R+ K̃1 + 2 ≥ 2, we will have

Φ1(−R̃) ≥ 3

4R̃
· 1√

2π
exp

(

− R̃2

2

)

≥ 1

4R̃
exp

(

− R̃2

2

)

.

We further notice that K̃2(R̃) = K2R̃+K2

√

2 log
(

4R̃C2

)

, hence we have

P(|Y | ≥ K̃2(R̃)) ≤ C2 exp

(

−K̃2(R̃)2

2K2
2

)

=
1

4R̃
exp

(

− R̃2

2

)

≤ Φ1(−R̃),

which indicates that

FQ,1(−R̃− K̃2(R̃)) ≤ 2Φ1(−R̃), 1− FQ,1(R̃+ K̃2(R̃)) ≤ 2Φ1(−R̃).

Additionally, since for any t ≤ 0, we have

exp

(

− (t− 2)2

2

)

≤ exp

(

− t2

2
− 4

2

)

= exp(−2) · exp
(

− t2

2

)

≤ 1

4
exp

(

− t2

2

)

.

This indicates that

1

4
Φ1(−R− K̃1) =

1

4
· 1√

2π

∫ −R−K̃1

−∞
exp

(

− t2

2

)

dt

≥ 1√
2π

∫ −R−K̃1

−∞
exp

(

− (t− 2)2

2

)

dt

=
1√
2π

∫ −R−K̃1−2

−∞
exp

(

− t2

2

)

dt = Φ1(−R− K̃1 − 2).

Therefore, we obtain that

FQ,1

(

−R̃− K̃2(R̃)
)

≤ 2Φ1

(

−R̃
)

= 2Φ1(−R− K̃1 − 2) ≤ 1

2
Φ1(−R− K̃1) ≤ FP,1(−R).

Similarly, we can also obtain that

FP,1(R) ≤ FQ,1

(

R̃+ K̃2(R̃)
)

.

Hence using the monotonicity of FP,1 and FQ,1, we obtain that,

FQ,1

(

−R̃− K̃2(R̃)
)

≤ FP,1(−R) ≤ FP,1(x) ≤ FP,1(R) ≤ FQ,1

(

R̃+ K̃2(R̃)
)

,

which indicates that
−R̃− K̃2(R̃) ≤ F−1

Q,1(FP,1(x)) ≤ R̃ + K̃2(R̃).

Hence we have
∣

∣

∣F−1
Q,1(FP,1(x)) − x

∣

∣

∣ ≤ R+ R̃+ K̃2(R̃) = 2|x|+ 2 + K̃1 + K̃2(|x|+ K̃1 + 2).

Proposition 10. Suppose F, Fn are CDFs of distribution P∗N and Pn∗N respectively. Then with probability
at least 1− δ, we have the following inequality:

sup
t∈R

|F (t)− Fn(t)|
√

1/n ∨ (F (t) ∧ (1 − F (t)))
≤ 16√

n
log

(

2n

δ

)

.
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To prove this proposition, we first present a lemma indicating a similar result without Gaussian smooth-
ing:

Lemma 5. For a given distribution Q on real numbers with always-positive PDF, we denote its empirical
measure with n data points to be Qn (Qn = 1

n

∑n
i=1 δXi where Xi ∼ Q are i.i.d.). We further use F, F̂n to

denote the CDF of Q,Qn respectively.Then with probability at least 1− δ, we have

sup
t∈R

|F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
≤ 8√

n
log
(n

δ

)

.

Remark 5. From Theorem 2.1 of [GK+06] we can obtain a result similar to this lemma: if Q is the uniform
distribution on [0, 1], then there exist universal positive constants C0,K such that for any s > 0,

P

[

sup
1/n≤t≤1/2

|F (t)− F̂n(t)|√
t

≥ 4√
n
+

2s log logn√
n log log log n

]

≤ C0

log(n)(s/(2K)−1)
.

Remark 6. If we would like to obtain a uniform bound without truncation, then we have to pay an additional
factor

√

1/δ. This is summarized in the following results: with probability at least 1− δ, we have

sup
t∈R

|F (t)− F̂n(t)|
√

F (t) ∧ (1 − F (t))
≤ 16

√

1

δn
log

(

4n

δ

)

.

Also we have a lower bound to the LHS in the above inequality, indicating that the factor
√

1/δ is necessary:
with probability at least δ, we have

sup
t∈R

|F (t)− F̂n(t)|
√

F (t) ∧ (1− F (t))
≥
√

1

2δn
.

Proof of Lemma 5. With loss of generality, we assume Q is the uniform distribution on [0, 1] (otherwise we
consider the similar argument on distribution Q(F−1(·))). Then we have F (t) = t for any 0 ≤ t ≤ 1. We
only need to prove that with probability at least 1− δ,

sup
t∈R

|F (t)− F̂n(t)|
√

1/n ∨ (t ∧ (1− t))
≤
√

logn

n
.

According to Bernstein inequality, we have

P
(∣

∣

∣F (t)− F̂n(t)
∣

∣

∣ > ε
)

≤ exp

(

− nε2

2t(1− t) + 2/3ε

)

≤ exp

(

− nε2

2t+ 2/3ε

)

.

Choosing ε = 4
√

t
n log

(

1
δ

)

, and noticing that with this choice we have 1
2nε

2 ≥ 2t log(1/δ) and also 1
2nε

2 ≥
2
3ε log(1/δ), we obtain that

P

(

∣

∣

∣F (t)− F̂n(t)
∣

∣

∣ > 4

√

t

n
log

(

1

δ

)

)

≤ δ.

Therefore, choosing t = k
n with 1 ≤ k ≤ n

2 , and applying union bound for 1 ≤ k ≤ n
2 , we obtain that

P

(

∣

∣

∣

∣

F

(

k

n

)

− F̂n

(

k

n

)∣

∣

∣

∣

≤ 4

√

(k/n)

n
log
(n

δ

)

, ∀1 ≤ k ≤ n

2

)

≤ δ

2
.

We further notice that for any k
n ≤ t ≤ k+1

n , we have

|F (t)− F̂n(t)| = |t− F̂n(t)| ≤
1

n
+max

{∣

∣

∣

∣

F

(

k

n

)

− F̂n

(

k

n

)∣

∣

∣

∣

,

∣

∣

∣

∣

F

(

k + 1

n

)

− F̂n

(

k + 1

n

)∣

∣

∣

∣

}

.
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When k ≥ 1 and 2k
n ≤ k+1

n . Therefore, if for every 1 ≤ k ≤ n
2 we all have

∣

∣

∣
F
(

k
n

)

− F̂n

(

k
n

)

∣

∣

∣
≤ 4
√

(k/n)
n log

(

n
δ

)

,

then for every 0 ≤ t ≤ 1
n , we have

|F (t)− F̂n(t)|
√

1/n ∨ (t ∧ (1− t))
≤ 1/n+ |F (1/n)− F̂n(1/n)|

√

1/n
≤ 5

√

1

n
log
(n

δ

)

,

and for every k
n ≤ t ≤ k+1

n with k ≤ n
2 , we have

|F (t)− F̂n(t)|
√

1/n ∨ (t ∧ (1 − t))
≤

1
n +max

{∣

∣

∣F
(

k
n

)

− F̂n

(

k
n

)

∣

∣

∣ ,
∣

∣

∣F
(

k+1
n

)

− F̂n

(

k+1
n

)

∣

∣

∣

}

√

k/n

≤
√

1

n
+
√
2 ·max







∣

∣

∣F
(

k
n

)

− F̂n

(

k
n

)

∣

∣

∣

√

k/n
,

∣

∣

∣F
(

k+1
n

)

− F̂n

(

k+1
n

)

∣

∣

∣

√

(k + 1)/n







≤
√

1

n
+ 4

√
2 ·
√

1

n
log
(n

δ

)

≤ 8

√

1

n
log
(n

δ

)

.

Therefore, we have proved that with probability at least 1− δ
2 ,

|F (t)− F̂n(t)|
√

1/n ∨ (t ∧ (1− t))
≤ 8

√

1

n
log
(n

δ

)

holds for every 0 ≤ t ≤ 1
2 . Similarly, we can prove that with probability at least 1− δ

2 , the above inequality
holds for 1

2 ≤ t ≤ 1. Therefore, with probability at least 1− δ, we have

sup
0≤t≤1

|F (t)− F̂n(t)|
√

1/n ∨ (t ∧ (1− t))
≤ 8

√

1

n
log
(n

δ

)

.

This completes the proof of this lemma.

Proof of Proposition 10. Suppose random variables X ∼ P, Y ∼ N are independent. Then X + Y ∼ P ∗ N .
We generate n i.i.d. samples X1, · · · , Xn; Y1, · · · , Yn. Then Xi+Yi are n i.i.d. samples of P∗N . We use F̂n

to denote the PDF of empirical measure P̂n = 1
n

∑n
i=1 δXi+Yi . Then according to Lemma 5, we have with

probability 1− δ,

sup
t∈R

|F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
≤ 8√

n
log
(n

δ

)

.

Hence Markov inequality indicates that

P

(

exp

(

sup
t∈R

√
n

16
· |F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

)

≥ 1

δ

)

≤ δ2.

Therefore, we have

E

[

exp

(

sup
t∈R

√
n

16
· |F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1 − F (t)))
− log(n)

2

)]

= 1 +

∫ ∞

1

P

(

exp

(

sup
t∈R

√
n

16
· |F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1 − F (t)))
− log(n)

2

)

≥ r

)

dr

≤ 1 +

∫ ∞

1

1

r2
dr

= 2.
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Moreover, we notice that

E

[

F̂n(t)
∣

∣

∣X1, · · · , Xn

]

= P

(

1

n

n
∑

i=1

(Xi + Yi) ≤ t
∣

∣

∣X1, · · · , Xn

)

= Fn(t),

where Fn is the CDF of Pn ∗ N with Pn = 1
n

∑n
i=1 δXi . Hence according to the Jensen’s inequality and the

convexity of function | · | and exp(·), we have

E

[

exp

(

sup
t∈R

√
n

16
· |F (t)− Fn(t)|
√

1/n ∨ (F (t) ∧ (1 − F (t)))
− log(n)

)]

≤ E

[

exp

(

sup
t∈R

√
n

16
· |F (t)− Fn(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

)]

= E

[

exp

(

sup
t∈R

√
n

16
· |F (t)− EYi,1≤i≤n[F̂n(t)]|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

)]

≤ E

[

exp

(

sup
t∈R

√
n

16
· EYi,1≤i≤n|F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

)]

≤ E

[

exp

(

E

[

sup
t∈R

√
n

16
· |F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

∣

∣

∣

∣

∣

X1, · · · , Xn

])]

≤ E

[

E

[

exp

(

sup
t∈R

√
n

16
· |F (t)− F̂n(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

2

)] ∣

∣

∣

∣

∣

X1, · · · , Xn

]

≤ 2.

And according to Markov inequality, we have

P

(

exp

(

sup
t∈R

√
n

16
· |F (t)− Fn(t)|
√

1/n ∨ (F (t) ∧ (1− F (t)))
− log(n)

)

≥ 2

δ

)

≤ δ.

Therefore, with probability at least 1− δ we have

sup
t∈R

|Fn(t)− F (t)|
√

1/n ∨ (F (t) ∧ (1 − F (t)))
≤ 16√

n
log

(

2n

δ

)

.

We are now ready to prove the upper bound part of Theorem 2

Proof of the Upper Bound in Theorem 2. In the following proof, we use N to denote the 1-dimensional stan-
dard normal distribution N , and T (·) to denote the push-forward operator between P ∗ N and Pn ∗ N
(T (t) = F−1

n (F (t)), where F, Fn are CDF of distribution P ∗ N and Pn ∗ N respectively).
First, as shown in (41) in the outline of the proof, we show that if E is any event of probability at least

1− CE

n2 for some constant CE only depending on C,K, then we have

E
[

W 2
2 (P ∗ N ,Pn ∗ N )

]

≤ E
[

W 2
2 (P ∗ N ,Pn ∗ N )|E

]

+O
(

1

n

)

. (53)

Actually we have

E
[

W 2
2 (P ∗ N ,Pn ∗ N )

]

= E
[

W 2
2 (P ∗ N ,Pn ∗ N )1E

]

+ E
[

W 2
2 (P ∗ N ,Pn ∗ N )1Ec

]

,
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and E
[

W 2
2 (P ∗ N ,Pn ∗ N )1E

]

= E
[

W 2
2 (P ∗ N ,Pn ∗ N )|E

]

P[E] ≤ E
[

W 2
2 (P ∗ N ,Pn ∗ N )|E

]

. As for the
second term, according to Cauchy-Schwartz inequality we have

E
[

W 2
2 (P ∗ N ,Pn ∗ N )1Ec

]

≤
√

E[1E ]E[W 4
2 (P ∗ N ,Pn ∗ N )] =

√

P[Ec]E[W 4
2 (P ∗ N ,Pn ∗ N )]

≤
√
CE

n

√

E[W 4
2 (P ∗ N ,Pn ∗ N )].

We further notice that according to the triangle inequality of W2 distance we have

E[W 4
2 (P ∗ N ,Pn ∗ N )] ≤ E[(W2(P ∗ N , δ0) +W2(δ0,Pn ∗ N ))

4
] ≤ E[8W2(P ∗ N , δ0)

4 + 8W2(δ0,Pn ∗ N )4]

= 8E[(V1 + Z)4] + 8E[E[(V2 + Z)4|X1:n]] = 64E[V 4
1 ] + 64E[E[V 4

2 |X1:n]] + 128E[Z4]

= O(1),

where we use δ0 to denote the delta distribution at 0, and V1 ∼ P, V2 ∼ Pn, Z ∼ N are all independent. The
last equation is because P is K-subgaussian, hence all moments of P are upper bounded by constant. Hence
we have proved (53).

Next, we notice that for any n i.i.d. samples X1, · · · , Xn, we have

P
[{

|Xi| ≤ 2K
√

2 logn, ∀1 ≤ i ≤ n
}]

=
(

1− P

[

|X1| ≥ 2K
√

2 logn
])n

≥
(

1− C

n4

)n

≥ 1− C

n3
≥ 1− C

n2
,

where we use the fact that P is a K-subgaussian distribution (P[|X | ≥ t] ≤ C exp(−t2/(2K2))). Therefore,
with probability at least 1− C

n2 we have for X ′ ∼ Pn

P(|X ′| ≥ r)) ≤ e exp

(

− r2

2(2K
√
logn)2

)

,

which indicates that Pn is 2K
√
logn subgaussian with probability at least 1− C

n2 . We assume this event to

be E, then P[E] ≥ 1− C
n2 . In the following proof we all assume the event E, where we will deal with Ec in

the end. Noticing that for X ∼ P, Y ∼ Pn we have

P[|X | ≥ r] ≤ C exp

(

− r2

2K2

)

, P[|Y | ≥ r] ≤ e exp

(

− r2

2(2K
√
logn)2

)

,

according to Proposition 9 we obtain that

|T (x)− x| ≤ 2|x|+ 2 +K
√

2 log(2C) + (2K
√

logn)(|x| + 2 +K +
√

2 log(4e(|x|+ 2 +K))) (54)

≤ C1 + C2

√

logn|x| (55)

for some positive constant C1, C2 only depending on C,K. We further notice that according to (48) we have

ρ(x) ≤
(

1√
2π

+ C

)

exp

(

− x2

8K2

)

.

Hence when |x| ≥ 2K
√
2 logn, we will have exp

(

− x2

8K2

)

≤ 1
n and hence

∫

|t|>2K
√
2 logn

ρ(t)|T (t)− t|2 ≤
(

1√
2π

+ C

)∫

|t|>2K
√
2 logn

exp

(

− t2

8K2

)

(C1 + C2

√

logn|t|)2dt = Õ
(

1

n

)

Therefore, we only need to analyze the integral
∫

|t|≤2K
√
2 logn

ρ(t)|T (t)− t|2. (56)
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In what follows, we will use the notation:

ρ(t) = sup
x∈[t−1,t+1]

ρ(x), ρ(t) = inf
x∈[t−1,t+1]

ρ(x)

Λ(t) = sup
x∈[t−1,t+1]

|F (x) − Fn(x)|.

The key idea to bound the integral in (56) is the following observation from Proposition 8: if Λ(t) ≤ ρ(t),
then we have

|T (t)− t| ≤ Λ(t)

ρ(t)
,

which indicates that

ρ(t)|T (t)− t|2 ≤ Λ(t)2

ρ(t)
·
(

ρ(T )

ρ(t)

)2

.

In the following proof, we will use the concentration proposition (Proposition 10) to divide the interval
[−2K

√
logn, 2K

√
logn] into the set where Λ(t) ≤ ρ(t) where the integral can be bounded from the above

inequality, and the set where ρ(t) is very small hence ρ(t)|T (t)− t|2 won’t have much effect in the integral.
According to Proposition 10, with probability at least 1− 1

n2 we have

sup
t∈R

|F (t)− Fn(t)|
√

1/n ∨min{F (t), 1− F (t)}
≤ 16√

n
log
(

2n3
)

.

We assume this event to be E1, where P[E1] ≥ 1− 1
n2 . In the rest of the proof we assume E1 and will deal

with Ec
1 in the end. Then we have

Λ(t) = sup
x∈[t−1,t+1]

|F (x) − Fn(x)| ≤
16 log(2n3)√

n
sup

x∈[t−1,t+1]

√

1

n
∨min{F (x), 1 − F (x)}

=
16 log(2n3)√

n

√

1

n
∨ sup

x∈[t−1,t+1]

min{F (x), 1 − F (x)}.

According to Proposition 7, for any 0 < ǫ < β, ∃M = M(K,C, ǫ) ≥ 1 such that

min{F (x), 1 − F (x)} ≤ Mρ(r)β−ǫ,

which indicates that

Λ(t) ≤ 16 log(2n3)√
n

√

1

n
∨ sup

x∈[t−1,t+1]

Mρ(x)β−ǫ =
16 log(2n3)

n
∨ 16

√
M log(2n3)√

n
ρ(t)

β−ǫ
2

Next we will upper bound ρ(t)
ρ(t) and also ρ(t)

ρ(t) from the following observation: Noticing that for S ∼ P we have

E[S] =

∫ ∞

−∞
xη(x)dx ≤

∫ ∞

−∞
|x|η(x)dx =

∫ ∞

0

P[S ≥ r]dr ≤
∫ ∞

0

C exp

(

− r2

2K2

)

dr =
CK

√
2π

2
≤ 2CK,

hence according to [PW16, Prop. 2], we obtain that P ∗ N is (3, 8CK)-regular, which indicates that for
|t| ≤ 2K

√
2 logn and ∀x ∈ [t− 1, t+ 1],

ρ(x)

ρ(t)
≤ exp (3(|t|+ 1) + 8CK) ≤ exp

(

6K
√

2 logn+ 3 + 8CK
)

, L(n)

ρ(x)

ρ(t)
≥ exp (−3(|t|+ 1)− 8CK) ≤ exp

(

−6K
√

2 logn− 3− 8CK
)

=
1

L(n)
.
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Hence we have 1 ≤ ρ(t)
ρ(t) ,

ρ(t)
ρ(t) ≤ L(n). Therefore, when

ρ(t) ≥ 16 log(2n3)L(n)

n
∨
(

256M log2(2n3)

n
L(n)2+β−ǫ

)

1
2−β+ǫ

, Q(n),

we will have

Λ(t) ≤ 16 log(2n3)

n
∨ 16

√
M log(2n3)√

n
ρ(t)

β−ǫ
2 ≤ ρ(t),

which, according to Proposition 8 with h = 1, we have |T (t)− t| ≤ Λ(t)
ρ(t) ≤ L(n)Λ(t)

ρ(t) . Therefore, noticing that

β ≤ 1, we have

∫

{t|ρ(t)≥Q(n),|t|≤2K
√
logn}

ρ(t)|T (t)− t|2dt ≤ L(n)2
∫

{t|ρ(t)≥Q(n),|t|≤2K
√
logn}

Λ(t)2

ρ(t)
dt

≤ 4KL(n)2
√

logn · max
ρ(t)≥Q(n)

Λ(t)2

ρ(t)
≤ 4KL(n)2

√

logn · max
ρ(t)≥Q(n)

{

256 log2(2n3)

n2ρ(t)
∨ 256M log2(2n3)

nρ(t)1+ǫ−β

}

≤ 4KL(n)2
√

logn ·
(

256 log2(2n3)

n2Q(n)
∨ 256M log2(2n3)

nQ(n)1+ǫ−β

)

≤ 4KL(n)2
√

logn ·





16 log(2n3)

nL(n)
∨
(

256M log2(2n3)

n

)

1
2−β+ǫ

L(n)−
(2+β−ǫ)(1+ǫ−β)

2−β+ǫ



 .

Further noticing that for any ǫ1 > 0, we have L(n) = O (nǫ1). Hence for any ǫ′ > 0, we have

∫

{t|ρ(t)≥Q(n),|t|≤2K
√
logn}

ρ(t)|T (t)− t|2dt = O
(

n− 1
2−β+ǫ+ǫ′

)

.

As for those t with ρ(t) < Q(n), according to (54) we have estimation

∫

{t|ρ(t)<Q(n),|t|≤2K
√
log n}

ρ(t)|T (t)− t|2dt ≤
∫

{t|ρ(t)<Q(n),|t|≤2K
√
logn}

ρ(t)(C1 + C2

√

logn|t|)2dx

≤ 4K
√

logn ·Q(n)(C1 + 2KC2 logn)
2 = Q(n) · Õ(1) = O

(

n− 1
2−β+ǫ+ǫ′

)

Combine these two estimation together, we obtain that assuming event E,E1, for any ǫ, ǫ′ > 0, we have
∫

|t|≤2K
√
n ρ(t)|T (t)− t|2dt = O

(

n− 1
2−β+ǫ+ǫ′

)

and hence

E
[

W 2
2 (P ∗ N ,Pn ∗ N )|E ∩ E1

]

=

∫ ∞

−∞
ρ(t)|T (t)− t|2dt = O

(

n− 1
2−β+ǫ+ǫ′

)

+ Õ(
1

n
) = O

(

n− 1
2−β+ǫ+ǫ′

)

.

Finally we notice that P[Ec ∪ Ec
1] =

C+1
n2 , according to (53) we have

E
[

W 2
2 (P ∗ N ,Pn ∗ N )

]

≤ E
[

W 2
2 (P ∗ N ,Pn ∗ N )|E ∩E1

]

+O
(

1

n

)

= O
(

n− 1
2−β+ǫ+ǫ′

)

.

Since ǫ and ǫ′ can be chosen to be arbitrary small positive number, and 2α = (1+K2)2

2(1+K4) = 1
2−β , we have for

any ǫ > 0,
E
[

W 2
2 (P ∗ N ,Pn ∗ N )

]

= O
(

n−2α+ǫ
)

.
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6 Proof of Theorem 3

Lemma 6. Suppose (X,Y ) ∼ PX,Y , with marginal distributions PX ,PY . Let Pn be an empirical version of
PX generated with n samples. Then for every 1 < λ ≤ 2, we have

E[DKL(PY |X ◦ Pn‖PY )] ≤
1

λ− 1
log(1 + exp{(λ− 1)(Iλ(X ;Y )− logn)}) . (57)

Proof. According to [VEH14], for any distribution P,Q, the function Dλ(P‖Q) with respect to λ ∈ (1, 2] is
non-decreasing, where Dλ is the Rényi divergence defined in Definition 1. Hence noticing from [VEH14] that
for any distribution P,Q, limλ→1 Dλ(P‖Q) = DKL(P‖Q), we have

DKL(PY |X ◦ Pn‖PY ) ≤ Dλ(PY |X ◦ Pn‖PY ).

Therefore, it is sufficient to prove that for any 1 < λ ≤ 2,

E[Dλ(PY |X ◦ Pn‖PY )] ≤
1

λ− 1
log(1 + exp{(λ− 1)(Iλ(X ;Y )− logn)}).

We suppose the n samples obtained in Pn to be X1, · · · , Xn, which satisfies that (X1, · · · , Xn) ⊥⊥ Y .
According to the definition of Rényi divergence, Rényi mutual information and also the Jensen’s inequality,
we see that

E[Dλ(PY |X ◦ Pn‖PY )] =
1

λ− 1
E

[

logE

[

{

d(PY |X ◦ Pn)(Y )

dPY (Y )

}λ
] ∣

∣

∣

∣

∣

X1:n

]

(58)

≤ 1

λ− 1
logE

[

(

d(PY |X ◦ Pn)(Y )

dPY (Y )

)λ
]

.

Then we introduced the channel PȲ |X1:n
= 1

n

∑n
i=1 PY |X=Xi

and we let PX1:n,Ȳ = PȲ |X1:n
◦ PX1:n , where

PX1:n = P⊗n
X is the probability law of X1:n. We notice that the marginal distribution of PX1:n,Ȳ with respect

to Ȳ is exactly PY . If we let (X1:n, Ȳ ) ∼ PX1:n ⊗ PY , then we obtain that

Iλ(X1:n; Ȳ ) =
1

λ− 1
logE

[

(

dPX1:n,Ȳ (X1:n, Y )

d [PX1:n ⊗ PY (X1:n, Y )]

)λ
]

=
1

λ− 1
logE

[

{

dPY |X1:n
(Y |X1:n)

dPY (Y )

}λ
]

=
1

λ− 1
logE

[

E

[

{

d(PY |X ◦ Pn)(Y )

dPY (Y )

}λ
∣

∣

∣

∣

∣

X1:n

]]

=
1

λ− 1
logE

[

(

d(PY |X ◦ Pn)(Y )

dPY (Y )

)λ
]

≥ E[Dλ(PY |X ◦ Pn‖PY )].

Hence we only need to analyze Iλ(X1:n; Ȳ ). And we need to upper bound

E

[

{

dPY |X1:n
(Y |X1:n)

dPY (Y )

}λ
]

= E





{

1

n

n
∑

i=1

dPY |X(Y |Xi)

dPY (Y )

}λ


 . (59)

Moreover, noticing that (a + b)λ−1 ≤ aλ−1 + bλ−1 holds for a, b > 0 and 1 < λ ≤ 2, we have that for any n
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i.i.d. non-negative random variables Bi (1 ≤ i ≤ n),

E






Bi



Bi +
∑

j 6=i

Bj





λ−1





≤ E[Bi · Bλ−1

i ] + E






Bi ·





∑

j 6=i

Bj





λ−1






= E[Bλ
1 ] + E[Bi] · E











∑

j 6=i

Bj





λ−1






≤ E[Bλ
1 ] + E[B1] ·





∑

j 6=i

E[Bj ]





λ−1

= E[Bλ
1 ] + E[B1] · ((n− 1)E[B1])

λ−1 ,

where in the second inequality we use the Jensen’s inequality. Therefore, summing up the above inequality
for 1 ≤ i ≤ n, we have

E





{

n
∑

i=1

Bi

}λ


 ≤ nE[Bλ
1 ] + n · (n− 1)λ−1 (E[B1])

λ ≤ nE[Bλ
1 ] + nλ (E[B1])

λ
.

This puts us into a well-known setting of Rosenthal-type inequalities, which is known to be essentially
tight [Sch11].

Next, since Y ⊥⊥ (X1, · · · , Xn), for every fixed Y , random variables
dPY |X (Y |Xi)

dPY (Y ) are i.i.d. Hence choosing

Bi =
dPY |X (Y |Xi)

dPY (Y ) , we obtain that

E





{

1

n

∑

i

dPY |X(Y |Xi)

dPY (Y )

}λ ∣
∣

∣

∣

∣

Y



 ≤ n−λ · E





{

∑

i

dPY |X(Y |Xi)

dPY (Y )

}λ ∣
∣

∣

∣

∣

Y





≤ n−λ ·
(

n · E
[

{

dPY |X(Y |X)

dPY (Y )

}λ ∣
∣

∣

∣

Y

]

+ nλ ·
(

E

[

dPY |X(Y |X)

dPY (Y )

∣

∣

∣

∣

Y

])λ
)

≤ n1−λE

[

{

dPY |X(Y |X)

dPY (Y )

}λ ∣
∣

∣

∣

Y

]

+

(

E

[

dPY |X(Y |X)

dPY (Y )

∣

∣

∣

∣

Y

])λ

.

Using the fact that X ⊥⊥ Y and hence E[PY |X(Y |X)|Y ] =
∫

X
PY |X(Y |X)dPX(X) =

∫

X
dPX,Y (X,Y ) =

PY (Y ), we notice that for any given Y ,

E

[

dPY |X(Y |X)

dPY (Y )

∣

∣

∣

∣

Y

]

=
dE[PY |X(Y |X)]

dPY (Y )

∣

∣

∣

∣

Y

=
dPY (Y )

dPY (Y )

∣

∣

∣

∣

Y

= 1.

Therefore, we can upper bound (59) as

E





{

1

n

n
∑

i=1

dPY |X(Y |Xi)

dPY (Y )

}λ


 = E



E





{

1

n

n
∑

i=1

dPY |X(Y |Xi)

dPY (Y )

}λ




∣

∣

∣

∣

∣

Y





≤ n1−λE

[

E

[

{

dPY |X(Y |X)

dPY (Y )

}λ ∣
∣

∣

∣

Y

]

∣

∣

∣

∣

Y

]

+ E

[

(

E

[

dPY |X(Y |X)

dPY (Y )

∣

∣

∣

∣

Y

])λ ∣
∣

∣

∣

Y

]

≤ n1−λE

[

{

dPY |X(Y |X)

dPY (Y )

}λ
]

+ 1

= n1−λ · exp ((λ− 1)Iλ(X ;Y )) + 1.
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This implies that

Iλ(X1:n; Ȳ ) ≤ 1

λ− 1
log
(

1 + n1−λ exp{(λ− 1)Iλ(X ;Y )}
)

,

which together with (58) recovers (57).

Remark 7. Hayashi [Hay06] upper bounds the LHS of (57) with

λ

λ− 1
log

(

1 + exp

{

λ− 1

λ
(Kλ(X ;Y )− logn)

})

,

where Kλ(X ;Y ) = infQY Dλ(PX,Y ‖PX ⊗ QY ) is the so-called Sibson-Csiszar information, cf. [Sib69]. This
bound, however, does not have the right rate of convergence as n → ∞, at least for λ = 2 as comparison with
Prop. 5 in [GGNWP20]. We note that [Hay06, HV93] also contain bounds on E[TV(PY |X ◦ Pn,PY )] which

do not assume existence of λ > 1 moment of
PY |X
PY

and instead rely on the distribution of log
dPY |X
dPY

.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We consider X ∼ P, Z ∼ N (0, σ2Id), X ⊥⊥ Z and Y = X +Z. Then conditioned on X ,
we have Y ∼ N (X, σ2Id), which indicates that PY |X ◦ Pn ∼ Pn ∗ N (0, σ2Id). Therefore, adopting Lemma 6
and Lemma 1, we obtain that for any 1 < λ < 2,

E[DKL(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id))]

≤ 1

λ− 1
log(1 + exp((λ− 1)(Iλ(X ;Y )− logn)))

≤ 1

λ− 1
· exp((λ− 1)(Iλ(X ;Y )− logn))

≤ C

(λ − 1)nλ−1(2− λ)d
.

Choosing λ = 2− 1
logn , and noticing that

nλ−1 = n− 1
log n+1 = x · exp

(

− logn · 1

logn

)

=
n

e
,

we have

E[DKL(Pn ∗ N (0, σ2Id)‖P ∗ N (0, σ2Id))] ≤
Ce(logn)d

(1− 1/ logn)n
= O

(

(logn)d

n

)

.

Hence (47) holds, which implies the upper bound part of Theorem 2.
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[HV93] Te Sun Han and Sergio Verdú. Approximation theory of output statistics. IEEE Transactions
on Information Theory, 39(3):752–772, 1993.

[PW16] Yury Polyanskiy and Yihong Wu. Wasserstein continuity of entropy and outer bounds for
interference channels. IEEE Transactions on Information Theory, 62(7):3992–4002, 2016.
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A Proof of Subgaussianity in Section 3

Proposition 11. Given positive constant c > 2, c1 > 0, we consider the distribution P =
∑∞

k=0 pkδrk , with
r0 = 0, r1 = 1, ri+1 = cri, ∀i ≥ 1, and also the

pk = c1 exp

(

− r2k
2K2

)

, k ≥ 1,

pk = 1−
∞
∑

k=1

pk, k = 0.

Then there exists some c1 > 0 such that for any constant c > 2, we have c1 ·
∑∞

k=1 exp
(

− r2k
2K2

)

< 1, and

also distribution P is a K-SubGaussian distribution, i.e. for S ∼ P,

E [exp (α (S − E[S]))] ≤ exp

(

K2α2

2

)

, ∀α ∈ R.

Proof. We let

S1 = E[S] =

∞
∑

k=0

kpk ≥ 0.

(Here S1 is only a real number, not a random variable.) Then we have

∞
∑

k=1

pk ≤ c1

∞
∑

k=1

exp

(

− k

2K2

)

≤ c1

1− exp
(

− 1
2K2

)

and also

S1 = c1

∞
∑

k=1

k exp

(

− r2k
2K2

)

≤ c1

∞
∑

k=1

k exp

(

− k

2K2

)

= c1 ·
exp

(

− 1
2K2

)

(

1− exp
(

− 1
2K2

))2 .

We will choose c1 close to 0 enough such that
∑∞

k=1 pk ≤ 1
2 hence p0 = 1 −∑∞

k=1 ≥ 0 is well defined. In
order to prove the subgaussian property, we define

f(α) , exp

(

−K2α2

2

)

· E [exp(α(S − S1))]

= exp

(

−K2α2

2
− αS1

)

·
(

p0 +
∞
∑

k=1

pk exp(αrk)

)

= exp

(

−K2α2

2
− αS1

)

·
(

p0 + c1

∞
∑

k=1

exp

(

− r2k
2K2

+ αrk

)

)

= exp

(

−K2α2

2
− αS1

)

·
(

p0 + c1

∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2
)

exp

(

K2α2

2

)

)

= p0 exp

(

−K2α2

2
− αS1

)

+ c1

∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2 − αS1

)

.

To prove that f(α) ≤ 1 for every α ∈ R, we consider cases where αK2 ≥ 1
4 and αK2 ≤ −2S1 and

−1 ≤ αK2 < 1
4 respectively (if we can choose c1 such that 2S1 ≤ 1 holds for every c, then these three cases

cover all the situations).
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1. When αK2 ≤ −2S1, we have

f(α) = p0 exp

(

−K2α2

2
− αS1

)

+ c1

∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2 − αS1

)

≤ p0 exp

(

−K2α2

2
− αS1

)

+ c1

∞
∑

k=1

exp

(

−r2k + α2K4

2K2
− αS1

)

=

(

p0 +

∞
∑

k=1

pk

)

· exp
(

−K2α2

2
− αS1

)

≤ exp

(

−K2α2

2
− αS1

)

≤ 1.

2. When αK2 ≥ 1
4 , we have

p0 exp

(

−K2α2

2
− αS1

)

≤ p0 exp

(

− 1

8K2

)

≤ exp

(

− 1

8K2

)

Moreover, we suppose k0 to be the smallest k such that rk − αK2 to be positive. Since rk+1 − rk ≥ 1
for every k, we have for k ≥ k0, rk − αK2 ≥ k − k0 + rk0 − αK2 ≥ k − k0, and for k < k0,
rk − αK ≤ rk0−1 − αK + (k0 − 1− k) ≤ k0 − 1− k since rk0−1 ≤ 0. Therefore, we have

∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2 − αS1

)

≤
∞
∑

k=1

exp

(

− 1

2K2

(

rk − αK2
)2
)

=

k0−1
∑

k=1

exp

(

− (rk − αK2)2

2K2

)

+
∞
∑

k=k0

exp

(

− (rk − αK2)2

2K2

)

≤
k0−1
∑

k=1

exp

(

−k0 − 1− k

2K2

)

+
∞
∑

k=k0

exp

(

−k − k0
2K2

)

≤
∞
∑

k=0

exp

(

− 1

2K2

)k

+
∞
∑

k=0

exp

(

− 1

2K2

)k

=
2

1− exp
(

− 1
2K2

) .

Hence if

c1 ≤ 1

2

(

1− exp

(

− 1

8K2

))(

1− exp

(

− 1

2K2

))

,

we would have

p0 exp

(

−K2α2

2

)

+ c1

∞
∑

k=1

exp

(

− 1

2K2
(rk − αK)

2

)

≤ exp

(

− 1

8K2

)

+ c1 ·
2

1− exp
(

− 1
2K2

) ≤ 1.

3. When −1 ≤ αK2 < 1
4 , we calculate that

h(α) , exp

(

K2α2

2
+ αS1

)

· f ′(α) = −p0(αK
2 + S1) + c1

∞
∑

k=1

(

rk − αK2 − S1

)

exp

(

− r2k
2K2

+ αrk

)
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and

h′(α) = −p0K
2 + c1

∞
∑

k=1

(

r2k − αK2rk − S1rk −K2
)

exp

(

− r2k
2K2

+ αrk

)

≤ −p0K
2 + c1

∞
∑

k=1

(

r2k − αK2rk
)

exp

(

− r2k
2K2

+ αrk

)

≤ −p0K
2 + c1

∞
∑

k=1

(

r2k − αK2rk
)

exp

(

− r2k
2K2

+
rk
4K2

)

≤ −p0K
2 + 2c1

∞
∑

k=1

r2k exp

(

− r2k
4K2

)

,

where we use the fact that rk ≥ 1 for any k ≥ 1. We then notice that function g(x) = x2 exp
(

− x2

4K2

)

is monotonically decreasing when x ≥ 2K. Hence for k ≥ 2K + 1 we have rk ≥ 2K + 1 and

∞
∑

k≥2K+1

r2k exp

(

− r2k
4K2

)

≤
∫ ∞

2K

x2 exp

(

− x2

4K2

)

dx ≤ 3K3.

For those k < 2K + 1, there are at most 2K + 1 number of such K, and for each of such k we have

r2k exp

(

− r2k
4K2

)

= K2 ·
(rk
K

)2

exp

(

−1

4

(rk
K

)2
)

≤ 2K2.

Therefore, we have
∞
∑

k=1

r2k exp

(

− r2k
4K2

)

≤ 3K3 + (2K + 1)K2 ≤ 6K3.

Hence when c1 < 1
24 and p0 ≥ 1

2 , we have h′(α) ≤ 0 for every −1 ≤ αK2 ≤ 1
4 . Moreover, we can

calculate that

h(0) = p0S1 + c1

∞
∑

k=1

(rk − S1) exp

(

− r2k
2K2

)

= p0S1 +

∞
∑

k=1

pk(rk − S1) = E[S]− S1 = 0.

This indicates that for −1/K2 ≤ α ≤ 0, we have h(α) ≥ 0 hence f ′(α) ≥ 0, and for 0 ≤ α ≤ 1/(4K2),
we have h(α) ≤ 0 hence f ′(α) ≤ 0. This leads to

f(α) ≤ f(0) = p0 + c1

∞
∑

k=1

exp

(

− r2k
2K2

)

=
∞
∑

k=0

pk = 1

holds for every −1/K2 ≤ α ≤ 1/(4K2).

Above all, if we choose c1 such that the following items hold, then we will have f(α) ≤ 1 for all α ∈ R:

1. 2S1 ≤ 1, which can be obtained from c1 ≤ (1−exp(− 1
2K2 ))

2

2 exp(− 1
2K2 )

;

2. c1 ≤ 1
24 ;

3. c1 ≤ 1
2

(

1− exp
(

− 1
8K2

)) (

1− exp
(

− 1
2K2

))

;
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4. 1− p0 =
∑∞

k=1 pk ≤ 1
2 , which can be obtained from c1 ≤ 1−exp(− 1

2K2 )
2 .

Hence if we choose

c1 = min

{

1

24
,

(

1− exp
(

− 1
2K2

))2

2 exp
(

− 1
2K2

) ,
1

2

(

1− exp

(

− 1

8K2

))(

1− exp

(

− 1

2K2

))

,
1− exp

(

− 1
2K2

)

2

}

,

and pk in (22), we would have f(α) ≤ 1 for all α ∈ R. Therefore, we have

E [exp(α(S − S1))] ≤ exp

(

K2α2

2

)

, ∀α ∈ R,

which indicates that distribution P is a K-subgaussian.

B LSI and T2 constants for Bernoulli-Gaussian mixtures

B.1 Proof of the Non-Existence of Uniform Bound of LSI Constants for Bernoulli

Distributions in 4.1

In this subsection, we will prove that for the Bernoulli distribution class in Section 4.1, there constants in
the corresponding log-Sobolev inequalities do not have a uniform bound.

Theorem 4. Suppose σ is a given constant which is smaller than K. Consider the following Bernoulli
distributions:

Ph = (1− ph)δ0 + phδh, ph = exp

(

− h2

2K2

)

.

We use Ch to denote the constant of LSI of distribution µh = Ph ∗ N (0, σ2): Ch is the smallest constant
such that for any smoothed, compact supported function f such that

∫

R
f2dµh = 1, we have

∫

R

f2 log f2dµh ≤ Ch

∫

R

|f ′|2dµ.

Then we have
sup
h∈R+

Ch = ∞.

Proof of Theorem 4. We choose x1 < −1 < 0 < x2 < h− 1, where x1 and x2 are determined later, and we
let

fh(x) =



















0 x ≤ x1,

t(x− x1) x1 ≤ x ≤ x1 + 1,

t x1 + 1 ≤ x ≤ x2,

−t(x− x2 − 1) x ≥ x2,

where t is the constant chosen such that
∫

R
f2
hdµh = 1. Then fh is a continuous function on R, and |f ′

h(x)| ≤ t
for any x ∈ R. (Notice here fh is not a smooth function, but it has only finite points which are not smoothed.
Hence after some simple smoothing procedure near these points, e.g. convolved with some mollifier, we can
construct a sequence of functions converging to fh such that if the LSI works for functions in this sequence,
the LSI also works for fh.) Next, we will calculate the lower bound of Ch such that the LSI works for function
fh. We denote

qh,1 = µh((−∞, x1]), qh,2 = µh((x1, x1 + 1]), qh,3 = µh((x1 + 1, x2]),

qh,4 = µh((x2, x2 + 1]), qh,5 = µh((x2 + 1,∞)).
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Then we have
qh,1 + qh,2 + qh,3 + qh,4 + qh,5 = 1.

According to the definition of f , we have

1 =

∫

R

f2
hdµh ≤ (qh,2 + qh,3 + qh,4)t

2,

which indicates that t2 ≥ 1
qh,2+qh,3+qh,4

≥ 1. Since for any a ≥ 0, we have a log a ≥ −1, we also have

∫

R

f2
h log f2

hdµh ≥ qh,3t
2 log t2 − (qh,2 + qh,4) ≥ f2

hdµh ≥ qh,3t
2 log t2 − (qh,2 + qh,4)t

2.

Moreover, we also notice that |f ′
h(x)|2 = t2 if x ∈ (x1, x1 + 1) ∪ (x2, x2 + 1), while |f ′

h(x)|2 = 0 for other x.
Therefore, we obtain that

∫

R

|f ′
h|2dµh = (qh,2 + qh,4)t

2.

Hence if we require the LSI with constant Ch holds for fh, we will have

qh,3t
2 log t2 − (qh,2 + qh,4)t

2 ≤ Ch(qh,2 + qh,4)t
2,

which indicates that

Ch ≥ qh,3 log t
2

qh,2 + qh,4
− 1 ≥ −qh,3 log(qh,2 + qh,3 + qh,4)

qh,2 + qh,4
− 1

=
−qh,3 log(1− qh,1 − qh,5)

qh,2 + qh,4
− 1 ≥ qh,3(qh,1 + qh,5)

qh,2 + qh,4
− 1 ≥ qh,3qh,5

qh,2 + qh,4
− 1.

We use ϕσ2 (x) to denote the PDF of N (0, σ2) at point x. According to the definition of µh, and also noticing
that 0 < x1 < h− 1, we have

qh,4 =

∫ x1+1

x1

(1− ph)ϕσ2 (x) + phϕσ2 (x− h)dx ≤ ϕσ2 (x) + phϕσ2(h− x− 1),

and also

qh,5 =

∫ ∞

x1+1

(1 − ph)ϕσ2 (x) + phϕσ2 (x− h)dx ≥
∫ ∞

x1+1

phϕσ2(x− h)dx ≥
∫ ∞

h

phϕσ2(x− h)dx =
ph
2
.

We further notice that limx1→−∞ qh,1 = limx1→−∞ qh,2 = 0. Hence letting x1 → −∞, we will obtain that
Ch satisfies

Ch ≥ lim
x1→−∞

qh,3qh,5
qh,2 + qh,4

− 1 = lim
x1→−∞

q3q5
q4

− 1 =
(1 − q4 − q5)q5

q4
− 1 ≥ (1− q5)q5

q4
− 2.

When σ < K, we will choose x = h
√

σ/K, then we will have limh→∞ x− h− 1 = ∞, which indicates that

0 ≤ lim
h→∞

qh,4
ph

= lim
h→∞

ϕσ2 (h
√

σ/K) + ph expϕ(h(1 −
√

σ/K))

ph
= 0,

and also

0 ≤ lim
h→∞

qh,5 ≤ lim
h→∞

∫ ∞

h
√

σ/K+1

ϕσ2(x)dx + lim
h→∞

ph = 0,

which indicates that limh→∞(1− qh,5) = 1. Above all, we obtain that

lim
h→∞

(1− q5)q5
q4

− 2 = ∞,

which indicates that limh→∞ Ch = ∞, and the uniform bound for Ch does not exists.
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B.2 Proof of the Transportation-Entropy Inequality Constant

Theorem 5. Suppose σ is a given constant which is smaller than K. Consider the following Bernoulli
distributions:

Ph = (1− ph)δ0 + phδh, ph = exp

(

− h2

2K2

)

.

We use C′
h to denote the constant of transportation-entropy inequality : Ch is the smallest constant such

that
W2(Ph ∗ N (0, σ2),Q) ≤ C′

hDKL(Ph ∗ N (0, σ2)‖Q) ∀ distribution Q. (60)

Then we have
sup
h∈R+

C′
h = ∞.

Proof. We let Qh = (1 − qh)δ0 + qhδh with qh = ph − exp
(

− (1−δ)(1+σ2/K2)2h2

8σ2

)

for some δ smaller enough

such that (1− δ)(1 + σ2/K2)2h2 > 4σ2/K2. According to data-processing inequality we have

DKL(Ph ∗ N (0, σ2)‖Qh ∗ N (0, σ2)) ≤ DKL(Ph‖Qh) = ph log
ph
qh

+ (1− ph) log
1− ph
1− qh

= −ph log

(

1 +
qh − ph

ph

)

− (1− ph) log

(

1 +
ph − qh
1− ph

)

≤ −ph · qh − ph
ph

+ ph · (qh − ph)
2

p2h
− (1 − ph) ·

ph − qh
1− ph

+ (1 − ph) ·
(qh − ph)

2

(1− ph)2

≤ 2 exp

(

h2

2K2

)

(ph − qh)
2,

where in the second inequality we use the fact that − log(1+x) ≤ −x+x2 for x ≥ −1/2 and qh−ph

ph
≥ −1/2.

Similar to the proof of Proposition 3, and noticing that Fq,h(t) − Fp,h(t) = (qh − ph)(Φσ(t) − Φσ(t − h))
where Fq,h, Fp,h,Φσ are CDFs of distribution Qh ∗ N (0, σ2),Ph ∗ N (0, σ2),N (0, σ2). We can prove that

W2(Ph ∗ N (0, σ2),Qh ∗ N (0, σ2))2 = Ω

(

exp

(

− (1− δ)(1 + σ2/K2)2h2

8σ2

))

while

DKL(Ph ∗ N (0, σ2)‖Qh ∗ N (0, σ2)) = O
(

h2

2K2
− (1 − δ)(1 + σ2/K2)2h2

4σ2

)

.

Since (1− δ)(1 + σ2/K2)2h2 > 4σ2/K2, letting h → ∞ we obtain that suph∈R+
C′

h = ∞.
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