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Abstract

Consider the problem of binary hypothesis testing. Given Z coming from either P⊗m or Q⊗m, to decide between
the two with small probability of error it is sufficient and in most cases necessary to have m ≍ 1/ϵ2, where ϵ
measures the separation between P and Q in total variation (TV). This, however, requires complete knowledge of the
distributions and can be done, for example, using the Neyman-Pearson test. In this paper we consider a variation of
the problem, which we call likelihood-free (or simulation-based) hypothesis testing, where access to P and Q is given
through n iid observations from each. In the case when P,Q are assumed to belong to a non-parametric family P , we
demonstrate the existence of a fundamental trade-off between n and m given by nm ≍ n2

GoF(ϵ,P), where nGoF is the
minimax sample complexity of testing between the hypotheses H0 : P = Q vs H1 : TV(P,Q) ≥ ϵ. We show this for
three families of distributions, and also study the larger family of all discrete distributions for which we obtain a more
complicated trade-off that exhibits a phase-transition. The test that we propose, based on the L2-distance statistic of
Ingster, simultaneously achieves all points on the trade-off curve for the regular classes. Our results demonstrate the
possibility of testing without fully estimating the distributions, provided m ≫ 1/ϵ2.
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I. INTRODUCTION

A setting that we call likelihood-free inference (LFI), also known as simulation based inference (SBI), has
independently emerged in many areas of science over the past decades. Given an expensive to collect (“experimental”)
dataset and the ability to simulate from a high fidelity, often mechanistic, stochastic model, whose output distribution
(and likelihood) is intractable and inapproximable, how does one perform model selection, parameter estimation or
construct confidence sets? The list of disciplines where such highly complex black-box simulators are used is long,
and include particle physics, astrophysics, climate science, epidemiology, neuroscience and ecology to just name a
few. For some of the above fields, such as climate modeling, the bottleneck resource is in fact the simulated data as
opposed to the experimental data. In either case, understanding the trade-off between the number of simulations and
experiments necessary to do valid inference is crucial. Our aim in this paper is to introduce a theoretical framework
under which LFI can be studied using the tools of non-parametric statistics and information theory.

To illustrate we draw an example from high energy physics, where LFI methods are used and developed
extensively. The discovery of the Higgs boson in 2012 [1], [2] is regarded as the crowning achievement of the
Large Hadron collider (LHC) - the most expensive instrument ever built. Using a composition of complex simulators
[3]–[7] modeling the standard model and the detection process, physicists are able to simulate the results of LHC
experiments. Given actual data Z1, . . . , Zm from the collider, to verify existence of the Higgs boson one tests whether
the null hypothesis (physics without the Higgs boson, or Zi

iid∼ P0) or the alternative hypothesis (physics with the
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Higgs boson, or Zi
iid∼ P1) describes the experimental data more accurately. Note that standard Neyman-Pearson

likelihood ratio test is not implementable since P0 and P1 are only available via simulators.
How was this statistical test actually performed? In essence, a probabilistic classifier C was trained on simulated

data to distinguish the two hypotheses (specifically, it was a boosted decision tree classifier). Then, the proportion
of real data points falling in the set S = {x ∈ Rd : C(x) ≤ t} is computed, where t is chosen to maximize an
asymptotic approximation of the power. Finally, p-values are reported based on the asymptotic distribution under a
Poisson sampling model [8], [9]. Summarizing, the “Higgs boson” test was performing the simple comparison

1

m

m∑
i=1

1{Zi ∈ S} ≶ γ, (Scheffé)

where Z1, . . . , Zm are the real data and γ is some threshold. Such count-based tests (named after Scheffé in folklore
[10, Section 6]) are natural.

Notice that Scheffé’s test converts each observation Zi into a binary 0/1 value. This extreme quantization
certainly helps robustness, but may (and should) raise the suspicion of loss of power. Indeed, when the distributions
under both hypotheses are completely known, an optimal (Neyman-Pearson) test thresholds the sum of real-valued
logarithms of the likelihood-ratio. Thus, it is natural to expect that a good test should aggregate non-binary values
(We survey some other natural tests in Section II-C). This work is based on one such test that we describe next.

Given some estimates p̂0, p̂1 of the density of the null and alternative distributions based on simulated samples,
our test proceeds via the comparison

2

m

m∑
i=1

(p̂0(Zi)− p̂1(Zi)) ≶ γ (I.1)

where Z1, . . . , Zm are the real data. Tests of this kind originate from the famous goodness-of-fit work of Ingster [11],
which corresponds to taking p̂0 = p0, as the null-density is known exactly.1 The surprising observation of Ingster
was that such a test is able to reject the null hypothesis that Zi

iid∼ p0 even when the true distribution of Z is
much closer to p0 than described by the optimal density-estimation rate; in other words goodness-of-fit testing is
significantly easier than estimation. In fact we will use γ = ∥p̂0∥22 − ∥p̂1∥22 in which case (I.1) boils down to the
comparison of two squared L2-distances.

Our overall goal is to understand the trade-off between the number n of simulated observations and the size of
the actual data set m. The characterization of this tradeoff is reminiscent of the rate-regions in multi-user information
theory, but there is a certain important difference that we wanted to emphasize for the reader. In information theory,
the problem is most often stated in the form “given a distribution PX,Y,Z (or a channel PY,Z|X ) find the rate
region”, with the distribution being completely specified ahead of time. In minimax statistics, however, distributions
are apriori only known to belong to a certain class. In estimation problems the fundamental limits are thus defined
by minimizing the estimation error over this class, and the theoretical goal is to characterize the worst-case rate at
which this error converges to zero as the sample size grows to infinity. The definition of the fundamental limit in
testing problems, however, is more subtle. If separation is fixed and the number of samples is taken to infinity then
the rate of convergence trivializes (becomes exponential in n). By now a standard definition of fundamental limit,
as suggested by Ingster (following ideas of Pittman efficiency), is to vary ε with n and to find the fastest possible
decrease of ε so as to still have an acceptable probability of error. This is the approach taken in the literature on
goodness-of-fit and two-sample testing, and also the one we adopt here.

Specifically, we assume that it is known apriori that the two distributions P0,P1 belong to a known class P and
are ε-separated under total variation. Given a large number n of samples simulated from P0 and P1 and m samples
Z1, . . . , Zm from the experiment our goal is to test which of the Pi generated the data. If n is sufficiently large
to estimate Pi (in total variation) to precision ε/10 then one can perform the hypothesis test with an information-
theoretically optimal (even under oracle knowledge of Pi’s) m ≍ 1/ε2 experimental samples. However, looking at

1In the case of discrete distributions on a finite (but large) alphabet, the idea was rediscovered by the computer science community for goodness-
of-fit and two-sample testing (first in [12]). Moreover, the difference of L2-norms statistic was first studied (to the best of our knowledge) in [13].
See Section I-B for more on the latter.



the test (Scheffé) one may wonder if the full estimation of the distributions Pi is needed, or whether perhaps a
suitable decision boundary could be found with a lot fewer simulated samples n. Unfortunately, our first main result
disproves this intuition: any test using the minimal m ≍ 1/ε2 dataset size will require n so large as to be enough to
estimate the distributions of P0 and P1 to within accuracy ≍ ε, which is the distance separating the two hypotheses.
In particular, any method minimizing m performs no different in the worst case, than pairing off-the-shelf density
estimators p̂0, p̂1 and applying (Scheffé) with S = {p̂1 ≥ p̂0}.

This result appears rather pessimistic and seems to invalidate the whole attraction of LFI, which after all attempts
to circumvent the exorbitant number of simulation samples required for fully learning high-dimensional distributions.
Fortunately, our second result offers a resolution: if more data samples m ≫ 1/ε2 are collected, then testing is
possible with n much smaller than required for density estimation. More precisely, when neither p0 nor p1 are known
except through n i.i.d. samples from each, the test (I.1) is able to detect which of the two distributions generated
the Z-sample, even when the number of samples n is insufficient for any estimate p̂i to be within a distance
≍ ε = TV(p0, p1) from the true values. In other words, the test is able to reliably detect the true hypotheses even
though the estimates p̂i themselves have accuracy that is orders of magnitude larger than the separation ε between
the hypotheses.

In summary, this paper shows that likelihood-free hypothesis testing (LFHT) is possible without learning the
densities when m ≫ 1/ε2, but not otherwise. It turns out that the simple test (I.1) has minimax optimal sample
complexity up to constants in both n and m in all “regular” (cf. Remark 6) settings.

A. Informal statement of the main result
Let us formalize the problem using the notation used throughout the rest of the paper. Suppose that we observe

true data Z ∼ P⊗m
Z and that we have two candidate parameter settings for our simulator, from which we generate

two artificial datasets X ∼ P⊗n
X and Y ∼ P⊗n

Y . If we are convinced that one of the settings accurately reflects
reality, we are faced with the problem of testing the hypothesis

H0 : PX = PZ versus H1 : PY = PZ. (I.2)

Remark 1. We emphasize that PX and PY are known only through the n simulated samples. Thus, (I.2) can be
interpreted as binary hypothesis testing with approximately specified hypotheses. Alternatively, using the language
of machine learning, we may think of this problem as having n labeled samples from both classes, and m unlabeled
samples. The twist is that the unlabeled samples are guaranteed to have the same common label (i.e., be purely
coming all from a single class). One can think of many examples of this setting occurring in genetic, medical and
other studies.

To put (I.2) in a minimax framework, suppose that the output distribution of the simulator is constrained to lie in
a known set P and that PX,PY are ε-separated with respect to the total variation distance TV. Clearly (I.2) becomes
‘easier’ if we have a lot of data (large sample sizes n and m) or if the hypotheses are well-separated (large ε). We
are interested in characterizing the pairs of values (n,m) as functions of ε and P , for which the hypothesis test (I.2)
can be performed with constant type-I and type-II error. Letting nGoF(ε,P) denote the minimax sample complexity
of goodness-of-fit testing (Definition 2), we show for several different classes of P , that (I.2) is possible with total
error, say, 5% if and only if

m ≳ 1/ε2 and n ≳ nGoF and mn ≳ n2GoF.

We also observe, to our knowledge for the first time in the literature, that n2GoF ε
2 ≍ nEst for these classes2, where

nEst(ε,P) denotes the minimax complexity of density estimation to ε-accuracy (Definition 4) with respect to total
variation. This observation provides additional meaning to the mysterious formula of Ingster [11] for the goodness-
of-fit testing rate for the class of β-smooth densities over [0, 1]d, see Table I below. More importantly, however, it
allows us to interpret (I.2) as an “interpolation” between different fundamental statistical procedures, namely

2A possible reason for this observation having been missed previously is that fundamental limits in statistics are usually presented in the form
of rates of loss decrease with n, e.g. rEst(n) ≜ n−1

Est (n) = 1/nβ/(2β+d) and rGoF(n) ≜ n−1
GoF(n) = 1/nβ/(2β+d/2) for β-smooth densities.

Unlike nEst ≍ n2
GoFϵ

2 there seems to be no simple relation between rEst and rGoF.
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A ↔ Binary hypothesis testing,
B ↔ Estimation followed by robust binary hypothesis testing,
C ↔ Two-sample testing,
D ↔ Goodness-of-fit testing,

corresponding to the extreme points A,B,C,D on Figure 1.

B. Related work

The problem (I.2) has initially appeared (to the best of our knowledge) in the work of Ziv and Gutman [14],
[15] where in fact an M -ary version of the problem was studied. Ziv coined the name classification with empirically
observed statistics for emphasizing the fact that hypotheses are defined in terms of samples. In terms of results,
given two arbitrary, unknown PX,PY over a finite alphabet, they show that n has to grow at least linearly with m to
get exponentially decaying error in the latter. Gutman proposes a test whose error exponent is second order optimal,
as shown later by [16]. Recent work [17]–[20] extends this problem to settings such as distributed or sequential
testing. (Note that we study the opposite regime of fixed-error and focus on dependence of the sample complexity
on the separation ε of the two alternatives.)

A line of inquiry closer to ours began in [13], [21] where the authors study (I.2) with n = m over the class
of discrete distributions p with mini pi ≍ maxi pi ≍ 1/nα, which they call α-large sources. Disregarding the
dependence on the TV-separation ε (effectively setting ε to a constant), they find that achieving non-trivial minimax
error is possible if and only if α ≤ 2, using in fact the same difference of squared L2-distances test (I.1) that we
study in this paper. Follow-up work [22] studies the case m ̸= n and the class of distributions on alphabet [k] with
maxi pi ≲ 1/k showing that non-trivial minimax error is possible if and only if k ≲ min(n2, nm). Although the
authors omit it from their theorem statements, by the discussion after Proposition VI.1. of [22] one can deduce the
minimax optimal dependence on ε in the regime m,n ≲ k, recovering some of the results of this paper. In summary,
we see that previous literature have not addressed the m vs n trade-off (as a function of ε) in all regimes, and only
focused on the regular discrete case.

A similar trade-off to ours appears in two-sample testing with unequal sample sizes [23], [24]. This is no
coincidence, in Section III-A we show via reductions that in the case m ≥ n our problem (I.2) is equivalent to
two-sample testing. Note that for this problem nontrivial behaviour arises only in classes for which nTS ̸= nGoF (cf.
Remark 6).

(Scheffé) has been considered previously [25]–[31] and is known as a ‘classification accuracy‘ test (CAT) by
some. In follow-up work to the present paper [32] it was shown that CATs are in fact (near-)minimax optimal in
all settings studied here.

C. Contributions

Though the likelihood-free hypothesis testing problem (I.2) has previously appeared under various disguises
and was studied in different regimes for the class of bounded discrete distributions, it omitted the key question of
understanding dependence of the sample complexity on the separation ε. Our work fully characterizes the dependence
on the separation ε (Theorems 1 and 2). We discover existence of a rather non-trivial trade-off between the m and
n showing that in likelihood-free setting statistical performance (n) can be traded for computational resources (m).
Our results are shown for not just one but multiple distribution classes. In addition, we also demonstrate that
LFHT naturally interpolates between its special cases corresponding to goodness-of-fit testing, two-sample testing
and density-estimation. As a by-product we observe the relation n2GoF ε

2 ≍ nEst that holds over several classes of
distributions and measures of separation (indicating its universality). On the technical side we provide a unified upper
bound analysis for all regular classes (cf Remark 6) considered and prove matching lower bounds using techniques
of Tsybakov, Ingster and Valiant. Our upper bound analysis is inspired by Ingster [11], [33] whose L2-squared
distance testing approach (originally designed for goodness-of-fit in smooth-density classes) seems to have been
reinvented in the discrete-alphabet world later [12], [13], [21]. Compared to classical works, the new ingredient
needed in the discrete case is a “flattening” reduction [24], [34], which we also utilize. Several minor results are



also shown along the way, namely, robustness with respect to L2-misspecification (Theorem 3) and characterization
of nGoF for the class of β-smooth densities with β ≤ 1 under Hellinger separation (Theorem 4).

D. Structure

Section II defines the statistical problems and the classes of distributions that are studied in this paper; moreover
various natural tests for likelihood-free hypothesis testing. Section III contains our main results and the discussion
linking to goodness-of-fit and two-sample testing, estimation and robustness. In Section IV we provide a sketch of
our proofs for these results. Finally, in Section V we discuss possible future directions of research and the Appendix
contains the detailed proofs of Theorems 1 to 4 and auxilary results.

E. Notation

For k ∈ N we write [k] ≜ {1, 2, . . . , k}. For x, y ∈ R we write x∧y ≜ min(x, y), x∨y ≜ max(x, y). We use the
Bachmann–Landau notation Ω,Θ,O as usual and write f ≲ g for f = O(g) and f ≍ g for f = Θ(g). For c ∈ R and
A ⊆ R2 we write cA ≜ {(ca1, ca2) ∈ R2 : (a1, a2) ∈ A}. For two sets A,B ⊆ R2 we write A ≍ B if there exists a
constant c > 0 with 1

cA ⊆ B ⊆ cA. For two probability measures µ, ν dominated by η with densities p, q we define
the following divergences: TV(µ, ν) ≜ 1

2

∫
|p− q|dη, H(µ, ν) ≜ (

∫
(
√
p−√

q)2dη)1/2, KL(µ∥ν) ≜
∫
p log(p/q)dη,

χ2(µ∥ν) ≜
∫ (p−q)2

q dη. Abusing notation, we sometimes write (p, q) as arguments instead of (µ, ν). Given a
divergence D and joint measures PXY , QXY we write D(PY |X∥QY |X |PX) ≜ EX∼PX

D(PY |X∥QY |X). We write
∥ · ∥p for the Lp and ℓp norms, where the base measure shall be clear from the context.

II. STATISTICAL RATES, NON-PARAMETRIC CLASSES AND TESTS

A. Five fundamental problems in Statistics

Formally, we define a hypothesis as a set of probability measures. Given two hypotheses H0 and H1 on some
space X , we say that a function ψ : X → {0, 1} successfully tests the two hypotheses against each other if

max
i=0,1

max
P∈Hi

PS∼P (ψ(S) ̸= i) ≤ 1/3. (II.1)

Remark 2. For our purposes, the constant 1/3 above is unimportant and could be replaced by any number less than
1/2. Indeed, throughout the paper we are interested in the asymptotic order of the sample complexity, and sample
splitting followed by a majority vote arbitrarily decreases the overall error probability of any successful tester at the
cost of a constant factor in the sample complexity.

Throughout this section let P be a class of probability distributions on X . Suppose we observe independent
samples X ∼ P⊗n

X , Y ∼ P⊗n
Y and Z ∼ P⊗m

Z whose distributions PX,PY,PZ ∈ P are unknown to us. Finally,
P0,P1 ∈ P refer to distributions that are known to us. We now define five fundamental problems in statistics that
we refer to throughout this paper.

Definition 1. Binary hypothesis testing is the problem of testing

H0 : PX = P0 against H1 : PX = P1 (HT)

based on the sample X . We denote by nHT(ε,P) the smallest number such that for all n ≥ nHT and all P0,P1

with TV(P0,P1) ≥ ε there exists a function ψ : Xn → {0, 1} which given X as input successfully tests (in the
sense of (II.1)) H0 against H1.

It is well known that the complexity of binary hypothesis testing is controlled by the Hellinger divergence.

Lemma 1. For all ε and P with |P| ≥ 2, nHT(ε,P) = Θ(supP0,P1∈P:TV(P0,P1)≥ε H
−2(P0,P1)) where the implied

constant is universal.

Proof. We include the proof in Section D-A for completeness.
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In fact, for all P mentioned in this paper nHT = Θ(1/ε2) holds. Therefore, going forward we refrain from the
general notation nHT and simply write 1/ε2.

Definition 2. Goodness-of-fit testing is the problem of testing

H0 : PX = P0 against H1 : TV(PX,P0) ≥ ε (GoF)

based on the sample X . Write nGoF(ε,P) for the smallest value such that for all n ≥ nGoF and P0 ∈ P there exists
a function ψ : Xn → {0, 1} which given X as input successfully tests (in the sense of (II.1)) H0 against H1.

Definition 3. Two-sample testing is the problem of testing

H0 : PX = PZ against H1 : TV(PX,PZ) ≥ ε (TS)

based on the samples X,Z. Write RTS(ε,P) ⊆ R2 for the maximal set such that for all (n,m) ∈ N2 with
n ≥ x,m ≥ y for some (x, y) ∈ RTS, there exists a function ψ : Xn × Xm → {0, 1} which given X,Z as input
successfully tests (in the sense of (II.1)) between H0 and H1. We will use the abbreviation nTS(ε,P) = min{ℓ ∈
N : (ℓ, ℓ) ∈ RTS(ε,P)}.

Definition 4. The sample complexity of estimation is the smallest value nEst(ε,P) such that for all n ≥ nEst there
exists an estimator P̂X which given X as input satisfies

ETV(P̂X,PX) ≤ ε. (Est)

Definition 5. Likelihood-free hypothesis testing is the problem of testing

H0 : PZ = PX against PZ = PY (LF)

based on the samples X,Y, Z. Write RLF(ε,P) ⊆ R2 for the maximal set such that for all (n,m) ∈ N2 with
n ≥ x,m ≥ y for some (x, y) ∈ RLF, there exists a function ψ : Xn × Xn × Xm → {0, 1} which given X,Y, Z
as input, successfully tests (in the sense of (II.1)) H0 against H1 provided TV(PX,PY) ≥ ε.

Remark 3. Requiring RLF to be maximal is well defined because RLF ∋ (n0,m0) ≤ (n,m) coordinate-wise implies
we can take (n,m) ∈ RLF, since ψ can simply disregard extra samples.
Remark 4. (GoF) can be thought of as a version of (HT) where only the null is known and the alternative is specified
up to an i.i.d. sample. This leads naturally to the generalization (LF) where both hypotheses are known only up to
i.i.d. samples.
Remark 5. All five definitions above can be modified to measure separation with respect to an arbitrary function d
instead of TV. We will write nGoF(ε, d,P) etc. for the corresponding values.

B. Four classes of distributions

To state our results, we need to introduce the nonparametric classes of distributions that we consider in this
paper.

(i) Smooth density. Let C(β, d, C) denote the set of functions f : [0, 1]d → R that are ⌈β−1⌉-times differentiable
and satisfy

∥f∥Cβ
≜ max

(
max

0≤|α|≤⌈β−1⌉
∥f (α)∥∞, sup

x ̸=y∈[0,1]d,|α|=⌈β−1⌉

|f (α)(x)− f (α)(y)|
∥x− y∥β−⌈β−1⌉

2

)
≤ C,

where |α| =
∑d
i=1 αi for the multiindex α ∈ Nd. We write PH(β, d, CH) for the class of distributions with

Lebesgue-densities in C(β, d, CH).
(ii) Gaussian sequence model on the Sobolev ellipsoid. Define the Sobolev ellipsoid E(s, C) of smoothness s > 0

and size C > 0 as {θ ∈ RN :
∑∞
j=1 j

2sθ2j ≤ C}. For θ ∈ R∞ let µθ = ⊗∞
i=1N (θi, 1). We define our second

class as
PG(s, CG) ≜ {µθ : θ ∈ E(s, CG)} .



(iii)-(iv) Distributions on a finite alphabet. For k ∈ N, let

PD(k) ≜ {all distributions on the finite alphabet [k]},
PDb(k,CDb) ≜ {p ∈ PD(k) : ∥p∥∞ ≤ CDb/k},

where CDb > 1 is a constant. In other words, PDb are those discrete distributions that are bounded by a constant
multiple of the uniform distribution.

Remark 6. We call PDb the “regular discrete” class. We’ll see that it behaves similarly to PH and PG but different
from PD. More generally we call the classes PH,PG,PDb “regular”, characterized by the fact that nGoF ≍ nTS and
consequently RTS ≍ {(n,m) : n ∧m ≥ nTS}.

C. Tests for LFHT

In this section we discuss various types of tests that can be considered for (LF).
(i) Scheffé’s test

(ii) Likelihood-free Neyman-Pearson test
(iii) Huber’s and Birgé’s robust tests
(iv) Ingster’s L2-distance test
Tests (i-ii) are based on the idea of learning (from the simulated samples) a set or a function separating PX from
PY. Tests (iii-iv) use the simulated samples to obtain density estimates of PX,PY directly. All of them, however,
are of the form

m∑
i=1

s(Zi) ≶ 0 (II.2)

with only the function s varying.
1) Scheffé’s test: Variants of Scheffé’s test using machine-learning enabled classifiers are the subject of current

research in two-sample testing [27]–[31] and are used in practice for LFI specifically in high energy physics, cf.
Section I. Thus, understanding the performance of Scheffé’s test in the context of (LF) is of great theoretical and
practical importance. Suppose that using the simulated samples we train a probabilistic classifier C : X → [0, 1]
on the labeled data ∪ni=1{(Xi, 0), (Yi, 1)}. The specific form of the classifier here is arbitrary and can be anything
from logistic regression to a deep neural network. Given thresholds t, γ ∈ [0, 1] chosen to satisfy our risk appetite
for type-1 vs type-2 errors, Scheffé’s test proceeds via the comparison

1

m

m∑
i=1

1{C(Zi) ≥ t} ≶ γ. (II.3)

We see that (II.3) is of the form (II.2) with s(z) = (1{C(z) ≥ t} − γ)/m. The follow-up work [32] studies the
performance of Scheffé’s test in great detail, finding that it is (near)-minimax optimal in all cases considered in this
paper.

2) Likelihood-free Neyman-Pearson test: If the distributions PX,PY are known then the (minimax optimal)
Neyman-Pearson test corresponds to

m∑
i=1

sNP(Zi) ≶ γ sNP(z) = log

(
dPX

dPY
(z)

)
, (II.4)

where γ is again chosen to satisfy our type-1 vs type-2 error trade-off preferences. However, in our setting PX,PY

are known only up to i.i.d. samples. Notice that sNP minimizes the population cross-entropy (or logistic) loss, that
is

sNP = argmin
s

Ez∼PX
[ℓ(s(z), 1)] + Ez∼PY

[ℓ(s(z), 0)] ,
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where ℓ(s, y) = log(1+ es)− ys. In practice, the majority of today’s classifiers are obtained by running some form
of gradient descent on the problem

ŝ = argmin
s∈G

Ez∼P̂X
[ℓ(s(z), 1)] + Ez∼P̂Y

[ℓ(s(z), 0)] ,

where G is (for example) a parametric class of neural networks and P̂X, P̂Y are empirical distributions. Given such
an estimate ŝ, we can replace the unknown sNP in (II.4) by ŝ to obtain the likelihood-free Neyman-Pearson test.
For recent work on this approach in LFI see e.g. [35]. Studying properties of this test is outside the scope of this
paper.

3) Huber’s and Birgé’s robust tests: The next approach is based on the idea of robust testing, first proposed by
Huber [36], [37]. Huber’s seminal result implies that if one has approximately correct distributions P̂X, P̂Y satisfying

TV(P̂X,PX) ∨ TV(P̂Y,PY) ≤ ε/3 and TV(PX,PY) ≥ ε,

then for some c1 < c2 the test
m∑
i=1

sH(Zi) ≶ 0 where sH(z) =

{
c1 ∨ log

dP̂X

dP̂Y

(z)

}
∧ c2

has type-1 and type-2 error bounded by exp(−Ω(mε2)) (and is in fact minimax optimal for all sample sizes). From
this we see that Scheffé’s test can be interpreted as an approximation of the maximally robust Huber’s test. Let
L̂(z) = (dP̂Y/dP̂X)(z) denote the likelihood-ratio of the estimates. The values of c1, c2 are given as the solution to

ε/3 = Ez∼P̂X

[
1

{
L̂(z) ≤ c1

} c1 − L̂(z)
1 + c1

]
= Ez∼P̂Y

[
1

{
L̂(z) ≥ c2

} L̂(z)− c2
1 + c2

]
,

which can be easily approximated to high accuracy given samples from P̂X, P̂Y. This suggests both a theoretical
construction (since P̂X, P̂Y can be obtained with high probability from simulation samples via the general estimator
of Yatracos [38]) and a practical rule: instead of the possibly brittle likelihood-free Neyman-Pearson test (ii), one
should try clamping the estimated log-likelihood ratio from above and below.

Similar results hold due to Birgé [39], [40] in the case when distance is measured by Hellinger divergence:

H(P̂X,PX) ∨ H(P̂Y,PY) ≤ ε/3 and H(PX,PY) ≥ ε.

For ease of notation, let p̂X, p̂Y denote the densities of P̂X, P̂Y with respect to some base measure µ. Regarding√
p̂X and

√
p̂Y as unit vectors of the Hilbert space L2(µ), let γ : [0, 1] → L2(µ) be the constant speed geodesic

on the unit sphere of L2(µ) with γ(0) =
√
p̂X and γ(1) =

√
p̂Y. It is easily checked that each γt is positive (i.e.

square-root-densities form a geodesically convex subset of the unit sphere of L2(µ)) and Birgé showed that the test
m∑
i=1

log

(
γ21/3

γ22/3
(Zi)

)
≶ 0

has both type-I and type-II errors bounded by exp(−Ω(mε2)).
4) Ingster’s L2-distance test: Finally, we re-introduce the statistic (I.1), based on Ingster’s goodness-of-fit testing

idea. For simplicity we focus on the case of discrete distributions. This case is more general than may first appear: for
example in the case of smooth densities on [0, 1]d one can simply take a regular grid (whose resolution is determined
by the smoothness of the densities) and count the number of datapoints falling in each cell. Let p̂X, p̂Y, p̂Z denote
the empirical probability mass functions of the finitely supported distributions P̂X, P̂Y, P̂Z. The test proceeds via the
comparison

∥p̂X − p̂Z∥2 ≶ ∥p̂Y − p̂Z∥2. (II.5)

Squaring both sides and rearranging, we arrive at the form

1

m

m∑
i=1

(p̂Y(Zi)− p̂X(Zi)) ≶ γ,



where γ = (∥p̂Y∥2 − ∥p̂X∥2)/2. As mentioned in the introduction, variants of this ℓ2-distance based test have been
invented and re-invented multiple times for goodness-of-fit [11], [12] and two-sample testing [41], [42]. The exact
statistic (II.5) with application to PDb has appeared in [13], [21], and Huang and Meyn [22] proposed an ingenious
improvement restricting attention exclusively to bins whose counts are one of (2, 0), (1, 1), (0, 2) for the samples
(X,Z) or (Y,Z). We attribute (II.5) to Ingster because his work on goodness-of-fit testing for smooth densities
is the first occurence of the idea of comparing empirical ℓ2 norms, but we note that [13] and [12] arrive at this
influential idea apparently independently.

We emphasize the following subtlety. Let us rewrite (II.5) as

∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22 ≶ 0 . (II.6)

As we argue below, this difference results in an optimal test regardless of n and m for PDb. However, it does
not mean that each term by itself is a meaningful estimate of the corresponding distance: rejecting the null by
thresholding ∥p̂X − p̂Z∥22 would not work. Indeed, the variance of ∥pX − p̂Z∥22 is so large that it requires taking
m ≫ 1/ε2 (in fact, requires m to be at least nGoF). The “magic” of the L2-difference test is that the two terms
in (II.6) separately have high variance (and are not good estimators of their means), but their difference cancels the
high-variance terms.
Remark 7. While testing (LF), practitioners are usually interested in obtaining a p-value rather than purely a decision
whether to reject the null hypothesis. For this we propose the following scheme. Let σ1, . . . , σP be i.i.d. uniformly
random permutations on n+m elements. Let T̂ = ∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22 be our statistic, and write T̂i for the
statistic T̂ evaluated on the permuted dataset where {X1, . . . , Xn, Z1, . . . , Zm} are shuffled according to σi. Under
the null the random variables T̂ , T̂1, . . . , T̂P are exchangeable, thus reporting the empirical upper quantile of T̂ in
this sample yields an unbiased estimator of the p-value. Studying the power of this procedure is beyond the scope
of this work.

III. RESULTS

Before presenting our results for the specific classes introduced in Section II-B, we give general reductions valid
for any nonparametric class P and separation measure d (cf Remark 5).

A. General reductions

Proposition 1. Let P be a generic family of distributions and d : P2 → R be any function used to measure
separation. There exists a universal constant c > 0 such that for n,m ∈ N the following implications hold.

(n,m) ∈ RLF =⇒ m ≥ nHT, (III.1)
(n,m) ∈ RTS =⇒ n ∧m ≥ nGoF (III.2)
(n,m) ∈ RLF =⇒ cn ≥ nGoF, (III.3)
(n,m) ∈ RTS =⇒ (n,m) ∈ RLF, (III.4)

m ≥ n and (n,m) ∈ RLF =⇒ (cn, cm) ∈ RTS, (III.5)

where we omit the argument (ε, d,P) for simplicity. In particular,

N2
n≤m ∩RLF ≍ N2

n≤m ∩RTS, (III.6)

where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof. In what follows, let ΨLF,ΨTS be minimax optimal tests for (LF) and (TS) respectively. Throughout the proof
we omit the arguments (ε, d,P) for notational simplicty.

Reducing hypothesis testing to (LF) Suppose (n,m) ∈ RLF. Let P0,P1 ∈ P be given with d(P0,P1) ≥ ε and
suppose Z is an i.i.d. sample with m observations. We wish to test the hypothesis H0 : Zi ∼ P0 against H1 : Zi ∼ P1.
To this end generate n i.i.d. observations X,Y from P0,P1 respectively, and simply output ΨLF(X,Y, Z). This shows
that if (n,m) ∈ RLF then m ≥ nHT and concludes the proof of (III.1).
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Reducing goodness-of-fit testing to two-sample testing Suppose (n,m) ∈ RTS. Then obviously (n∧m,∞) ∈
RTS. However, two-sample testing with sample sizes n∧m,∞ is equivalent to goodness-of-fit testing with a sample
size of n ∧m. Therefore, n ∧m ≥ nGoF must hold, concluding the proof of (III.2).

Reducing goodness-of-fit testing to (LF) Suppose (n,m) ∈ RLF with m ≤ n. Let a distribution P0 ∈ P be
given as well as an i.i.d. sample X of size cn with unknown distribution PX, where c ∈ N is a large integer. We want
to test H0 : PX = P0 against H1 : PX ∈ P, d(PX,P0) ≥ ε. Generate c× 2 i.i.d. samples Y (i), Z(i) for i = 1, . . . , c
of size n,m respectively, all from P0. Split the sample X into c batches X(i), i = 1, . . . , c of size n each and form
the variables

Ai = ΨLF(X
(i), Y (i), Z(i))−ΨLF(X

(i), Y (i), X
(i+1)
1:m )

for i = 1, 3, . . . , 2⌊c/2⌋ − 1, where X(i)
1:m denotes the first m observations in the batch X(i). Note that the Ai are

i.i.d. and bounded random variables. Under the null hypothesis we have EAi = 0, while under the alternative they
have mean EAi ≥ 1/3 (since ΨLF is a successful tester in the sense of (II.1)). Therefore, a constant number c/2
observations suffice to decide whether PX = P0 or not. In particular, cn ≥ nGoF which concludes the proof of (III.3)
for the case m ≤ n. The case n ≤ m follows from (III.5) and (III.2).

Reducing (LF) to two-sample testing Suppose (n,m) ∈ RTS. Let three samples X,Y, Z be given, of sizes a, a, b
from the unknown distributions PX,PY,PZ respectively, where {a, b} = {n,m}. We want to test the hypothesis
H0 : PX = PZ against H1 : PY = PZ, where d(PX,PY) ≥ ε under both. Then, the test

Ψ̃LF(X,Y, Z) ≜ ΨTS(X,Z)

shows that (n,m), (m,n) ∈ RLF and concludes the proof of (III.4).
Reducing two-sample testing to (LF) Suppose (n,m) ∈ RLF where m ≥ n. Let two samples X,Y be given,

from the unknown distributions PX,PY ∈ P and of sample size cn, cm respectively, where c ∈ N is a large integer.
We wish to test the hypothesis H0 : PX = PY against H1 : d(PX,PY) ≥ ε. Split the samples X,Y into 2×c batches
X(i), Y (i), i = 1, . . . , c of sizes n,m respectively, and form the variables

Ai = ΨLF(X
(i), Y

(i)
1:n, Y

(i+1))−ΨLF(Y
(i)
1:n, X

(i), Y (i+1))

for i = 1, 3, . . . , 2⌊c/2⌋−1, where Y (i)
1:n denotes the first n observations in the batch Y (i). The variables Ai are i.i.d.

and bounded. Under the null hypothesis we have EAi = 0 while under the alternative EAi ≥ 1/3 holds. Therefore
a constant number c/2 observations suffice to decide whether PX = PY or not. In particular, (cn, cm) ∈ RTS which
concludes the proof of (III.5).

Equivalence between two-sample testing and (LF) Equation (III.6) follows immediately from (III.5) and
(III.4).

Equation (III.6) tells us that the problems of likelihood-free hypothesis testing and two-sample testing are
equivalent, but only for m ≥ n, i.e. when we have more real data than simulated data. We will see in the next
section (and on Figure 1 visually) that this distinction is necessary.

B. Sample complexity of likelihood-free hypothesis testing

In this section we present our results on the sample complexity of (LF) for specific classes P with separation
measured by d = TV. In all results below the parameters β, d, CH, s, CG, CDb are regarded as constants, we only
care about the dependence on the separation ε and the alphabet size k (in the case of PD,PDb). Where convenient
we omit the arguments of nGoF, nTS,RTS, nEst,RLF to ease notation, whose value should be clear from the context.

Theorem 1. Under TV-separation, for each choice P ∈ {PH,PG,PDb} we have

RLF(ε) ≍
{
m ≥ 1/ε2, n ≥ nGoF(ε),mn ≥ nGoF(ε)

2
}
,

where the implied constants do not depend on k (in the case of PDb) or ε.



For each class P in Theorem 1, the entire region RLF (within universal constant) is attained by Ingster’s ℓ2-
distance test from Section II-C4. We remark that for the class PDb in the regime m,n ≲ k, the results of Theorem 1
can be deduced from the discussion after Proposition VI.1. of [22].

Each corner point {A,B,C,D} of Figure 1 has a special interpretation. A corresponds to binary hypothesis testing
and D can be reduced to goodness-of-fit testing. Similarly, B and C can be reduced to the well-known problems of
estimation followed by robust hypothesis testing and two-sample testing respectively. In other words, (LF) allows us
to naturally interpolate between multiple statistical problems. Finally, we point out a curious fact: since the product
of n and m remains constant on the line segment [B,C] on the left plot of Figure 1, it follows that

nEst(ε,P) ≍ n2GoF(ε,P) ε2

for each class P treated in Theorem 1. This relation between the sample complexity of estimation and goodness-of-fit
testing has not been observed before to our knowledge, and the generality of this phenomenon remains open.

Turning to our results on PD the picture is less straightforward. As first identified in [43] and fully resolved in
[44], the rates of two-sample testing undergo a phase transition in the large alphabet (k ≳ 1/ε4) regime; this phase
transition appears also in likelihood-free hypothesis testing.

Theorem 2. Let α = 1 ∨ ( kn ∧ k
m ). Then

RLF(ε,PD(k)) ≍log(k)

{m ≥ 1/ε2, n ≥ nGoF(ε) ·
√
α

mn ≥ nGoF(ε)
2 · α

}
,

where the equivalence is up to a logarithmic factor in the alphabet size k.

Fig. 1. Light and dark gray show RLF and its complement resp. (on log1/ε-scale); the striped region depicts RTS ⊂ RLF. Left plot is valid
for P ∈ {PH,PG,PDb} for all settings of ε, k. For PD the left plot applies when k ≲ ε−4 and the right plot otherwise.

The log(k)-sized gap in Theorem 2 is an artifact of the proof (a union bound) and can most likely be removed.
In fact, we can remove this gap in all cases except the regime k ≳ 1/ε4,m ≲ n ≲ k. For a comparison between
RLF and RTS see Figure 1.

For the reader’s conveinence, Table I summarizes previously known tight results for the values of nGoF, nTS,RTS

and nEst. The fact that nHT = Θ(1/ε2) for reasonable classes is classical, see Lemma 1. The study of goodness-of-fit
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testing within a minimax framework was pioneered by Ingster [11], [33] for PH,PG, and independently studied by
the computer science community [12], [45] for PD,PDb under the name identity testing. Two-sample testing (a.k.a.
closeness testing) was solved in [44] for PD (with the optimal result for PDb implicit) and [11], [42], [46] consider
PH. The study of the rate of estimation nEst is older, see [47]–[50] and references for PH,PG and [51] for PD,PDb.
We reiterate that we are not aware of previous literature identifying the connection between (GoF) and (Est) as

TABLE I
PRIOR RESULTS ON TESTING AND ESTIMATION

nHT nGoF RTS nEst

PG 1/ε2 1/ε(2s+1/2)/s n ∧m ≥ nGoF ε2 n2
GoF

PH 1/ε2 1/ε(2β+d/2)/β n ∧m ≥ nGoF ε2 n2
GoF

PDb 1/ε2
√
k/ε2 n ∧m ≥ nGoF ε2 n2

GoF

PD 1/ε2
√
k/ε2 n ∨m ≥

√
k

ε2
∨ k2/3

ε4/3
≍ nTS, n ∧m ≥ nGoF

√
α ε2 n2

GoF

shown in the last column of the table, which we regard as one of the main contributions of this paper.

C. L2-robust likelihood-free hypothesis testing

Even before seeing Theorems 1 and 2 one might guess that estimation in TV followed by a robust hypothesis
test should work whenever n ≥ nEst(cε) for a small enough constant c and m ≳ 1/ε2. This strategy does indeed
succeed, as can be deduced from the work of Huber and Birgé [36], [40] for the measures of separation d ∈ {TV,H}
(see Remark 5 and Section II-C3). When d = TV, Scheffé’s test also succeeds (see Section II-C1) as can be ssen
by a simple application of Chebyshev’s inequality. An advantage of this approach is that it provides a solution to
(LF) at the corner point B on Figure 1 that is robust to model misspecification with respect to d, naturally leading
us to the question of robust likelihood-free hypothesis testing. As for (LF), suppose we observe samples X,Y, Z of
size n, n,m from distributions belonging to the class P with densities f, g, h with respect to some base measure
µ. Given any u ∈ P , let Bu(ε,P) ⊆ P denote a region around u against which we wish to be robust. We compare
the hypotheses

H0 : h ∈ Bf (ε,P),TV(f, g) ≥ ε versus H1 : h ∈ Bg(ε,P),TV(f, g) ≥ ε, (rLF)

and write RrLF(ε,P,B·) for the region of (n,m)-values for which (rLF) can be performed successfully, defined
analogously to RLF(ε,P), noting that RrLF ⊆ RLF provided u ∈ Bu for all u ∈ P .

Theorem 3. There exists a universal constant c > 0 such that the equivalence

RLF(ε,P) ≍ RrLF(ε,P,B·)

holds for
(i) P = PH and Bu = {v : ∥u− v∥2 ≤ cε}

(ii) P = PG and Bµθ
= {µθ′ : θ′ ∈ E(s, CG), ∥θ − θ′∥2 ≤ cε} and

(iii) P = PDb and Bu = {v : ∥u− v∥2 ≤ cε/
√
k} and

(iv) P = PD and Bu = {v : ∥u− v∥2 ≤ cε/
√
k}, up to log(k)-factors.

D. Beyond total variation

Recall from Remark 5 the notation nGoF(ε, d,P) etc. where separation is measured with respect to a general
measure of discrepancy d instead of TV.

In recent work [52, Theorem 1] and [53, Corollary 3.4] it is shown that any test that first quantizes the data by a
map Φ : X → {1, 2, . . . ,M} for some M ≥ 2 must decrease the Hellinger distance between the two hypotheses by
a log factor in the worst case. This implies that for every class P rich enough to contain such worst case examples,



a quantizing test (such as Scheffé’s) can hope to achieve m ≍ log(1/ε)/ε2 at best, as opposed to the optimal
m ≍ 1/ε2. Thus, if separation is assumed with respect to Hellinger distance, Scheffé’s test should be avoided. This
example shows that d can have nontrivial effects on the sample complexity of a specific test. Therefore, understanding
the sample complexity of (LF) for d other than TV might lead to new algorithms and insights.

This leads us to the question: does a trade-off analogous to that identified in Theorem 1 hold for other choices
of d, and H in particular? In the case of PG we obtain a simple, almost vacuous answer. From Lemma 2 it follows
immediately that the results of Table I and Theorem 1 continue to hold for PG for any of d ∈ {H,

√
KL,

√
χ2}, to

name a few.

Lemma 2. Let C > 0 be a constant. For any θ ∈ ℓ2 with ∥θ∥2 ≤ C

TV(µθ, µ0) ≍ H(µθ, µ0) ≍
√
KL(µθ∥µ0) ≍

√
χ2(µθ∥µ0) ≍ ∥θ∥2,

where µθ ≜ ⊗∞
i=1N (θi, 1) and the implied constant depends on C.

Proof. By standard inequalities between divergences (see e.g. Lemma 6), omitting the argument (µθ, µ0) for
simplicity we have

TV ≤ H ≤
√
KL ≤

√
χ2 =

√
exp(∥θ∥22)− 1 ≲ ∥θ∥2.

For the lower bound we obtain TV(µθ, µ0) ≥ 1 ∧ ∥θ∥2/200 ≳ ∥θ∥2 by [54, Theorem 1.2].

The case of PD is more intricate. Substantial recent progress [24], [51], [55], [56] has been made, where among
others, the complexities nGoF, nTS, nEst for d = H are identified. Since our algorithm for (LF) is ∥ · ∥2-based, we

nHT nGoF nTS nEst

PD 1/ε2
√
k/ε2 k2/3/ε8/3 ∧ k3/4/ε2 n2

Gof ε
2

PH 1/ε2 ? ? 1/ε2(β+d)/β

TABLE II
PRIOR RESULTS FOR d = H.

could immediately derive achievability bounds for RLF(ε,H,PD) via the inequality ∥ · ∥2 ≥ H2/
√
k, however such

a naive technique yields suboptimal results, and thus we omit it. Studying (LF) under Hellinger separation for PD

and PDb is beyond the scope of this work.
Finally, we turn to PH. Due to the nature of our proofs, the results of Theorem 1 easily generalize to d = ∥ · ∥p

for any p ∈ [1, 2]. The simple reason for this is that (i) our algorithm is ∥ · ∥2-based and ∥ · ∥2 ≥ ∥ · ∥p by Jensen’s
inequality and (ii) the lower bound construction involves perturbations near 1, where all said norms are equivalent.
In the important case d = H the estimation rate nEst(ε,H,PH) ≍ 1/ε2(β+d)/β was obtained by Birgé [57], our
contribution here is the study of nGoF.

Theorem 4. Let P = PH(β, d, CH). Then

nGoF(ε,H,P) ≳ 1/ε2(β+d/2)/β .

If in addition we assume that β ∈ (0, 1], then

nGoF(ε,H,P) ≲ 1/ε2(β+d/2)/β ,

and in particular, nEst ≍ n2GoF ε
2.

IV. SKETCH PROOF OF MAIN RESULTS

In this section we briefly sketch the proofs of the main results of the paper.
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A. Upper bounds for Theorems 1 to 4
Consider first the case when PX and PY are supported on the discrete alphabet [k]. Let p̂X, p̂Y, p̂Z denote empirical

probability mass functions based on the samples X,Y, Z of size n, n,m from PX,PY,PZ respectively. Define the
test statistic

TLF = ∥p̂X − p̂Z∥22 − ∥p̂Y − p̂Z∥22
and the corresponding test ψ(X,Y, Z) = 1{TLF ≥ 0}. The proof of Theorems 1 and 2 hinge on the precise
calculation of the mean and variance of TLF. Due to symmetry it is enough to compute these under the null. The
proof of the upper bound is then completed via Chebyshev’s inequality: if n,m are such that (ETLF)2 ≳ var(TLF)
for large enough implied constant on the right then ψ tests (LF) successfully in the sense of (II.1).

Proposition 2. We have

ETLF = ∥pX − pZ∥22 − ∥pY − pZ∥22 +
1

n

(
∥pY∥22 − ∥pX∥22

)
and

var(TLF) ≤
(
1

n
+

1

m

)
∥(pX + pY + pZ)(pX − pY)

2∥1 +
(

1

n2
+

1

nm

)
∥pX + pY + pZ∥22.

Proof. See Proposition 4 for a more general version of the result along with its proof.

Assuming that ∥pX∥∞ ∨ ∥pY∥∞ ∨ ∥pZ∥∞ ≤ c∞, we obtain the bound

var(TLF) ≲ c∞∥pX − pY∥22
(
1

n
+

1

m

)
+ kc2∞

(
1

n2
+

1

nm

)
. (IV.1)

Crucially, there is no 1/m2 term in the variance due to the cancellation of ∥p̂Z∥22. We also have the bound |∥pY∥22−
∥pX∥22| ≤

√
c∞∥pX − pY∥2 by Cauchy-Schwarz. In particular, the corresponding term in the expectation is smaller

than ∥pX − pY∥22 as soon as n ≳
√
c∞/∥pX − pY∥2, which is milder than the necessary (cf. Theorem 1) condition

n ≳ nGoF.
1) Bounded discrete distributions: We have c∞ = O(1/k) for the class PDb by definition. Taking pZ ∈ {pX, pY},

plugging (IV.1) into Chebyshev’s inequality and the inequality ∥ · ∥2 ≥ ∥ · ∥1/
√
k yields the minimax optimal rate

for n and m for Theorem 1. The corresponding conclusion of Theorem 3 follows similarly using in addition the
triangle inequality for ∥ · ∥2, we defer the details to the appendix.

2) Smooth densities: Next we treat the class PH. Divide [0, 1]d into into κd regular grid cells for some κ ∈ N.
Discretize the three samples X,Y, Z over this grid and simply apply the optimal test for PDb. The following lemma,
originally due to Ingster [11] controls the approximation error of this discretization.

Lemma 3. Let Pκ denote the L2 projection onto the space of functions constant on each grid cell. There exist
constants c, c′ > 0 depending only on d, β, CH such that for any u ∈ C(β, d, 2CH) the following holds

∥u∥2 ≥ ∥Pκu∥2 ≥ c∥u∥2 − c′κ−β .

Proof. See [42, Lemma 7.2].

Based on Lemma 3 we choose κ ≍ ε−1/β which yields k = κd ≍ ε−d/β . The resolution is chosen to ensure
that the discrete approximation to any β-smooth density is sufficiently accurate, i.e. ≈ ε-separation is maintained
even after discretization. Once again, Chebyshev’s inequality and Jensen’s inequality ∥ · ∥1 ≤ ∥ · ∥2 along with
c∞ = Θ(1/k) yields the minimax optimal rates for Theorems 1 and 3.

Our proof of the upper bound in Theorem 4 follows by a reduction to goodness-of-fit testing for discrete
distributions [56] under Hellinger separation, where it is known that nGoF(ε,H,PD) ≍

√
k/ε2. The key step is to

prove a result similar to Lemma 3 but for H instead of ∥ · ∥2.

Proposition 3. Let f, g ∈ PH(β, d, CH) with β ∈ (0, 1] and suppose that H(f, g) ≳ ε. Then

H(f, g) ≲ H(Pκf, Pκg) ≤ H(f, g)

for κ ≍ ε−2/β where the constants depend only on β, d, CH.



3) Gaussian sequence model: The case of PG is slightly different so we refer for details to the appendix.
4) Discrete distributions: Finally, we comment on PD. Here we can no longer assume that c∞ = O(1/k), in

fact c∞ = Ω(1) is possible. We get around this by utilizing the reduction based approach of [24], [34]. We take the
first half of the data and compute Bi = 1 +#{j ∈ [(k ∧ n)/2] : Xj = i}+#{j ∈ [(k ∧ n)/2] : Yj = i}+#{j ∈
[(k ∧m)/2] : Zj = i} for each i ∈ [k]. Then, we divide bin i into Bi bins uniformly. This transformation preserves
pairwise total variation, but reduces the ℓ∞-norms of pX, pY, pZ with high probability, to order 1/(k ∧ (n ∨ m))
(after an additional step that we omit here). We can then perform the usual test for the ‘flattened‘ distributions,
which we denote p̃X, p̃Y, p̃Z, using the untouched half of the data. Chebyshev’s inequality with a refined analysis of
the variance yields the upper bound in Theorem 2.

Alternatively, for part of the trade-off (namely the regime n ≤ m) we can use the reduction Proposition 1 to
two-sample testing with unequal sample size to get the optimal upper (and lower) bound.

It is insightful to interpret the ‘flattening‘ procedure followed by ℓ2-distance comparison as a one-step procedure
that simply compares a different divergence of the empirical measures. Intuitively, in contrast to the regular classes,
one needs to mitigate the effect of potentially massive differences in the empirical counts on bins i ∈ [k] where
both pX(i) and pY(i) are large but their difference |pX(i)− pY(i)| is moderate. Let LCλ be the ‘weighted Le-Cam
divergence’ which we define as LCλ(p∥q) =

∑
i(pi − qi)

2/(pi + (1 + λ)qi) for two pmfs p, q. Taking expectation
with respect to B = (B1, . . . , Bk) of the flattened measures p̃X, p̃Y we have (heuristically)

EB∥p̃X − p̃Z∥22 =

{
0 if pX = pZ

EB
∑
i∈[k](pX(i)− pZ(i))

2/Bi if pY = pZ

≈ 1

n ∧ k
LCλ(pX∥pZ),

where λ = m∧k
n∧k . A similar expression holds for EB∥p̃Y − p̃Z∥22. Therefore, on average, the statistic TLF after

flattening can be thought of as

TLF ≈ 1

n ∧ k

(
LCλ(p̂X∥p̂Z)− LCλ(p̂Y∥p̂Z)

)
. (IV.2)

Performing the test in two steps (flattening first and comparing ℓ2 distances) is a proof device, and we expect the
test that directly compares, say, the Le-Cam divergence of the empirical pmfs to have the same minimax optimal
sample complexity. Such a one-shot approach is used for example in the paper [44] for two-sample testing. While
Ingster [11] only considers goodness-of-fit testing to the uniform distribution, his notation also suggests the idea of
normalizing by the bin mass under the null.

B. Lower bounds for Theorems 1 to 4

Proposition 1 immediately yields tight lower bounds on n and m. Namely, (III.1) gives m ≳ 1/ε2 and (III.3)
gives n ≳ nGoF(ε,P). We now turn to the more challenging task of obtaining a lower bound on the interaction term
m · n. For this let us first introduce some well known results used to prove minimax lower bounds. Suppose that
we have two (potentially composite) hypotheses H0, H1 that we test against each other. Our strategy for proving
lower bounds relies on the method of two fuzzy hypotheses [48], which is a generalization of le-Cam’s two point
method. Write M(X ) for the set of probability measures on the set X .

Lemma 4. Take two hypotheses Hi ⊆ M(X ) and random Pi ∈ M(X ) with P(Pi ∈ Hi) > 0. Then

2 inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1− TV(EP0,EP1)−
∑
i

P(Pi /∈ Hi),

where the infimum is over all tests ψ : X → {0, 1}.

Proof. Let P̃i be distributed as Pi|{Pi ∈ Hi}. Then for any set A ⊂ X we have∣∣∣EP̃i(A)− EPi(A)
∣∣∣ = P(Pi /∈ Hi)

∣∣∣E[Pi(A)|Pi ∈ Hi]− E[Pi(A)|Pi /∈ Hi]
∣∣∣ ≤ P(Pi /∈ Hi).
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In particular, TV(EP̃0,EP̃1) ≤ TV(EP0,EP1) +
∑
i P(Pi /∈ Hi). Therefore, for any ψ

max
i=0,1

sup
Pi∈Hi

Pi(ψ ̸= i) ≥ 1

2
(1− TV(EP̃0,EP̃1)) ≥

1

2

(
1− TV(EP0,EP1)−

∑
i

P(Pi /∈ Hi)

)
.

For clarity, we formally state (LF) as testing between the hypotheses

H0 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X : PX,PY ∈ P, TV(PX,PY) ≥ ε}

versus

H1 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
Y : PX,PY ∈ P, TV(PX,PY) ≥ ε}.

(IV.3)

The lower bounds of Theorem 3 follow from those for Theorems 1 and 2 so we only focus on the latter case.
1) Smooth densities: For concreteness let us focus on the case of P = PH. We take P0 to be uniform on [0, 1]d

and Pη to have density
pη = 1 +

∑
j∈[κ]d

ηjhj (IV.4)

with respect to P0. Here κ ∈ N, each η ∈ {±1}κd

is uniform and hj is a bump function supported on the j’th
cell of the regular grid of size κd on [0, 1]d. The parameters κ, hj of the construction are set in a way to ensure
Pη ∈ PH and TV(P0,Pη) ≥ ε with probability one over η. We have

1 + χ2(EηP⊗m
η ∥P⊗m

0 ) =

∫
[0,1]dm

(
Eη

n∏
i=1

pη(xi)

)2

dx1 . . . dxm

= Eηη′⟨pη, pη′⟩mL2

= E(1 + ∥h1∥22⟨η, η′⟩)m (IV.5)

≤ exp(m2∥h1∥42κd),

where η, η′ are i.i.d. uniform and we assume ∥h1∥2 = ∥hj∥2 for all j ∈ [κ]d. The above approach is what Ingster
used in his seminal paper [11] on goodness-of-fit testing, which we adapt to likelihood-free hypothesis testing (IV.3).
Take P0 = P⊗n

η ⊗ P⊗n
0 ⊗ P⊗m

η and P1 = P⊗n
η ⊗ P⊗n

0 ⊗ P⊗m
0 in Lemma 4. Bounding TV(EP0,EP1) proceeds in

multiple steps: first, we drop the Y -sample using the data-processing inequality. Then, we use Pinsker’s inequality
and the chain rule to bound TV by the KL divergence of Z conditioned on X . We bound KL by χ2, arriving at
the same equation (IV.5). However, the mixing parameters η, η′ are no longer independent, instead, given X they’re
independent from the posterior. In the remaining steps we use the fact that the posterior factorizes over the bins and
the calculation is reduced to just a single bin where it can be done explicitly.

Let us now turn to the lower bound in Theorem 4. The difference in the rate is a consequence of the fact that
H and TV behave differently for densities near zero. Inspired by this, we slightly modify the construction (IV.4) by
putting the perturbations at density level ε2 as opposed to 1. Bounding TV then proceeds analogously to the steps
outlined above and [11].

2) Bounded discrete distributions: The construction is entirely analogous to the case of PH and we refer to the
appendix for details. In the computer science community the construction of pη is attributed to Paninski [58].

3) Gaussian sequence model: As for the upper bounds, the case of PG is somewhat different from the others.
Here the null distribution P0 is the no signal case ⊗∞

i=1N (0, 1) while the alternative is Pθ = ⊗∞
i=1N (θi, 1) where θ

has prior distribution ⊗∞
i=1N (0, γi) for an appropriate sequence γ ∈ RN. We refer to the appendix for more details.



4) Discrete distributions: Once again, the irregular case PD requires special consideration. Clearly the lower
bound for PDb carries over. However, in the large alphabet regime k ≳ 1/ε4 said lower bound becomes suboptimal,
and we need a new construction, for which we utilize the moment-matching based approach of Valiant [59] as a
black-box. The adversarial construction is derived from that used for two-sample testing by Valiant, namely the pair
(PX,PY) is chosen uniformly at random from {(p ◦ π, q ◦ π)}π∈Sk

. Here we write Sk for the symmetric group on
[k] and

p(i) =


1−ε
n for i ∈ [n]

4ε
k for i ∈ [k2 ,

3k
4 ]

0 otherwise,

where we assume that m ≤ n ≤ k/2 and define q(i) = p(i) for i ∈ [k/2−1] and q(i) = p(3k/2−i) for i ∈ [k/2, k].
This construction gives a lower bound matching our upper bound in the regime m ≲ n ≲ k. The final piece of
the puzzle follows by the reduction from two-sample testing with unequal sample size (III.6), as this shows that
likelihood-free hypothesis testing is at least as hard as two-sample testing in the n ≤ m regime, and known lower
bounds on the sample complexity of two-sample testing [23] (see also Table I) let us conclude.

V. OPEN PROBLEMS

A natural follow-up direction to the present paper would be to study multiple hypothesis testing where PX and PY

are replaced by PX1
, . . . ,PXM

with corresponding hypotheses H1, . . . ,HM . The geometry of the family {PXj
}j∈[M ]

might have interesting effects on the sample complexities.

Open problem 1. Study the dependence on M > 2 of likelihood-free testing with M hypotheses.

Another possible avenue of research is the study of local minimax/instance optimal rates, which is the focus of
recent work [45], [60]–[63] in the case of goodness-of-fit and two-sample testing.

Open problem 2. Define and study the local minimax rates of likelihood-free hypothesis testing.

Our discussion of the Hellinger case in Section III-D is quite limited, natural open problems in this direction
include the following.

Open problem 3. Let P ∈ {PH(β, d, CH),PDb(k,CDb),PD(k)}.
(i) Study nGoF and nTS for P under Hellinger separation.

(ii) Determine the trade-off RLF for P under Hellinger separation.

More ambitiously, one might ask for a characterization of ‘regular‘ models (P, d) for which goodness-of-fit
testing and two-sample testing are equally hard and the region RLF is given by the trade-off in Theorem 1.

Open problem 4. Find a general family of ‘regular‘ models (P, d) for which

nGoF(ε, d,P) ≍ nTS(ε, d,P) and

RLF(ε, d,P) ≍ {m ≥ 1/ε2, n ≥ nGoF(ε, d,P),mn ≥ n2GoF(ε, d,P)}.

Recent follow-up work [32] showed that Scheffé’s test is also minimax optimal and achieves the entire trade-off
in Figure 1. It appears that the optimality of Scheffé’s test is a consequence of the minimax point of view. Basically,
in the worst-case the log-likelihood ratio between the hypotheses is close to being binary, hence quantizing it to
{0, 1} does not lose optimality. Consequently, an important future direction is to better understand the competitive
properties of various tests and studying some notion of regret, see [64] for prior related work.

Open problem 5. Study the competitive optimality of likelihood-free hypothesis testing algorithms, and Scheffé’s
test in particular.
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APPENDIX A
UPPER BOUNDS OF THEOREM 1 AND 2

Let µ be a measure on the measurable space X and let {ϕi}i∈[r] be a sequence of orthonormal functions in
L2(µ). For f ∈ L2(µ) define its projection onto the span of {ϕ1, . . . , ϕr} as

Pr(f) ≜
∑
i∈[r]

⟨fϕi⟩ϕi,

where we write ⟨·⟩ for integration with respect to µ and ∥·∥p for ∥·∥Lp(µ). Given an i.i.d. sample X = (X1, . . . , Xn)
from some density f , define its empirical projection as

P̂r[X] ≜
∑
i∈[r]

 1

n

n∑
j=1

ϕi(Xj)

ϕi.

Then, our statistic reads
TLF = ∥P̂r[X]− P̂r[Z]∥22 − ∥P̂r[Y ]− P̂r[Z]∥22, (A.1)

for an appropriate choice of µ and {ϕj}j≥1 depending on the class P . Before calculating the mean and variance,
we separate out the diagonal terms in TLF thereby decomposing the statistic into two terms:

TLF ≜ T−d
LF +

1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2i (Xj)− ϕ2i (Yj)

)
︸ ︷︷ ︸

≜D

. (A.2)

To ease notation in the results below, we define the quantities

Afgh = ⟨f
[
Pr(g − h)

]2⟩
Bfg =

r∑
i=1

⟨fϕiPr(gϕi)⟩
(A.3)

for f, g, h ∈ L2(µ), assuming the quantities involved are well-defined. We are ready to state our meta-result from
which we derive all our likelihood-free hypothesis testing upper bounds.

Proposition 4. Let f, g, h denote probability densities on X with respect to µ, and suppose we observe independent
samples X,Y, Z of size n, n,m from f, g, h respectively. Recall the test statistic

T−d
LF =

r∑
i=1

{
1

n2

n∑
j ̸=j′

ϕi(Xj)ϕi(Xj′)−
1

n2

n∑
j ̸=j′

ϕi(Yj)ϕi(Yj′)

− 2

nm

n∑
j=1

m∑
u=1

ϕi(Xj)ϕi(Zu) +
2

nm

n∑
j=1

m∑
u=1

ϕi(Yj)ϕi(Zu)

}
.

Then

ET−d
LF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22 +

1

n
(∥Pr[g]∥22 − ∥Pr[f ]∥22)

var(T−d
LF ) ≲

Affh +Aggh
n

+
Ahfg
m

+
∥f + g + h∥42 + |Bfh|+ |Bgh|

nm
+

|Bff |+ |Bgg|+ ∥f + g + h∥32(1 + ∥f + g + h∥)
n2

,

where the implied constant is universal.



Remark 8. Proposition 4 is applied to (LF) by considering the test 1(T−d
LF ≥ 0). To prove that the test performs well

we show that T−d
LF concentrates around its mean by Chebyshev’s inequality. For this we find sufficient conditions

on the sample sizes n,m so that (ET−d
LF )2 ≳ var(T−d

LF ) for a small enough implied constant on the left.
Remark 9. While Proposition 4 is enough to conclude the proof of our main theorems, notice that it uses the statistic
T−d
LF which has the diagonal terms removed. For completeness we show that the test 1{TLF ≥ 0} is also minimax

optimal, i.e. the diagonal terms (D in (A.2)) can be included without degrading performance.

A. The class PDb

Proposition 5. For constant c, cr > 0 independent of ε and k,

RrLF(ε,PDb(k,CDb),B·) ⊇ c
{
m ≥ 1/ε2, n ≥

√
k/ε2,mn ≥ k/ε4

}
,

where Bu = {u ∈ PDb : ∥u− v∥2 ≤ crε/
√
k}.

Proof. Choice of µ and ϕ. Take X = [k] and let µ =
∑k
i=1 δi be the counting measure. Let ϕi(j) = 1{i=j} and

choose r = k so that Pr = Pk is the identity. By the Cauchy-Schwarz inequality ∥h∥1 ≤
√
k∥h∥2 for all h ∈ Rk.

Applying Proposition 4. Recall the notation of Proposition 4, so that f, g, h are the pmfs of PX,PY,PZ

respectively. We analyse the performance of the test 1{T−d
LF ≥ 0} under the null hypothesis, the proof under

the alternative is analogous. Choosing the radius of robustness as cr < 1, the inequality ∥f − h∥2 ≤ cr
2 ∥f − g∥2

along with the reverse triangle inequality gives us

∥g − h∥22 − ∥f − h∥22 ≥ (∥f − g∥2 − ∥f − h∥2)2 − ∥f − h∥22
≥ ∥f − g∥22(1− cr).

Notice that now −ET−d
LF ≥ (1− cr)∥f − g∥1/k +R, where the residual term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22

n

∣∣∣∣
≲

∥f − g∥2
n
√
k

.

Thus, |R| ≤ (1 − cr)∥f − g∥22/2 provided n ≳ 1/(∥f − g∥2
√
k) which in turn is implied by n ≳ 1/ε. Therefore,

under the assumption that n ≳ 1/ε, we obtain the lower bound −ET−d
LF ≳ ∥f − g∥22. Turning towards the variance,

we apply Proposition 4 to see that

var(T−d
LF ) ≲

∥f − g∥22
k

(
1

n
+

1

m

)
+

1

k

(
1

n2
+

1

nm

)
, (A.4)

where we use the trivial bounds

∥f + g + h∥2 ≲ 1/
√
k

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲
1

k

Affh +Aggh +Ahfg ≲
1

k
∥f − g∥22.

Applying Chebyshev’s inequality and looking at each term separately in (A.4) yields the desired bounds on n,m.
The diagonal. While the above test using T−d

LF already achieves the minimax optimal sample complexity, here
we show for completeness that the diagonal D (cf. (A.2)) can be included without degrading the test’s performance.
Indeed, we have

D =
1

n2

∑
i∈[r]

∑
j∈[n]

(
1{Xj = i}2 − 1{Yj = i}2

)
= 0

almost surely. Therefore, trivially, the test 1{TLF ≥ 0} is minimax optimal.
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B. The class PH

Proposition 6. For constants c, cr > 0 independent of ε,

RrLF(ε,PH(β, d, CH),B·) ⊇ c
{
m ≥ 1/ε2, n ≥ 1/ε(2β+d/2)/β ,mn ≥ 1/ε2(2β+d/2)/β

}
, (A.5)

where Bu = {v ∈ PH : ∥v − u∥2 ≤ crε}.

Proof. Choice of µ and ϕ. Take X = [0, 1]d, let µ the Lebesgue measure on X . Let {ϕi}1≤i≤κd be the indicators of
the cells of the regular grid with κd bins, normalized to have L2(µ)-norm equal to 1 (i.e. the indicator is multiplied
by κd, one over the volume of one grid cell). By [42, Lemma 7.2] for any resolution r = κd and u ∈ C(β, d, 2CH)
we have

∥Pr(u)∥2 ≥ c1∥u∥2 − c2κ
−β (A.6)

for constants c1, c2 > 0 that don’t depend on r. In particular, if ∥u∥1 ≥ 2ε then taking κ−β = c1ε/c2 in (A.6)
ensures with the help of Jensen’s inequality that ∥Pr(u)∥2 ≥ c1ε.

Applying Proposition 4. Recall the notation of Proposition 4 so that f, g, h are the µ-densities of PX,PY,PZ.
We analyse the performance of the test 1{T−d

LF ≥ 0} under the null hypothesis, the proof under the alternative is
analogous. Choosing the radius of robustness cr < c1/2, applying the inequality ∥Pr(f − h)∥2 ≤ cr

c1
∥Pr(f − g)∥2

(by taking u = f − g in (A.6)) we obtain

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22 ≥ ∥Pr(f − g)∥22(1− 2
cr
c1

)

Thus, −ET−d
LF ≥ (1− 2cr/c1)∥Pr(f − g)∥22 +R where the residual term R can be bounded as

|R| =
∣∣∣∣∥f∥22 − ∥g∥22

n

∣∣∣∣
≲

∥f − g∥2
n

.

Thus, |R| ≤ (1 − 2cr/c1)∥f − g∥22/2 provided n ≳ 1/∥f − g∥2 which in turn is implied by n ≳ 1/ε. Therefore,
under the assumption that n ≳ 1/ε, we may assume that −ET−d

LF ≳ ∥Pr(f − g)∥22. Turning to the variance, using
Proposition 4 we obtain

var(T−d
LF ) ≲ ∥Pr(f − g)∥22

(
1

n
+

1

m

)
+ ε−d/β

(
1

n2
+

1

nm

)
, (A.7)

where we apply the trivial inequalities

∥f + g + h∥2 ≲ 1

|Bff |+ |Bgg|+ |Bfh|+ |Bgh| ≲ r ≍ ε−d/β

Affh +Aggh +Ahfg ≲ ∥Pr(f − g)∥22.

Applying Chebyshev’s inequality and looking at each term separately in (A.7) yields the desired bounds on n,m.
The diagonal. While the above test using T−d

LF already achieves the minimax optimal sample complexity, for
completeness we also note that including the diagonal terms D (cf. (A.2)) doesn’t degrade performance. The fact
that D = 0 almost surely follows analogously to the case of PDb.

C. The class PG

Proposition 7. For constants c, cr > 0 independent of ε,

RrLF(ε,PG(s, CG),B·) ⊇ c
{
m ≥ 1/ε2, n ≥ 1/ε(2s+1/2)/s,mn ≥ 1/ε2(2s+1/2)/s

}
,

where Bµθ
= {µθ′ : θ′ ∈ E(s, CG), ∥θ − θ′∥2 ≤ crε}.



Proof. Choosing µ and ϕ. Let X = RN be the set of infinite sequences and take as the base measure µ =
⊗∞
d=1N (0, 1), the infinite dimensional standard Gaussian. For θ ∈ ℓ2 write µθ = ⊗∞

d=1N (θi, 1) so that µ0 = µ.
Take the orthonormal functions ϕi(x) = xi for i ≥ 1, so that

Pr

(
dµθ
dµ

)
=

r∑
i=1

xiθi.

Let θ, θ′ ∈ E(s, CG) with TV(µθ, µθ′) ≥ ε. By Pinsker’s inequality ε ≤ ∥θ − θ′∥2 and the following holds:

∥Pr
(
dµθ
dµ

− dµθ′

dµ

)
∥22 =

r∑
i=1

(θi − θ′i)
2 ≥ ε2 − r−2s

∑
i>r

(θi − θ′i)
2i2s ≥ ε2 − 4C2

Gr
−2s. (A.8)

In particular, taking r ≍ ε−1/s for a constant independent of ε, the above is lower bounded by ε2/4.
Applying Proposition 4. Recall the notation of Proposition 4, and let f, g, h be the µ-densities of PX =

µθ,PY = µθ′ ,PZ = µθ′′ respectively. We analyse the test 1{T−d
LF only under the null hypothesis, as the analysis

under the alternative is analogous. Taking the radius of robustness cr < 1/4, using the inequality ∥Pr(f − h)∥2 ≤
2cr∥Pr(f − g)∥2 we see that

∥Pr(g − h)∥22 − ∥Pr(f − h)∥22 ≥ (1− 4cr)∥Pr(f − g)∥22. (A.9)

Notice that ET−d
LF ≥ (1− 4cr)∥Pr(f − g)∥22 +R, where the residual term R can be bounded as

|R| =
∣∣∣∣∥Pr(f)∥22 − ∥Pr(g)∥22

n

∣∣∣∣
≲

∥Pr(f − g)∥2
n

.

Thus, |R| ≤ (1 − 4cr)∥Pr(f − g)∥22/2 provided n ≳ 1/∥Pr(f − g)∥2 which in turn is implied by n ≳ 1/ε.
Therefore, under the assumption that n ≳ 1/ε, we obtain −ET−d

LF ≳ ∥Pr(f − g)∥22. Straightforward calculations
involving Gaussian random variables produce

Afgh =

r∑
ij

(1(i = j) + θiθj)(θ
′
i − θ′′i )(θ

′
j − θ′′j ) ≤ (1 + C2

G)∥Pr(g − h)∥22

≲ ∥Pr(g − h)∥22

∥f∥2 = exp

(
1

2
∥θ∥22

)
≤ exp(C2

G/2)

≲ 1

Bfg =

r∑
i=1

(
1 + θ2i + θ′

2
i + θiθ

′
i

r∑
j=1

θjθ
′
j

)
≤ r + 2C2

G + C4
G

≲ r.

Applying Proposition 4 tells us that

var(T−d
LF ) ≲ ∥Pr(f − g)∥22

(
1

n
+

1

m

)
+ ε−1/s

(
1

n2
+

1

nm

)
(A.10)

Applying Chebyshev’s inequality and looking at each term separately in (A.10) yields the desired bounds on n,m.
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The diagonal. While the above test using T−d
LF already achieves the minimax optimal sample complexity, for

completeness we show that including the diagonal terms D (cf. (A.2)) doesn’t degrade performance. To this end we
compute

ED =
1

n2

∑
i∈[r]

∑
j∈[n]

(
ϕ2i (Xj)− ϕ2i (Yj)

)
=

1

n

∑
i∈[r]

(θ2i − θ′i
2
)

≤ 1

n
∥θ + θ′∥2

√∑
i∈[r]

(θi − θ′i
2)

≲
∥Pr(f − g)∥2

n
.

We see that |ET−d
LF | ≳ |ED| as soon as n ≳ 1/ε, which is weaker than the requirement that n ≳ nGoF and thus

doesn’t degrade the sample complexity. Turning to the variance, we have

var(D) =
1

n3

∑
i∈[r]

(
var(ϕ2i (X1)) + var(ϕ2i (Y1))

)
≲

r

n3
.

Once again, this doesn’t impose any new restrictions on n or m and thus the sample complexity is unchanged and
the test 1{TLF ≥ 0} is minimax optimal.

D. The class PD

Proposition 8. Let α = 1 ∨
(
k
n ∧ k

m

)
. For a constant c > 0 independent of ε and k,

RrLF(ε,PD(k),B·) ⊇ c
{
m ≥ 1/ε2, n ≥

√
kα/ε2,mn ≥ log(k)kα/ε4

}
,

where Bu = {v : ∥u− v∥2 ≤ crε/
√
k, ∥v/u∥∞ ≤ c′} for universal constants cr, c′ > 0.

Proof. Choosing µ and ϕ. As for PDb, we take X = [k], µ =
∑k
i=1 δi, ϕi(j) = 1{i=j} and r = k. By the

Cauchy-Schwarz inequality ∥h∥1 ≤
√
k∥h∥2 for all h ∈ Rk.

Reducing to the small-norm case. Before applying Proposition 4 we need to ‘pre-process‘ our distributions.
For an in-depth explanation of this technique see [24], [34]. Recall that we write f, g, h for the probability mass
functions of PX,PY,PZ respectively, from which we observe the samples X,Y, Z of size n, n,m respectively. Recall
also that the null hypothesis is that ∥f − h∥2 ≤ crε/

√
k while the alternative says that ∥g − h∥2 ≤ crε/

√
k, with

∥f − g∥2 ≥ 2ε/
√
k guaranteed under both. In the following section we use the standard inequality P(λ − x ≥

Poi(λ)) ≤ exp(− x2

2(λ+x) ) valid for all x ≥ 0 repeatedly. We also utilize the identity

E

[
1

Poi(λ) + 1

]
=

{
1 if λ = 0
1−e−λ

λ if λ > 0,
(A.11)

which is easily verified by direct calculation. Finally, the following Lemma will come handy.

Proposition 9. [34, Corollary 11.6] Given t samples from an unknown discrete distribution p, there exists an
algorithm that produces an estimate ∥̂p∥22 with the property

P(∥̂p∥22 /∈ (
1

2
∥p∥22,

3

2
∥p∥22)) ≲

1

∥p∥2t
,

where the implied constant is universal.



First we describe a random ‘filter‘ F : PD(k) → PD(K) that maps distributions on [k] to distributions on the
inflated alphabet [K]. Let (nX, nY, nZ) = 1

2 (n ∧ k, n ∧ k,m ∧ k) and let NX ∼ Poi(nX/2) independently of all
other randomness, and define NY, NZ similarly. We take the first NX, NY, NZ samples from the data sets X,Y, Z
respectively. In the event NX∨NY > n or NZ > m let our output to the likelihood-free hypothesis test be arbitrary,
this happens with exponentially small probability. Let NX

i be the number of the samples X1, . . . , XNX falling in
bin i, so that NX

i ∼ Poi(nXfi/2) independently for each i ∈ [k], and define NY
i , N

Z
i analogously. The filter F is

defined as follows: divide each bin i ∈ [k] uniformly into 1 +NX
i +NY

i +NZ
i bins. This filter has the following

properties trivially.
1) The construction succeeds with probability at least 1 − 3 exp(−n ∧m ∧ k/16), we focus on this event from

here on.
2) The construction uses at most nX, nY, nZ samples from X,Y, Z respectively and satisfies K ≤ 5k/2.
3) For any u, v ∈ PD(k) we have TV(F (u), F (v)) = TV(u, v) and ∥F (u)− F (v)∥2 ≤ ∥u− v∥2.
4) Given a sample from an unknown u ∈ PD(k) we can generate a sample from F (u) and vice-versa.

Let f̃ ≜ F (f) be the probability mass function after processing and define g̃, h̃ analogously. By properties 1− 2
of the filter, we may assume with probability 99% that the new alphabet’s size is at most 5k/2 and that we used
at most half of our samples X,Y, Z. We immediately get 2ε ≤ ∥f − g∥1 = ∥f̃ − g̃∥1 ≤

√
5k/2∥f̃ − g̃∥2 and

∥f̃ − h̃∥2 ≤ ∥f − h∥2, ∥g̃ − h̃∥2 ≤ ∥g − h∥2. Adopting the convention 0/0 = 1 and using (A.11) we can bound
inner products between the mass functions as

E
[
Bf̃ h̃ +Bg̃h̃

]
= E

[
⟨f̃ h̃⟩+ ⟨g̃h̃⟩

]
≤ 4

∑
i∈[k]

fihi + gihi
(n ∧ k)(fi + gi) + (m ∧ k)hi

≤ 8

(n ∨m) ∧ k

E
[
Bf̃ f̃ +Bg̃g̃

]
= E

[
∥f̃∥22 + ∥g̃∥22

]
≤ 4

∑
i∈[k]

f2i + g2i
(n ∧ k)(fi + gi) + (m ∧ k)hi

≤ 8

n ∧ k

E∥h̃∥22 ≤ 4
∑
i∈[k]

h2i
(n ∧ k)(fi + gi) + (m ∧ k)hi

≤ 4

m ∧ k
.

By Markov’s inequality we may assume that the above inequalities hold not only in expectation but with 99%
probability overall with universal constants. Notice that under the null hypothesis ∥f̃ − h̃∥2 ≤ crε/

√
k and thus

∥f̃∥2 ≤ ∥h̃∥2 + crε/
√
k ≤ ∥f̃∥2 + 2crε/

√
k, and similarly with f̃ replaced by g̃ under the alternative. We restrict

our attention to cr ≤ 1 so that cr is treated as a constant where appropriate. Notice that ε/
√
k ≲ 1/

√
(n ∨m) ∧ k

holds trivially. Thus, we obtain ∥f̃∥2∨∥h̃∥2 ≤ c/
√
(m ∨ n) ∧ k under the null and ∥g̃∥2∨∥h̃∥2 ≤ c/

√
(n ∨m) ∧ k

under the alternative for a universal constant c. We would like to ensure that

∥f̃∥2 ∨ ∥g̃∥2 ∨ ∥h̃∥2 ≲
1√

(m ∨ n) ∧ k
. (A.12)

To this end we apply Proposition 9 using (n/4, n/4) of the remaining (transformed) X,Y samples. Let ∥̂f̃∥22, ∥̂g̃∥22
denote the estimates, which lie in ( 12∥f̃∥

2
2,

3
2∥f̃∥

2
2) and ( 12∥g̃∥

2
2,

3
2∥g̃∥

2
2) respectively, with probability at least 1 −

O((|f̃∥−1
2 + ∥g̃∥−1

2 )/n) ≥ 1 − O(
√
k/n), since ∥f̃∥2 ∧ ∥g̃∥2 ≥

√
2/(5k) by the Cauchy-Schwarz inequality.

Assuming that n ≳
√
k this probability can be taken to be arbitrarily high, say 99%. Now we perform the following

procedure: if ∥̂f̃∥22 > 3
2c

2/((n ∨m) ∧ k) reject the null hypothesis, otherwise if ∥̂g̃∥22 > 3
2c

2/((n ∨m) ∧ k) accept
the null hypothesis, otherwise proceed with the assumption that (A.12) holds. By design this process, on our 97% ≤
probability event of interest, correctly identifies the hypothesis or correctly concludes that (A.12) holds. The last
step of the reduction is ensuring that the quantities Af̃ f̃ h̃, Ag̃g̃h̃, Ah̃f̃ g̃ are small. The first two may be bounded
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easily as
Af̃ f̃ h̃ +Ag̃g̃h̃ = ⟨f̃(f̃ − h̃)2⟩+ ⟨g̃(g̃ − h̃)2⟩

≤ ∥f̃∥2∥f̃ − h̃∥24 + ∥g̃∥2∥g̃ − h̃∥24

≲
∥f̃ − h̃∥22 + ∥g̃ − h̃∥22√

(n ∨m) ∧ k

≲
∥f̃ − g̃∥22 + c2r ε

2/k√
(n ∨m) ∧ k

≲
∥f̃ − g̃∥22√
(n ∨m) ∧ k

.

(A.13)

To bound Ah̃f̃ g̃ we need a more sophisticated method. Recall that by definition

Ah̃f̃ g̃ =
∑
i∈[k]

hi(fi − gi)
2

(1 +NX
i +NY

i +NZ
i )

2
.

Fix an i ∈ [k] and let P ≜ NX
i +NY

i +NZ
i ∼ Poi((n∧ k)(fi + gi)/4 + (m∧ k)hi/4) and take a constant c > 0 to

be specified. We have

P

(
1

1 + P
> c log(k)

1

EP

)
=

{
0 if EP ≤ c log(k)

P
(

EP −
(

EP
(
1− 1

c log(k)

)
+ 1
)
> P

)
if EP > c log(k).

Assuming that i is such that EP ≥ c log(k) and taking k large enough so that c log(k) ≥ 2, we can proceed as

P

(
EP −

(
EP

(
1− 1

c log(k)

)
+ 1

)
> P

)
≤ exp(−1

2

(EP (1− 1
c log(k) ) + 1)2

EP (2− 1
c log(k) ) + 1

)

≤ exp(− 1

16
EP )

≤ 1

kc/16
.

Choosing c = 32, the inequality

Ah̃f̃ g̃ ≲
log(k)

m ∧ k
∑
i∈[k]

(fi − gi)
2

1 +NX
i +NY

i +NZ
i

≍ log(k)

m ∧ k
∥f̃ − g̃∥22

holds with probability at least 1 − 1/k. Using that ∥h/f∥∞ ∧ ∥h/g∥∞ ≲ 1 for both (LF) and (rLF), we obtain
Ah̃f̃ g̃ ≲

log(k)
n∧k ∥f̃ − g̃∥22 similarly. Combining the two bounds yields

Ah̃f̃ g̃ ≲
log(k)

(m ∨ n) ∧ k
∥f̃ − g̃∥22. (A.14)

To summarize, under the assumptions that n ≳
√
k, and at the cost of inflating the alphabet size to at most 5

2k and
a probability of error at most 3% + 1

k , we may assume that the inequalities (A.12), (A.13) and (A.14) hold with
universal constants.

Applying Proposition 4. We only analyse the type-I error, as the type-II error follows analogously. As explained
earlier, we now apply the test 1{T−d

LF ≥ 0} to the transformed samples with pmfs f̃ , g̃, h̃. Note that for cr <
√
2/5

we have
∥g̃ − h̃∥22 − ∥f̃ − h̃∥22 ≳ ∥f̃ − g̃∥22



for universal constants. Therefore we see that −ET−d
LF ≥ c∥f̃ − g̃∥22 +R for some universal constant c > 0, where

the residual term R can be bounded as

|R| =

∣∣∣∣∣∥f̃∥22 − ∥g̃∥22
n

∣∣∣∣∣
≲

∥f̃ − g̃∥2
n
√
k ∧ (m ∨ n)

,

where we used (A.12). Let α = ( kn∧
k
m )∨1. We have −ET−d

LF ≳ ∥f̃−g̃∥22 provided n ≳ 1/(∥f̃−g̃∥2
√
k ∧ (m ∨ n)) ≍√

α/ε, which we assume from here on. Plugging in the bounds derived above, the test 1(TLF ≥ 0) on the transformed
observations has type-I probability of error bounded by 1/3 provided

∥f̃ − g̃∥42 ≳
1

n

√
α√
k
∥f̃ − g̃∥22 +

1

m

log(k)α

k
∥f̃ − g̃∥22 +

α

k

(
1

nm
+

1

n2

)
for a small enough implied constant on the left. Looking at each term separately yields the sufficient conditions

m ≳
log(k)α

ε2
and n ≳

√
kα

ε2
and mn ≳

kα

ε4
.

The diagonal. See the discussion at the end of the proof for PDb.

APPENDIX B
LOWER BOUNDS OF THEOREM 1 AND 2

Let M(X ) be the set of all probability measures on some space X , and P ⊆ M(X ) be some family of
distributions. In this section we prove lower bounds for likelihood-free hypothesis testing problems. For clarity, let
us formally state the problem as testing between the hypotheses

H0 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
X : PX,PY ∈ P, TV(PX,PY) ≥ ε}

versus

H1 = {P⊗n
X ⊗ P⊗n

Y ⊗ P⊗m
Y : PX,PY ∈ P, TV(PX,PY) ≥ ε}.

(B.1)

Our strategy for proving lower bounds relies on the following well known result proved in the main text.

Lemma 5. Take hypotheses H0, H1 ⊆ M(X ) and P0, P1 ∈ M(X ) random. Then

inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1

2
(1− TV(EP0,EP1))−

∑
i

P(Pi /∈ Hi),

where the infimum is over all tests ψ : X → {0, 1}.

The following will also be used multiple times throughout:

Lemma 6 ([48, Lemmas 2.3 and 2.4]). For any probability measures P0,P1,

1

4
H4(P0,P1) ≤ TV2(P0,P1) ≤ H2(P0,P1) ≤ KL(P0∥P1) ≤ χ2(P0∥P1).

The inequalities between TV and H are attributed to Le Cam, while the bound TV ≤
√
KL/2 is due to Pinsker.

The use of the χ2-divergence for bounding the total variation distance between mixtures of products was pioneered
by Ingster [65], and is sometimes referred to as the Ingster-trick.

Recall that the necessity of m ≳ nHT(ε,P) and n ≳ nGoF(ε,P) were shown in Proposition 1. Thus, most of
work lies in obtaining the lower bound on m · n.
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A. The class PH

Proposition 10. For a constant c > 0 independent of ε,

c{m ≥ 1/ε2, n ≥ ε−(2β+d/2)/β ,mn ≥ ε−2(2β+d/2)/β} ⊇ RLF(ε,PH(β, d, CH)).

Proof. Adversarial construction. Take a smooth function h : Rd → R supported on of [0, 1]d with
∫
h = 0 and∫

h2 = 1. Let κ ≥ 1 be an integer, and for j ∈ [κ]d define the scaled and translated functions hj as

hj(x) = κd/2h(κx− j + 1).

Then hj is supported on the cube [(j − 1)/κ, j/κ] and
∫
h2j = 1, where we write j/κ = (j1/κ, . . . , jd/κ). Let

ρ > 0 be small and for each η ∈ {−1, 0, 1}κd

define the function

fη(x) = 1 + ρ
∑
j∈[κ]d

ηjhj(x).

In particular, f0 = 1 is the uniform density. Clearly
∫
fη = 1, and to make it positive we choose ρ, κ such that

ρκd/2∥h∥∞ ≤ 1/2. By [42], choosing

ρκd/2+β ≤ CH/(4∥h∥C⌊β⌋ ∨ 2∥h∥C⌊β⌋+1) (B.2)

ensures that fη ∈ P(β, d, CH). Note also that ∥fη − 1∥1 = ρκd/2. For ε ∈ (0, 1) we set κ ≍ ε−1/β and ρ ≍
ε(2β+d)/(2β). These ensure that (B.2) and TV(fη, f0) ≳ ε hold, where as usual the constants may depend on
(β, d, CH). Noting that ∥

√
fη − 1∥2 ≍ ∥fη − 1∥1 ≳ ε, we immediately obtain the lower bound m ≳ 1/ε2 by

reduction from binary hypothesis testing (III.1). Observe also that for any η, η′,∫
[0,1]d

fη(x)fη′(x)dx = 1 + ρ2⟨η, η′⟩ (B.3)

which will be used later.
Goodness-of-fit testing. Let η be drawn uniformly at random. We show that TV(f⊗n0 ,Ef⊗nη ) can be made

arbitrarily small provided n ≳ ε−(2β+d/2)/β , which yields a lower bound on n via reduction from goodness-of-fit
testing (III.3). By Lemma 6 we can focus on bounding the χ2 divergence. Via Ingster’s trick we have

χ2(Eη[f
⊗n
η ], f⊗n0 ) + 1 =

∫
[0,1]d×···×[0,1]d

(
Eη

n∏
i=1

fη(xi)

)2

dx1 · · · dxn

= Eηη′
n∏
i=1

(∫
[0,1]d

fη(x)fη′(x)dx

)
,

where η, η′ are i.i.d.. By (B.3) and the inequalities 1 + x ≤ ex, cosh(x) ≤ exp(x2) for all x ∈ R, we have

= Eηη′
(
1 + ρ2⟨η, η′⟩

)n
≤ Eηη′ exp(nρ

2⟨η, η′⟩)

= cosh(nρ2)κ
d

≤ exp(n2ρ4κd).

Thus, goodness-of-fit testing is impossible unless n ≳ ρ−2κ−d/2 ≍ 1/ε(2β+d/2)/β .
Likelihood-free hypothesis testing. We are now ready to show the lower bound on the interaction term mn.

Once again η ∈ {±1}κd

is drawn at random and we apply Lemma 5 with the choices P0 = f⊗nη ⊗ f⊗n0 ⊗ f⊗mη



against P1 = f⊗nη ⊗ f⊗n+m0 . Let P0,XY Z ,P1,XY Z denote the joint distribution of the samples X,Y, Z under the
measures EP0,EP1 respectively. By Pinsker’s inequality and the chain rule we have

TV(P0,XY Z ,P1,XY Z)
2 = TV(P0,XZ ,P1,XZ)

2

≤ KL(P0,XZ∥P1,XZ)

= KL(P0,Z|X∥P1,Z|X |P0,X) + KL(P0,X∥P1,X)︸ ︷︷ ︸
=0

,

where the last line uses that the marginal of X is equal under both measures. Clearly P1,Z|X is simply Unif([0, 1]d)⊗m

and P0,X , P0,Z|X have densities Eηf⊗nη and Eη|Xf⊗mη respectively. Given X , let η′ be an independent copy of η
from the posterior. By Ingster’s trick we have

KL(P0,Z|X∥P1,Z|X |P0,X) ≤ χ2(P0,Z|X∥P1,Z|X |P0,X)

= −1 + EX

∫
[0,1]d×···×[0,1]d

Eη|XEη′|X

m∏
i=1

fη(zi)fη′(zi)dz1 . . . dzm

= −1 + Eηη′(1 + ρ2⟨η, η′⟩)m,

where the last line uses (B.3). Let N = (N1, . . . , Nκd) be the vector of counts indicating the number of Xi that
fall into each bin {[(j − 1)/κ, j/κ]}j∈[κ]d . Clearly N

d∼ Multinomial(n, ( 1
κd , . . . ,

1
κd )). Using that ηjη′j depends

on only those Xi that fall in bin j and the inequality 1 + x ≤ exp(x) valid for all x ∈ R, we can write

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1 ≤ ENEηη′|N
∏
j∈[κ]d

exp(ρ2mηjη
′
j)

= EN
∏
j∈[κ]d

Eηjη′j |Nj
exp(ρ2mηjη

′
j).

We now focus on a particular bin j. Define the bin-conditional densities

p± = κd(1± ρhj)1[(j−1)/κ,j/κ], (B.4)

where we drop the dependence on j in the notation. Let X(j) ≜ (Xi1 , . . . , XiNj
) be those Xi that fall in bin j.

Note that {i1, . . . , iNj
} is a uniformly distributed size Nj subset of [n] and given Nj , the density of Xi1 , . . . , XiNj

is 1
2 (p

⊗Nj

+ + p
⊗Nj

− ). We can calculate

P(ηjη
′
j = 1|Nj) = EX(j)|Nj

P(ηjη
′
j = 1|X(j))

= EX(j)|Nj

[
P(ηj = 1|X(j))2 + P(ηj = −1|X(j))2

]
= EX(j)|Nj

[
1
4 (p

⊗Nj

+ )2 + 1
4 (p

⊗Nj

− )2

1
4 (p

⊗Nj

+ + p
⊗Nj

− )2

]

=
1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )) + χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− ))

)
.

By convexity of the χ2 divergence in its arguments and tensorization, we have

P(ηjη
′
j = 1|Nj) ≤

1

2
+

1

8

(
χ2(p

⊗Nj

+ ∥p⊗Nj

− ) + χ2(p
⊗Nj

− ∥p⊗Nj

+ )
)

=
1

4
+

∑
ω∈{±1}

(
κd
∫
[(j−1)/κ,j/κ]

(1 + ωρhj(x))
2

1− ωρhj(x)
dx

)Nj

.
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Using that ρ∥hj∥∞ ≤ 1/2 by construction, we have∫
[(j−1)/κ,j/κ]

(1 + ρhj(x))
2

1− ρhj(x)
dx =

1

κd
+

∫
[(j−1)/κ,j/κ]

4ρ2h2j (x)

1− ρhj(x)
dx

≤ 1

κd
+ 8ρ2.

The same bound is obtained for the other integral term. We get

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1 ≤ EN
∏
j∈[κ]d

(
1

4

(
eρ

2m − e−ρ
2m
)
(1 + (1 + 8ρ2κd)Nj ) + e−ρ

2m

)
= (†).

The final step is to apply Lemma 8 to pass the expectation through the product. Assuming that m ∨ n ≲ ρ−2 ≍
ε−(2β+d)/β for a small enough implied constant, using the inequalities ex ≤ 1+x+x2, 1−x ≤ e−x ≤ 1−x+x2/2
valid for all x ∈ [0, 1], and Lemma 8, we obtain

(†) ≤ (e−ρ
2m +

1

4

(
eρ

2m − e−ρ
2m
)
(1 + e8ρ

2n))κ
d

≤ (1 + cρ4mn)κ
d

≤ exp(cρ4κdmn)

for a universal constant c > 0. Therefore, if m ∨ n ≲ ε−(2β+d)/β likelihood-free hypothesis testing is impossible
unless mn ≳ ρ−4κ−d ≍ 1/ε2(2β+d/2)/β . Combining with the previously derived bounds m ≳ 1/ε2 and n ≳
1/ε(2β+d/2)/β , we can conclude.

B. The class PG

Proposition 11. For a constant c > 0 independent of ε,

c{m ≥ 1/ε2, n ≥ ε−(2s+1/2)/s,mn ≥ ε−2(2s+1/2)/s} ⊇ RLF(ε,PG(s, CG)).

Proof. Adversarial construction. Let γ ∈ ℓ1 and θ ∼ ⊗∞
k=1N (0, γk). Define the random measure Pγ ≜ ⊗∞

k=1N (θk, 1).
Recall our definition of the Sobolev ellipsoid E(s, CG) with associated sobolev norm ∥ · ∥s. We have

(E∥θ∥s)2 ≤ E
∞∑
j=1

j2sθ2i

= ∥√γ∥2s.

Let ε ∈ (0, 1) be given. For our proofs we use

γk =

{
c1ε

(2s+1)/s for 1 ≤ k ≤ c2ε
−1/s

0 otherwise
(B.5)

for appropriate constants c1, c2. We need to verify that this choice is valid, in that Pγ ∈ PG(s, CG) and TV(Pγ ,P0) ≳
ε with high probability. To this end, we compute

∥√γ∥2s = c1ε
(2s+1)/s

c2ε
−1/s∑
j=1

j2s ≤ c1c
2s+1
2

TV(Pγ ,P0) ≥
1 ∧ ∥θ∥2

200
,

where the second line follows by [54, Theorem 1.2]. By standard results, the squared norm ∥θ∥22 concentrates
around c1c2ε2 with exponentially high probability. Further, for sufficiently large c1, c2 the event {Pγ /∈ PG(s, CG)}
has probability at most, say, 0.01 by Markov’s inequality. Thus c1, c2 can be chosen independently of ε so that



P(Pγ ∈ PG(s, CG),TV(Pγ ,P0) ≥ ε) ≥ .98. By Lemma 2 we have H(Pγ ,P0) ≍ ε with high probability, and thus
the bound m ≳ 1/ε2 follows by reduction from hypothesis testing (III.1).

Goodness-of-fit testing. We show that TV(P⊗n
0 ,EP⊗n

γ ) can be made arbitrarily small as long as n ≳ 1/ε(2s+1/2)/s,
which yields a lower bound on n via reduction from goodness-of-fit testing (III.3). Let us compute the distribution
EP⊗n

γ . By independence clearly EP⊗n
γ = ⊗∞

k=1Eθ∼N (0,γk)N (θ, 1)⊗n. Focusing on the inner term and and dropping
the subscript k, for the density we have

Eθ∼N (0,γ)

 1

(2π)n/2
exp(−1

2

n∑
j=1

(xj − θ)2)

 ∝ exp(−∥x∥22
2

)E exp(−n
2
(θ2 − 2θx̄)),

where we write x̄ ≜ 1
n

∑
j xj . Looking at just the term involving θ, we have

E exp(−n
2
(θ2 − 2θx̄)) ∝

∫
exp(−1

2
(θ2(n+

1

γ
)− 2θnx̄))dθ ∝ exp(

1

2

n2x̄2

n+ 1
γ

).

Putting everything together, we see that EP⊗n
γ = ⊗∞

k=1N (0, (Idn − γk
1+nγk

1n1
T
n)

−1). Thus, using Lemma 6 we
obtain

TV2(P⊗n
0 ,EP⊗n

γ ) ≤
∞∑
k=1

KL(N (0, Idn)∥N (0, (Idn − γk
1 + nγk

1n1
T
n)

−1
))

=
1

2

∞∑
k=1

(
− nγk
nγk + 1

+ log(1 + nγk)

)
≤ 1

2

∞∑
k=1

n2γ2k
1 + nγk

≲
∞∑
k=1

n2γ2k.

Taking γ as in (B.5) gives
TV2(P⊗n

0 ,EP⊗n
γ ) ≲ n2ε2(2s+1/2)/s.

Thus, goodness-of-fit testing is impossible unless n ≳ 1/ε(2s+1/2)/s as desired.
Likelihood-free hypothesis testing. We apply Lemma 5 with measures P0 = P⊗n

γ ⊗ P⊗n
0 ⊗ P⊗m

γ and P1 =
P⊗n
γ ⊗ P⊗n

0 ⊗ P⊗m
0 . By an analogous calculation to that in the previous part, we obtain

EP0 = ⊗∞
k=1N (0, (Id2n+m − 1

n+m+ 1
γk

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m

)−1) ≜ ⊗∞
k=1N (0,Σ0k)

EP1 = ⊗∞
k=1N (0, (Id2n+m − 1

n+ 1
γk

1n1T
n 0 0

0 0 0
0 0 0

)−1) ≜ ⊗∞
k=1N (0,Σ1k).

By the Sherman-Morrison formula, we have

Σ0k = Id2n+m + γk

1n1
T
n 0 1n1

T
m

0 0 0
1m1

T
n 0 1m1

T
m


Therefore, by Pinsker’s inequality and the closed form expression for the KL-divergence between centered Gaussians,
we obtain

TV2(EP0,EP1) ≤ KL(EP0∥EP1)

=
1

2

∞∑
k=1

(
γkm− log

(
1 +

γkm

γk(n+m) + 1

))
.
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Once again we choose γ as in (B.5). Using the inequality log(1 + x) ≥ x− x2 valid for all x ≥ 0 we obtain

TV2(EP0,EP1) ≲ ε−2(2s+1/2)/s(m2 +mn).

Therefore, likelihood-free hypothesis testing is impossible unless m ≳ ε−(2s+1/2)/s or nm ≳ ε−2(2s+1/2)/s. Note
that we already have the lower bound n ≳ ε−(2s+1/2)/s by reduction from goodness-of-fit testing (III.3), so that
m ≳ ε−(2s+1/2)/s automatically implies nm ≳ ε−2(2s+1/2)/s. Combining everything we get the desired bounds.

C. The classes PDb and PD

Proposition 12. For a constant c > 0 independent of ε and k,

c{m ≥ 1/ε2, n ≥
√
k/ε2,mn ≥ k/ε4} ⊇ RLF(ε,PDb) ⊇ RLF(ε,PD).

Proof. The second inclusion is trivial. For the first inclusion we proceed analogously to the case of PH.
Adversarial construction. Let k be an integer and ε ∈ (0, 1). For η ∈ {−1, 1}k define the distribution pη on [2k]
by

pη(2j − 1) =
1

2k
(1 + ηjε)

pη(2j) =
1

2k
(1− ηjε),

for j ∈ [k]. Clearly H(pη, p0) ≍ TV(pη, p0) = ε, where p0 = Unif[2k], so that by reduction from binary hypothesis
testing (III.3) we get the lower bound m ≳ 1/ε2. Observe also that for any η, η′ ∈ {±1}k,∑

j∈[2k]

pη(j)pη′(j) =
1

2k
(1 +

ε2⟨η, η′⟩
k

). (B.6)

Goodness-of-fit testing. Let η be uniformly random. We show that TV(p⊗n0 ,Ep⊗nη ) can be made arbitrarily
small as long as n ≲

√
k/ε2, which yields the corresponding lower bound on n by reduction from goodness-of-fit

testing (III.3). Once again, by Lemma 6 we focus on the χ2 divergence. We have

χ2(Ep⊗nη ∥p⊗n0 ) + 1 = (2k)n
∑

j∈[2k]n

Eηη′
n∏
i=1

pη(ji)pη′(ji)

= Eηη′(1 +
ε2⟨η, η′⟩

k
)n

≤ exp(n2ε4/k)

where the penultimate line follows from (B.6) and the last line via the same argument as in B-A. Thus, goodness-of-fit
testing is impossible unless n ≳

√
k/ε2.

Likelihood-free hypothesis testing. We apply Lemma 5 with the two random measures P0 = p⊗nη ⊗p⊗n0 ⊗p⊗mη
and P1 = p⊗nη ⊗ p

⊗(n+m)
0 . Analogously to the case of PH, let P0,XY Z ,P1,XY Z respectively denote the distribution

of the observations X,Y, Z under EP0,EP1 respectively. As for PH, we have

TV2(P0,XY Z ,P1,XY Z) ≤ KL(P0,XY Z∥P1,XY Z)

≤ KL(P0,Z|X∥P1,Z|X |P0,X).



For any X the distribution P1,Z|X is uniform, and P0,Z|X ,P0,X have pmf Eη|Xp⊗mη and Eηp⊗nη respectively. Once
again, by Lemma 6 we may turn our attention to the χ2-divergence. Given X , let η′ have the same distribution as
η and be independent of it. Then

χ2(P0,Z|X∥P1,Z|X |P0,X) + 1 = (2k)mEX
∑

j∈[2k]m

Eη|XEη′|X

n∏
i=1

pη(ji)pη′(ji)

= Eηη′(1 +
ε2⟨η, η′⟩

k
)m

≤ Eηη′
∏
j∈[k]

exp(
ε2mηjη

′
j

k
),

where we used Lemma B.6. Let N = (N1, . . . , Nk) be the vector of counts indicating the number of the X1, . . . , Xn

that fall into the bins {2j − 1, 2j} for j ∈ [k]. Clearly N ∼ Mult(n, ( 1k , . . . ,
1
k )). Let us focus on a specific bin

{2j − 1, 2j} and define the bin-conditional pmf

p±(x) =


1
2 (1± ε) if x = 2j − 1,
1
2 (1∓ ε) if x = 2j

0 otherwise,

where we drop the dependence on j in the notation. Let Xi1 , . . . , XiNj
be the Nj observations falling in {2j−1, 2j}.

Given Nj , the pmf of Xi1 , . . . , XiNj
is 1

2 (p
⊗Nj

+ + p
⊗Nj

− ). We have ηjη′j ∈ {±1} almost surely, and analogously to
Section B-A we may compute

P(ηjη
′
j = 1|Nj) = EX|Nj

P(ηjη
′
j = 1|X)

= EX|Nj

[
P(ηj = 1|X)2 + P(ηj = −1|X)2

]
=

1

2
+

1

4

(
χ2(p

⊗Nj

+ ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )) + χ2(p
⊗Nj

− ∥1
2
(p

⊗Nj

+ + p
⊗Nj

− )

)
≤ 1

2
+

1

8

(
χ2(p

⊗Nj

− ∥p⊗Nj

+ ) + χ2(p
⊗Nj

+ ∥p⊗Nj

− )
)
.

We can bound the two χ2-divergences by

χ2(p
⊗Nj

± ∥p⊗Nj

∓ ) + 1 =

(
1 + 3

2ε
2

1− ε2

)Nj

≤ (1 + 3ε2)Nj ,

provided ε ≤ c for some universal constant c > 0. Using Lemma 8, we obtain the bound

EN
∏
j∈[k]

Eηη′|Nj
exp(

ε2mηjη
′
j

k
) ≤ EN

∏
j∈[k]

(
1

2
(exp(

ε2m

k
)− exp(−ε

2m

k
))(1 + (1 + 2ε2)Nj ) + exp(−ε

2m

k
)

)

≤
(
1

2
(exp(

ε2m

k
)− exp(−ε

2m

k
))(1 + exp(

2ε2n

k
)) + exp(−ε

2m

k
)

)k
.

Now, under the assumption that m ∨ n ≲ k/ε2 for some small enough implied constant, the above can be further
bounded by

≤ (1 + c
ε4mn

k2
)k

≤ exp(
cε4mn

k
),
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for a universal constant c > 0. In other words, for n ∨m ≲ k/ε2 likelihood-free hypothesis testing is impossible
unless mn ≳ k/ε4. Combining everything yields the desired bounds.

Our second lower bound, tight in the regime n ≤ m, follows by reduction to two-sample testing Proposition 1.

Proposition 13. For a constant c > 0 independent of ε and k,

c{m ≥ 1/ε2, n2m ≥ k2/ε4, n ≤ m} ⊇ RLF(ε,TV,PD) ∩ N2
n≤m,

where N2
n≤m = {(n,m) ∈ N2 : n ≤ m}.

Proof. Follows from (III.6) and the lower bound construction in [23].

1) Valiant’s wishful thinking theorem.: For our third and final lower bound (which is tight in the regime m ≤
n ≤ k) we apply a method developed by Valiant.

Definition 6. For distributions p1, . . . , pℓ on [k] and (n1, . . . , nℓ) ∈ Nℓ, we define the (n1, . . . , nℓ)-based moments
of (p1, . . . , pℓ) as

m(a1, . . . , aℓ) =

k∑
i=1

ℓ∏
j=1

(njpj(i))
aj

for (a1, . . . , aℓ) ∈ Nℓ.

Let p+ = (p+1 , . . . , p
+
ℓ ) and p− = (p−1 , . . . , p

−
ℓ ) be ℓ-tuples of distributions on [k] and suppose we observe

samples {X(i)}i∈[ℓ], where the number of observations in X(i) is Poi(ni). Let H± denote the hypothesis that the
samples came from p±, up to an arbitrary relabeling of the alphabet [k]. It can be shown that to test H+ against
H−, we may assume without loss of generality that our test is invariant under relabeling of the support, or in other
words, is a function of the fingerprints. The fingerprint f of a sample {X(i)}i∈[ℓ] is the function f : Nℓ → N which
given (a1, . . . , aℓ) ∈ Nℓ counts the number of bins in [k] which have exactly ai occurences in the sample X(i).

Theorem 5 ([59, Wishful thinking]). Suppose that |p±i |∞ ≤ η/ni for all i ∈ [ℓ] for some η > 0, and let m+ and
m− denote the (n1, . . . , nℓ)-based moments of p+, p− respectively. Let f± denote the distribution of the fingerprint
under H± respectively. Then

TV(f+, f−) ≤ 2(eηℓ − 1) + eℓ(η/2+log 3)
∑
a∈Nℓ

|m+(a)−m−(a)|√
1 +m+(a) ∨m−(a)

.

Proof. The proof is a straightforward adaptation of [59] and thus we omit it.

Remark 10. Although Theorem 5 assumes a random (Poisson distributed) number of samples, the results carry over
to the deterministic case with no modification, due to the sub-exponential concentration of the Poisson distribution.

We are ready to prove our likelihood-free hypothesis testing lower bound using Theorem 5.

Proposition 14. For a constant c > 0 independent of ε and k,

c{m ≥ 1/ε2, n2m ≥ k2/ε4, m ≤ n} ⊇ RLF(ε,TV,PD) ∩ N2
m≤n,

where N2
m≤n = {(n,m) ∈ N2 : m ≤ n}.

Proof. We focus on the regime n ≤ k, as otherwise the result is subsumed by Proposition 12. Suppose that
ε ∈ (0, 1/2), η = 0.01 (say) and n/η ≤ k/2. Define γ = n/η and let p, q be pmfs on [k] with weight (1− ε)/γ on
[γ] and k/4 light elements with weight 4ε/k on [k/2, 3k/4] and [3k/4, k] respectively. To apply Valiant’s wishful



thinking theorem, we take p+ = (p, q, p) and p− = (p, q, q) with corresponding hypotheses H±. The (n, n,m)-based
moments of p± are given by

1

na+bmc
m+(a, b, c) =


k if a+ c = 0, b = 0(
1−ε
α

)a+b+c
α+

(
4ε
k

)a+b+c k
4 if a+ c = 0 xor b = 0(

1−ε
α

)a+b+c
α if a+ c ≥ 1, b ≥ 1,

1

na+bmc
m−(a, b, c) =


k if a = 0, b+ c = 0(
1−ε
α

)a+b+c
α+

(
4ε
k

)a+b+c k
4 if a = 0 xor b+ c = 0(

1−ε
α

)a+b+c
α if a ≥ 1, b+ c ≥ 1.

By the wishful thinking theorem we know that

TV(f+, f−) ≤ 0.061 + 27.41
∑

a,b,c∈N

|m+(a, b, c)−m−(a, b, c)|√
1 + max(m+,m−)

.

Let us consider the possible values of |m+(a, b, c)−m−(a, b, c)|. It is certainly zero if a∧ b ≥ 1 or a = b = c = 0.
Suppose that a = 0 so that necessarily b+ c ≥ 1. Then

1

nbmc
|m+(0, b, c)−m−(0, b, c)| =

(
4ε

k

)b+c
k

4
1(b ∧ c ≥ 1).

Using the symmetry between a and b and that 1 +m+ ∨m− ≥ nbmc((1 − ε)/γ)b+cγ (for m+ ̸= m−), we can
bound the infinite sum above as

≲
∑
b,c≥1

nbmck1−(b+c)εb+c√
nbmcγ1−(b+c)(1− ε)b+c

≲
∑
b,c≥1

nb/2mc/2

(√
γ

k

)b+c−1

εb+c

Plugging in γ = n/η ≍ n, and using m ≤ n ≤ k, we obtain

TV(f+, f−)− 0.061 ≲
∑
b,c≥1

nb+
c
2−

1
2mc/2 1

kb+c−1
εb+c

=
n
√
mε2

k

∑
b,c≥0

(n
k

)b+ c
2
(m
k

) c
2

εb+c

≤ n
√
mε2

k

∑
b,c≥0

εb+c

≲
n
√
mε2

k
,

where we use that ε < 1/2. Thus, likelihood-free hypothesis testing is impossible for m ≤ n unless n2m ≳
k2/ε4.

APPENDIX C
PROOF OF THEOREM 4

A. Upper bound

We deduce the upper bound by applying the corresponding result for PD as a black-box procedure.
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Theorem 6 ([56]). For a constant independent of ε and k,

nGoF(ε,H,PD) ≍
√
k/ε2.

Write Gℓ for the regular grid of size ℓd on [0, 1]d and let Pℓ denote the L2-projector onto the space of functions
piecewise constant on the cells of Gℓ. For convenience let us recall Proposition 3.

Proposition 15. Let f, g ∈ PH(β, d, CH) with β ∈ (0, 1] and suppose that H(f, g) ≳ ε. Then

H(f, g) ≲ H(Pκf, Pκg)

for κ ≍ ε−2/β where the constants depend only on β, d, CH.

With the above approximation result, the proof of Theorem 4 is straightforward.

Proof of Theorem 4. Suppose we are testing goodness-of-fit to f0 ∈ PH based on an i.i.d. sample X1, . . . , Xn from
f ∈ PH. Take κ ≍ ε−2/β and bin the observations on Gκ, denoting the pmf of the resulting distribution as pf . Then,
under the alternative hypothesis that H(f, f0) ≥ ε, by Proposition 3

ε ≲ H(Pκf0, Pκf) = H(pf0 , pf ).

In particular, applying the algorithm achieving the upper bound in Theorem 6 to the binned observations, we see
that n ≳

√
κd/ε2 = ε−(2β+d)/β samples suffice.

B. Lower bound

The proof is extremely similar to the TV case, except we put the perturbations at density level ε2 instead of 1.

Proof. Let ϕ : [0, 1] → [0, 1] be a smooth function such that ϕ(x) = 0 for x ≤ 1/3 and ϕ(x) = 1 for x ≥ 2/3. Let
h : Rd → R also be smooth with

∫
h = 0 and

∫
h2 = 1 and support in [0, 1]d. Take ε ∈ (0, 1) and let

f0(x) = ε2 +
ϕ(x1)

∥ϕ∥1
(1− ε2),

which is a density on [0, 1]d. For a large integer κ and j ∈ [κ/3]× [κ]d−1 let

hj(x) = κd/2h(κx− j + 1)

for x ∈ [0, 1]d. Then hj is supported on [(j−1)/κ, j/κ] ⊆ [0, 1/3]×[0, 1]d−1 and
∫
h2j = 1. For η ∈ {±1}[κ/3]×[κ]d−1

and ρ > 0 let
fη(x) = f0 + ρ

∑
j∈[κ/3]×[κ]d−1

ηjhj(x).

Then fη is positive provided that ε2 ≥ ρκd/2|h|∞ ≍ ρκd/2. Further, ∥fη∥Cβ is of constant order provided ρκd/2+β ≲
1. Under these assumptions fη ∈ PH. Note that the Hellinger distance between fη and f0 is

H2(f0, fη) =
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ , jκ ]

(√
f0(x)−

√
fη(x)

)2

dx

=
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ , jκ ]

ρ2h2j (x)

(
√
f0(x) +

√
fη(x))2

dx

≥
∑

j∈[κ/3]×[κ]d−1

∫
[ j−1

κ , jκ ]

ρ2h2j (x)

4ε2
dx

≳
ρ2κd

ε2
.



Suppose we draw η uniformly at random. Via Ingster’s trick we compute

χ2(Eηf
⊗n
η ∥f⊗n0 ) + 1 =

∫
Eηη′

n∏
i=1

fη(xi)fη′(xi)

f0(xi)
dx1 . . . dxn

= Eηη′
(∫

fη(x)fη′(x)

f0(x)
dx

)n
.

Looking at the integral term on the inside we get

∫
fη(x)fη′(x)

f0(x)
dx =

∫
(
f0(x) + ρ

∑
j∈[κ/3]×[κ]d−1

ηjhj(x)

)(
f0(x) + ρ

∑
j∈[κ/3]×[κ]d−1

η′jhj(x)

)
f0(x)

dx

= 1 + ρ
∑
j

(ηj + η′j)

∫
hj(x)dx+ ρ2

∑
j

ηjη
′
j

∫
hj(x)

2

f0(x)
dx

= 1 +
ρ2

ε2

∑
j

ηjη
′
j

∫
hj(x)

2dx

= 1 +
ρ2

ε2
⟨η, η′⟩,

where we’ve used that hj and hj′ have disjoint support unless j = j′,
∫
hj = 0,

∫
h2j = 1, and that f0(x) = ε2 for

all x with x1 ≤ 1/3. Plugging in, using the inequalities 1 + x ≤ exp(x) and cosh(x) ≤ exp(x2) we obtain

χ2(Eηf
⊗n
η ∥f⊗n0 ) + 1 ≤ Eηη′(1 +

ρ2

ε2
⟨η, η′⟩)n

≤ Eηη′ exp(
ρ2n

ε2
⟨η, η′⟩)

= cosh(
ρ2n

ε2
)κ

d/3

≤ exp(
ρ4n2κd

3ε4
).

Choosing κ = ε−2/β and ρ = ε(2β+d)/β we see that goodness-of-fit testing of f0 is impossible unless

n ≳
ε2

ρ2κd/2
= ε−

2β+d
β .

APPENDIX D
AUXILIARY TECHNICAL RESULTS

A. Proof of Lemma 1

Proof. We prove the upper bound first. Let P0,P1 ∈ P be arbitrary. Then by Lemma 6,

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i) ≤ inf

ψ

(
P⊗m
0 (ψ = 1) + P⊗m

1 (ψ = 0)
)

= 1− TV(P⊗m
0 ,P⊗m

1 )

≤ 1− 1

2
H2(P⊗m

0 ,P⊗m
1 ) ≜ (†).

By tensorization of the Hellinger affinity, we have

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
. (D.1)



UNDER PEER REVIEW 37

Plugging in, along with 1 + x ≤ exp(x) gives

(†) ≤ exp(−m
2
H2
(
P⊗m
0 ,P⊗m

1 )
)
.

Taking m > 2 log(3)/H2(P0,P1) shows the existence of a successful test. Let us turn to the lower bound. Using
Lemma 6 we have

inf
ψ

max
i=0,1

P⊗m
i (ψ ̸= i) ≥ 1

2

(
1− TV(P⊗m

0 ,P⊗m
1 )

)
≥ 1

2

(
1− H(P⊗m

0 ,P⊗m
1 )

)
.

Note that it is enough to restrict the maximization in Lemma 1 to P0,P1 ∈ P with H2(P0,P1) < 1. Now, by (D.1)
and the inequalities 1− x ≥ e−2x for x ∈ [0, 1/2] and e−x ≥ 1− x for x ≥ 0, we obtain

H2(P⊗m
0 ,P⊗m

1 ) = 2− 2

(
1− 1

2
H2(P0,P1)

)m
≤ 2− 2 exp(−mH2(P0,P1))

≤ 2mH2(P0,P1).

Taking m = 1/(18H2(P0,P1)) concludes the proof via Lemma 5.

B. Proof of Proposition 4

For arbitrary f ∈ L2(µ) write fi = ⟨fϕi⟩ and fii′ = ⟨fϕiϕi′⟩, assuming that the quantities involved are
well-defined. We record some useful properties of Pr that we will use throughout our proofs.

Lemma 7. Pr is self-adjoint and has operator norm

∥Pr∥ ≜ sup
f∈L2(µ):∥f∥2≤1

∥Pr(f)∥2 ≤ 1.

Suppose that f, g, h, t ∈ L2(µ) and that each quantity below is finite. Then∑
ii′

figi′hii′ = ⟨hPr(f)Pr(g)⟩,∑
ii′

figihi′ti′ = ⟨fPr(g)⟩⟨hPr(t)⟩∑
ii′

fii′gii′ =
∑
i

⟨fϕiPr(gϕi)⟩,

where the summation is over i, i′ ∈ [r].

Proof. Let P⊥
r denote the orthogonal projection onto the orthogonal complement of span({ϕ1, . . . , ϕr}). Then for

any f, g ∈ L2(µ) we have

⟨fPr(g)⟩ = ⟨(Pr(f) + P⊥
r (f))Pr(g)⟩ = ⟨Pr(f)Pr(g)⟩ = ⟨Pr(f)g⟩,

where the last equality is by symmetry. We also have

∥Pr(f)∥22 ≤ ∥Pr(f)∥22 + ∥P⊥
r (f)∥22 = ∥Pr(f) + P⊥

r (f)∥2 = ∥f∥22.



Let f, g, h, t ∈ L2(µ). Then∑
ii′

figi′hii′ =
∑
i

fi
∑
i′

gi′hii′ =
∑
i

fi⟨hPrg, ϕi⟩ = ⟨Pr(f)hPr(g)⟩∑
ii′

figihi′ti′ = (
∑
i

figi)(
∑
i′

hi′ti′) = ⟨fPr(g)⟩⟨hPr(t)⟩∑
ii′

fii′gii′ =
∑
i

⟨fϕi
∑
i′

⟨gϕiϕi′⟩ϕi′⟩ =
∑
i

⟨fϕiPr(gϕi)⟩.

Proof of Proposition 4. Let us label the different terms of the statistic T−d
LF :

T−d
LF =

r∑
i=1

{
2

n2

n∑
j<j′

ϕi(Xj)ϕi(Xj′)−
2

n2

n∑
j<j′

ϕi(Yj)ϕi(Yj′)

− 2

nm

n∑
j=1

m∑
u=1

ϕi(Xj)ϕi(Zu) +
2

nm

n∑
j=1

m∑
u=1

ϕi(Yj)ϕi(Zu)

}

=
2

n2
I− 2

n2
II− 2

nm
III+

2

nm
IV.

Recall that X,Y, Z ∼ f⊗n, g⊗n, h⊗m respectively. A straightforward computation yields

ETLF = ∥Pr(f − h)∥22 − ∥Pr(g − h)∥22 −
1

n

(
∥Pr[f ]∥22 − ∥Pr[g]∥22

)
.

We decompose the variance as

var(TLF) =
4

n4
var(I) +

4

n4
var(II) +

4

n2m2
var(III) +

4

n2m2
var(IV)

− 8

n3m
Cov(I, III)− 8

n3m
Cov(II, IV)− 8

n2m2
Cov(III, IV),

where we used independence of the pairs (I, II), (I, IV), (II, III). Expanding the variances we obtain

var(I) =
∑
ii′

((
n

2

)
(f2ii′ − f2i f

2
i′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(fifi′fii′ − f2i f

2
i′)

)

var(II) =
∑
ii′

((
n

2

)
(g2ii′ − g2i g

2
i′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(gigi′gii′ − g2i g

2
i′)

)
var(III) =

∑
ii′

(
nm(fii′hii′ − fifi′hihi′) + nm(m− 1)(fii′hihi′ − fifi′hihi′)+

+mn(n− 1)(fifi′hii′ − fifi′hihi′)
)

var(IV) =
∑
ii′

(
nm(hii′gii′ − hihi′gigi′) +mn(n− 1)(hii′gigi′ − hihi′gigi′)

+ nm(m− 1)(gii′hihi′ − hihi′gigi′)
)
.
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For the covariance terms we obtain

Cov(I, III) =
∑
ii′

2m

(
n

2

)
(fii′fihi′ − f2i fi′hi′)

Cov(II, IV) =
∑
ii′

2m

(
n

2

)
(gii′gihi′ − g2i gi′hi′)

Cov(III, IV) =
∑
ii′

mn2(hii′figi′ − figi′hihi′).

We can now start collecting the terms, applying the calculation rules from Lemma 7 repeatedly. Note that
(
n
2

)2 −(
n
2

)
−
(
4
2

)(
n
4

)
= n3 − 3n2 + 2n, and by inspection we can conclude that 1/n, 1/m, 1/nm, 1/n2 and 1/n3 are the

only terms with nonzero coefficients. We look at each of them one-by-one:

Coef(
1

n
) =

r∑
ii′

(
4(fifi′fii′ − f2i f

2
i′)︸ ︷︷ ︸

var(I)

+4(gigi′gii′ − g2i g
2
i′)︸ ︷︷ ︸

var(II)

+4(hihi′fii′ − fifi′hihi′)︸ ︷︷ ︸
var(III)

+

4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(fii′fihi′ − f2i fi′hi′)︸ ︷︷ ︸
Cov(I,III)

− 8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV )

)
≤ 4Affh + 4Aggh,

recalling the definition Auvt = ⟨u
[
Pr(v − t)

]2⟩ for u, v, t ∈ L2(µ). Similarly, we get

Coef(
1

m
) =

r∑
ii′

(
4(hii′fifi′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

+4(hii′gigi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

− 8(hii′figi′ − fihihi′gi′)︸ ︷︷ ︸
Cov(III,IV )

≤ 4Ahfg.

For the lower order terms we obtain

Coef(
1

nm
) =

r∑
ii′

(
4(fii′hii′ − fifi′hihi′)− 4(fii′hihi′ − fifi′hihi′)− 4(fifi′hii′ − fifi′hihi′)︸ ︷︷ ︸

var(III)

+ 4(hii′gii′ − hihi′gigi′)− 4(hii′gigi′ − hihi′gigi′)− 4(gii′hihi′ − hihi′gigi′)︸ ︷︷ ︸
var(IV )

)
≤ 4⟨fPr(h)⟩2 + 4⟨gPr(h)⟩2 + 4Bfh + 4Bgh

≲ |Bfh|+ |Bgh|+ ∥f + g + h∥42
where we recall the definition Buv =

∑
i⟨uϕiPr(vϕi)⟩ for u, v ∈ L2(µ) and apply the Cauchy-Schwarz inequality.

Next, we look at the coefficient of 1/n2 and find

Coef(
1

n2
) =

∑
ii′

(
2(f2ii′ − f2i f

2
i′)− 12(fii′fifi′ − f2i f

2
i′)︸ ︷︷ ︸

var(I)

+2(g2ii′ − g2i g
2
i′)− 12(gii′gigi′ − g2i g

2
i′)︸ ︷︷ ︸

var(II)

+ 8(fii′fihi′ − f2i fi′hi′)︸ ︷︷ ︸
Cov(I,III)

+8(gii′gihi′ − g2i gi′hi′)︸ ︷︷ ︸
Cov(II,IV)

)
≲ |Bff |+ |Bgg|+ ∥f + g + h∥42 + ∥f + g + h∥32.



Finally, we look at the coefficient of 1/n3:

Coef

(
1

n3

)
=
∑
ii′

(
−2(f2ii′ − f2i f

2
i′) + 8(fii′fifi′ − f2i f

2
i′)︸ ︷︷ ︸

Cov(I,III)

−2(g2ii′ − g2i g
2
i′) + 8(gii′gigi′ − g2i g

2
i′)︸ ︷︷ ︸

Cov(I,III)

)
≲ |Bff |+ |Bgg|+ ∥f + g∥32.

C. Lemma 8

Lemma 8. Suppose that a, b, c > 0 and N = (N1, . . . , Nk) ∼ Mult(n, ( 1k , . . . ,
1
k )). Then

EN
∏
j∈[k]

(a+ b(1 + c)Nj ) ≤ (a+ becn/k)k.

Proof. Expanding via the binomial formula and using the fact that sums of Nj’s are binomial random variables, we
get

EN
∏
j∈k

(a+ b(1 + c)Nj ) = E
k∑
ℓ=0

(
k

ℓ

)
bℓ(1 + c)Bin(n,ℓ/k)ak−ℓ

=

k∑
ℓ=0

(
k

ℓ

)
bℓ(1 +

cℓ

k
)nak−ℓ

≤ (a+ becn/k)k,

where we used 1 + x ≤ ex for all x ∈ R.

D. Proof of Proposition 3

Let us write a+ ≜ a∨0 for both functions and real numbers. We start with some known results of approximation
theory.

Definition 7. For f : [0, 1]d → R define the modulus of continuity as

ω(δ; f) = sup
∥x−y∥2≤δ

|f(x)− f(y)|.

Lemma 9. For any real-valued function f and δ ≥ 0,

ω(δ;
√
f+) ≤ ω(δ; f)1/2.

Proof. Follows from the inequality |√a+ −
√
b+|2 ≤ |a− b| valid for all a, b ∈ R.

Lemma 10. Let f : [0, 1]d → R be β-smooth for β ∈ (0, 1]. Then

ω(δ; f) ≤ c δβ

for a constant c depending only on ∥f∥Cβ .

Proof. Follows by the definition of Hölder continuity.

Lemma 11 ([66, Theorem 4]). For any continuous function f : [0, 1]d → R the best polynomial approximation pn
of degree n satisfies

∥pn − f∥∞ ≤ c ω

(
d3/2

n
; f

)
for a universal constant c > 0.
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Definition 8. Given a function f : [0, 1]d → R, ℓ ≥ 1 and j ∈ [ℓ]d, let πj,ℓf : [0, 1]d → R denote the function

πj,ℓf(x) ≜ f

(
x+ j − 1

ℓ

)
.

In other words, πj,ℓf is equal to f zoomed in on the j’th bin of the regular grid Gℓ.

Recall that here Pℓ denotes the L2 projector onto the space of functions piecewise constant on the bins of Gℓ.
We are ready for the proof of Proposition 3.

Proof. Let κ ≥ r ≥ 1 whose values we specify later. We treat the parameters β, d, ∥f∥Cβ , ∥g∥Cβ as constants in
our analysis. Let uf : [0, 1]d → R denote the (piecewise polynomial) function that is equal to the best polynomial
approximation of

√
f on each bin of Gκ/r with maximum degree α. By lemmas 9 and 10 for any ℓ ≥ 1 and j ∈ [ℓ]d

ω(δ;πj,ℓ
√
f) ≤ ω(δ/ℓ;

√
f) ≲ (δ/ℓ)β/2, (D.2)

so that by Lemma 11

|uf −
√
f |∞ = sup

j∈[κ/r]d
|πj,κ/r(uf −

√
f)|∞

≲ sup
j∈[κ/r]d

ω(d3/2/α;πj,κ/r
√
f)

≲ (ακ/r)−β/2.

Regarding r as a constant independent of κ, α can be chosen large enough independently of κ such that |uf−
√
f |∞ ≤

c1κ
−β/2 for c1 arbitrarily small. Define ug analogously to uf . We have the inequalities

H(f, g) = ∥
√
f −√

g∥2
≤ ∥
√
f − uf∥2 + ∥uf − ug∥2 + ∥ug −

√
g∥2

≤ 2c1κ
−β/2 + ∥uf − ug∥2.

We can write

∥uf − ug∥22 =
1

(κ/r)d

∑
j∈[κ/r]d

∥πj,κ/r(uf − ug)∥22

Now, by [42, Lemma 7.4] we can take r large enough (depending only on β, d, ∥f∥Cβ , ∥g∥Cβ ) such that

∥πj,κ/r(uf − ug)∥2 ≤ c2∥Prπj,κ/r(uf − ug)∥2

where the implied constant depends on the same parameters as r. Thus, we get

H2(f, g) ≤ 8c21κ
−β +

2c22
(κ/r)d

∑
j∈[κ/r]d

∥Prπj,κ/r(uf − ug)∥22

≤ 8c21κ
−β +

6c22
(κ/r)d

∑
j∈[κ/r]d

(
∥Prπj,κ/ruf −

√
Prπj,κ/rf∥22 + ∥Prπj,κ/rug −

√
Prπj,κ/rg∥22

)
+ 6c22H

2(Pκf, Pκf),

where c1, c2 depend only on the unimportant parameters, and c1 can be taken arbitrarily small compared to c2. We
also used the fact that Prπj,κ/r = πj,κ/rPκ. Looking at the terms separately, we have

∥Prπj,κ/ruf −
√
Prπj,κ/rf∥2 ≤ ∥Prπj,κ/ruf − Pr

√
πj,κ/rf∥2 + ∥Pr

√
πj,κ/rf −

√
Prπj,κ/rf∥2

≤ cκ−β/2 + ∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥2,



since Pr is a contraction by Lemma 7. We can decompose the second term as

∥Pr
√
πj,κ/rf −

√
Prπj,κ/rf∥22 =

=
∑
ℓ∈[r]d

∫
[ ℓ−1

r , ℓr ]

(
rd
∫
[ ℓ−1

r , ℓr ]

√
πj,κ/rf(x)dx−

√
rd
∫
[ ℓ−1

r , ℓr ]
πj,κ/rf(x)dx

)2

= (†).

For x ∈ [(ℓ− 1)/r, ℓ/r] we always have

|πj,κ/rf(x)− πj,κ/rf(ℓ/r)| ≤ ω(

√
d

r
;πj,κ/rf) ≲

(√
d/r

κ/r

)β
≲ κ−β .

Using the inequality
√
a+ b−

√
(a− b)+ ≤ 2

√
b valid for all a, b ≥ 0, we can bound (†) by κ−β up to constant

and the result follows.
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