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Abstract—A number of engineering and scientific prob-
lems require representing and manipulating probability
distributions over large alphabets, which we may think
of as long vectors of reals summing to 1. In some cases
it is required to represent such a vector with only b bits
per entry. A natural choice is to partition the interval
r0, 1s into 2b uniform bins and quantize entries to each
bin independently. We show that a minor modification
of this procedure – applying an entrywise non-linear
function (compander) fpxq prior to quantization – yields
an extremely effective quantization method. For example,
for b “ 8p16q and 105-sized alphabets, the quality of rep-
resentation improves from a loss (under KL divergence) of
0.5p0.1q bits/entry to 10´4p10´9q bits/entry. Compared to
floating point representations, our compander method im-
proves the loss from 10´1p10´6q to 10´4p10´9q bits/entry.
These numbers hold for both real-world data (word
frequencies in books and DNA k-mer counts) and for syn-
thetic randomly generated distributions. Theoretically, we
analyze a minimax optimality criterion and show that the
closed-form compander fpxq 9 ArcSinhp

a

cKpK logKqxq
is (asymptotically as b Ñ 8) optimal for quantizing
probability distributions over a K-letter alphabet. Non-
asymptotically, such a compander (substituting 1{2 for
cK for simplicity) has KL-quantization loss bounded by
ď 8 ¨2´2b log2 K. Interestingly, a similar minimax criterion
for the quadratic loss on the hypercube shows optimality
of the standard uniform quantizer. This suggests that the
ArcSinh quantizer is as fundamental for KL-distortion as
the uniform quantizer for quadratic distortion.
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I. COMPANDER BASICS AND DEFINITIONS

Consider the problem of quantizing the probabil-
ity simplex 4K´1 “ tx P RK : x ě 0,

ř

i xi “ 1u
of alphabet size K,1 i.e. of finding a finite subset
Z Ď 4K´1 to represent the entire simplex. Each
x P 4K´1 is associated with some z “ zpxq P Z ,
and the objective is to find a set Z and an assign-
ment such that the difference between the values
x P 4K´1 and their representations z P Z are
minimized; while this can be made arbitrarily small
by making Z arbitrarily large, the goal is to do
this efficiently for any given fixed size |Z| “ M .
Since x, z P 4K´1, they both represent probability
distributions over a size-K alphabet. Hence, a nat-
ural way to measure the quality of the quantization
is to use the KL (Kullback-Leibler) divergence
DKLpx}zq, which corresponds to the excess code
length for lossless compression and is commonly
used as a way to compare probability distributions.
(Note that we want to minimize the KL divergence.)

While one can consider how to best represent the
vector x as a whole, in this paper we consider only
scalar quantization methods in which each element
xj of x is handled separately, since we showed in
[1] that for Dirichlet priors on the simplex, methods
using scalar quantization perform nearly as well as
optimal vector quantization. Scalar quantization is
also typically simpler and faster to use, and can be
parallelized easily. Our scalar quantizer is based on
companders (portmanteau of ‘compressor’ and ‘ex-
pander’), a simple, powerful and flexible technique
first explored by Bennett in 1948 [2] in which the
value xj is passed through a nonlinear function f
before being uniformly quantized. We discuss the
background in greater depth in Section III.

1While the alphabet has K letters, 4K´1 is pK ´ 1q-dimensional
due to the constraint that the entries sum to 1.
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In what follows, log is always base-e unless
otherwise specified. We denote rN s :“ t1, . . . , Nu.

1) Encoding: Companders require two things: a
monotonically increasing2 function f : r0, 1s Ñ
r0, 1s (we denote the set of such functions as F) and
an integer N representing the number of quantiza-
tion levels, or granularity. To simplify the problem
and algorithm, we use the same f for each element
of the vector x “ px1, . . . , xKq P 4K´1 (see
Remark 1). To quantize x P r0, 1s, the compander
computes fpxq and applies a uniform quantizer with
N levels, i.e. encoding x to nNpxq P rN s if fpxq P
pn´1
N
, n
N
s; this is equivalent to nNpxq “ rfpxqN s.

This encoding partitions r0, 1s into bins Ipnq:

x P Ipnq “ f´1
´´n´ 1

N
,
n

N

ı¯

ðñ nNpxq “ n

where f´1 denotes the preimage under f .
As an example, consider the function fpxq “ xs.

Varying s gives a natural class of functions from
r0, 1s to r0, 1s, which we call the class of power
companders. If we select s “ 1{2 and N “ 4, then
the 4 bins created by this encoding are

Ip1q “ p0, 1{16s, Ip2q “ p1{16, 1{4s,

Ip3q “ p1{4, 9{16s, Ip4q “ p9{16, 1s .

2) Decoding: To decode n P rN s, we pick some
ypnq P Ipnq to represent all x P Ipnq; for a given
x (at granularity N ), its representation is denoted
ypxq “ ypnN pxqq. This is generally either be the
midpoint of the bin or, if x is drawn randomly from
a known prior3 p, the centroid (the mean within bin
Ipnq). The midpoint and centroid of Ipnq are defined,
respectively, as

ȳpnq “
1

2

ˆ

f´1

ˆ

n´ 1

N

˙

` f´1
´ n

N

¯

˙

rypnq “ EX„prX |X P Ipnqs .

We will discuss this in greater detail in Section I-4.
Handling each element of x separately means the

decoded values may not sum to 1, so we normalize
the vector after decoding. Thus, if x is the input,

zipxq “
ypxiq

řK
j“1 ypxjq

(1)

2We require increasing functions as a convention, so larger xi map
to larger values in rN s. Note that f does not need to be strictly
increasing; if f is flat over interval I Ď r0, 1s then all xi P I will
always be encoded by the same value. This is useful if no xi in I
ever occurs, i.e. I has zero probability mass under the prior.

3Priors on 4K´1 induce priors over r0, 1s for each entry.

the vector z “ zpxq “ pz1pxq, . . . , zKpxqq P 4K´1

is the output of the compander. This notation reflects
the fact that each entry of the normalized reconstruc-
tion depends on all of x due to the normalization
step. We refer to y “ ypxq “ pypx1q, . . . , ypxKqq
as the raw reconstruction of x, and z as the
normalized reconstruction. If the raw reconstruction
uses centroid decoding, we likewise denote it using
ry “ rypxq “ prypx1q, . . . , rypxKqq. For brevity we
may sometimes drop the x input in the notation,
e.g. z :“ zpxq; if X is random we will sometimes
denote its quantization as Z :“ zpXq.

Thus, any x P 4K´1 requires Krlog2N s bits to
store; to encode and decode, only f and N need
to be stored (as well as the prior if using centroid
decoding). Another major advantage is that a single
f can work well over many or all choices of N ,
making the design more flexible.

3) KL divergence loss: The loss incurred by
representing x as z :“ zpxq is the KL divergence

DKLpx}zq “
K
ÿ

i“1

xi log
xi
zi
.

Although this loss function has some unusual prop-
erties (for instance DKLpx}zq ‰ DKLpz}xq and
it does not obey the triangle inequality) it mea-
sures the amount of ‘mis-representation’ created by
representing the probability vector x by another
probability vector z, and is hence is a natural
quantity to minimize. In particular, it represents the
excess code length created by trying to encode the
output of x using a code built for z, as well as
having connections to hypothesis testing (a natural
setting in which the ‘difference’ between probability
distributions is studied).

4) Distributions from a prior: Much of our work
concerns the case where x P 4K´1 is drawn from
some prior Px (to be commonly denoted as simply
P ). Using a single f for each entry means we
can WLOG assume that P is symmetric over the
alphabet, i.e. for any permutation σ, if X „ P then
σpXq „ P as well. This is because for any prior P
over 4K´1, there is a symmetric prior P 1 such that

EX„P rDKLpX}zpXqqs“EX 1„P 1rDKLpX
1
}zpX 1

qqs

for all f , where zpXq is the result of quantizing
(to any number of levels) with f as the compander.
To get X 1

„ P 1, generate X „ P and a uniformly
random permutation σ, and let X 1

“ σpXq.
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We denote the set of symmetric priors as P4
K .

Note that a key property of symmetric priors is that
their marginal distributions are the same across all
entries, and hence we can speak of P P P4

K having
a single marginal p.

Remark 1. In principle, given a nonsymmetric
prior Px over 4K´1 with marginals p1, . . . , pK , we
could quantize each letter’s value with a different
compander f1, . . . , fK , giving more accuracy than
using a single f (at the cost of higher complexity).
However, the symmetrization of Px over the letters
(by permuting the indices randomly after generating
X „ Px) yields a prior in P4

K on which any
single f will have the same (overall) performance
and cannot be improved on by using varying fi.
Thus, considering symmetric Px suffices to derive
our minimax compander.

While the random probability vector comes from
a prior P P P4

K , our analysis will rely on decompos-
ing the loss so we can deal with one letter at a time.
Hence, we work with the marginals p of P (which
are identical since P is symmetric), which we refer
to as single-letter distributions and are probability
distributions over r0, 1s.

We let P denote the class of probability distri-
butions over r0, 1s that are absolutely continuous
with respect to the Lebesgue measure. We denote
elements of P by their probability density functions
(PDF), e.g. p P P; the cumulative distribution
function (CDF) associated with p is denoted Fp
and satisfies F 1ppxq “ ppxq and Fppxq “

şx

0
pptq dt

(since Fp is monotonic, its derivative exists almost
everywhere). Note that while p P P does not have
to be continuous, its CDF Fp must be absolutely
continuous. Following common terminology [3], we
refer to such probability distributions as continuous.

Let P1{K “ tp P P : EX„prXs “ 1{Ku. Note
that P P P4

K implies its marginals p are in P1{K .
5) Expected loss and preliminary results: For

P P P4
K , f P F and granularity N , we define the

expected loss:

LKpP, f,Nq “ EX„P rDKLpX}zpXqqs . (2)

This is the value we want to minimize over f .

Remark 2. While X and zpXq are random, they
are also probability vectors. The KL divergence
DKLpX}zpXqq is the divergence between X and
zpXq themselves, not the prior distributions over
4K´1 they are drawn from.

Note that LKpP, f,Nq can almost be decomposed
into a sum of K separate expected values, except
the normalization step (1) depends on the random
vectorX as a whole. Hence, we define the raw loss:

rLKpP, f,Nq“EX„P

”

K
ÿ

i“1

Xi logpXi{rypXiqq

ı

(3)

We also define for p P P , the single-letter loss as

rLpp, f,Nq “ EX„p
“

X logpX{rypXqq
‰

(4)

The raw loss is useful because it bounds the (nor-
malized) expected loss and is decomposable into
single-letter losses. Note that both raw and single-
letter loss are defined with centroid decoding.

Proposition 1. For P P P4
K with marginals p,

LKpP, f,Nq ď rLKpP, f,Nq “ K rLpp, f,Nq .

Proof. Separating out the normalization term gives

LpP, f,Nq “ EX„P rDKLpX||zpXqqs

“ rLKpP, f,Nq ` EX„P

«

log

˜

K
ÿ

i“1

rypXiq

¸ff

.

Since ErrypXiqs “ ErXis for all i,
řK
i“1 ErrypXiqs “

řK
i“1 ErXis “ 1. Because log is concave, by

Jensen’s Inequality

EX„P

„

log
´

K
ÿ

i“1

rypXiq

¯



ď log
´

E
”

K
ÿ

i“1

rypXiq

ı¯

“ logp1q “ 0

and we are done.4

To derive our results about worst-case priors (for
instance, Theorem 1), we will also be interested
in rLpp, f,Nq even when p is not known to be a
marginal of some P P P4

K .

Remark 3. Though one can define raw and single-
letter loss without centroid decoding (replacing ry
in (3) or (4) with another decoding method py), this
removes much of their usefulness. This is because
the resulting expected loss can be dominated by the
difference between ErXs and ErpypXqs, potentially
even making it negative; specifically, the Taylor
expansion of X logpX{pypXqq has X ´ pypXq in its
first term, which can have negative expectation.

4An upper bound similar to Proposition 1 can be found in [4,
Lemma 1].
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While this can make the expected ‘raw loss’
negative under general decoding, it cannot be ex-
ploited to make the (normalized) expected loss
negative because the normalization step zipXq “
pypXiq{

ř

j pypXjq cancels out the problematic term.
Centroid decoding avoids this problem by ensuring
ErXs “ ErrypXqs, removing the issue.

As we will show, when N is large these values
are roughly proportional to N´2 (for well-chosen f )
and so we define the asymptotic single-letter loss:

rLpp, fq “ lim
NÑ8

N2
rLpp, f,Nq . (5)

We similarly define rLKpP, fq and LKpP, fq. While
the limit in (5) does not necessarily exist for every
p, f , we will show that one can ensure it exists by
choosing an appropriate f (which works against any
p P P), and cannot gain much by not doing so.

II. RESULTS

We demonstrate, theoretically and experimentally,
the efficacy of companding for quantizing probabil-
ity distributions with KL divergence loss.

A. Theoretical Results

While we will occasionally give intuition for how
the results here are derived, our primary concern in
this section is to fully state the results and to build
a clear framework for discussing them.

Our main results concern the formulation and
evaluation of a minimax compander f˚K for alphabet
size K, which satisfies

f˚K “ arg min
f PF

sup
p PP1{K

rLpp, fq . (6)

We require p P P1{K because if P P P4
K and is

symmetric, its marginals are in P1{K .
The natural counterpart of the minimax compan-

der f˚K is the maximin density p˚K P P1{K , satisfying

p˚K “ arg max
p PP1{K

inf
f PF

rLpp, fq . (7)

We call (6) and (7), respectively, the minimax con-
dition and the maximin condition.

In the same way that the minimax compander
gives the best performance guarantee against an
unknown single-letter prior p P P1{K (asymptotic as
N Ñ 8), the maximin density is the most difficult

prior to quantize effectively as N Ñ 8. Since they
are highly related, we will define them together:

Proposition 2. For alphabet size K ą 4, there
is a unique cK P r1

4
, 3

4
s such that if aK “

p4{pcKK logK ` 1qq1{3 and bK “ 4{a2
K ´ aK , then

the following density is in P1{K:

p˚Kpxq “ paKx
1{3
` bKx

4{3
q
´3{2 (8)

Furthermore, limKÑ8 cK “ 1{2.

Note that this is both a result and a definition:
we show that aK , bK , cK exist which make the
definition of p˚K possible. With the constant cK , we
define the minimax compander:

Definition 1. Given the constant cK as shown to
exist in Proposition 2, the minimax compander is
the function f˚K : r0, 1s Ñ r0, 1s where

f˚Kpxq “
ArcSinhp

a

cKpK logKqxq

ArcSinhp
?
cKK logKq

The approximate minimax compander f˚˚K is

f˚˚K pxq “
ArcSinhp

a

p1{2qpK logKqxq

ArcSinhp
a

p1{2qK logKq
(9)

Remark 4. While f˚K and f˚˚K might seem complex,
ArcSinhp

?
wq “ logp

?
w `

?
w ` 1q so they are

relatively simple functions to work with.

We will show that f˚K , p
˚
K as defined above satisfy

their respective conditions (6) and (7):

Theorem 1. The minimax compander f˚K and max-
imin single-letter density p˚K satisfy

sup
pPP1{K

rLpp, f˚Kq “ inf
fPF

sup
pPP1{K

rLpp, fq (10)

“ sup
pPP1{K

inf
fPF

rLpp, fq “ inf
fPF

rLpp˚K , fq (11)

which is equal to rLpp˚K , f
˚
Kq and satisfies

rLpp˚K , f
˚
Kq “

1

24
p1` op1qqK´1 log2K. (12)

Since any symmetric P P P4
K has marginals

p P P1{K , this (with Proposition 1) implies an im-
portant corollary for the normalized KL-divergence
loss incurred by using the minimax compander:

Corollary 1. For any prior P P P4
K ,

LKpP, f˚Kq ď rLKpP, f˚Kq “
1

24
p1` op1qq log2K .
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However, the set of symmetric P P P4
K does

not correspond exactly with p P P1{K : while any
symmetric P P P4

K has marginals p P P1{K , it is not
true that any given p P P1{K has a corresponding
symmetric prior P P P4

K . Thus, it is natural to
ask: can the minimax compander’s performance
can be improved by somehow taking these ‘shape’
constraints into account? The answer is ‘not by
more than a factor of « 2’:

Proposition 3. There is a prior P ˚ P P4
K such that

for any P P P4
K

inf
fPF

rLKpP ˚, fq ě
K ´ 1

2K
rLKpP, f˚Kq .

While the minimax compander satisfies the min-
imax condition (6), it requires working with the
constant cK , which, while bounded, is tricky to
compute or use exactly. Hence, in practice we advo-
cate using the approximate minimax compander (9),
which yields very similar asymptotic performance
without needing to know cK :

Proposition 4. Suppose that K is sufficiently large
so that cK P r 1

2p1`εq
, 1`ε

2
s. Then for any p P P ,

rLpp, f˚˚K q ď p1` εqrLpp, f
˚
Kq .

Before we show how we get Theorem 1, we make
the following points:

Remark 5. If we use the uniform quantizer instead
of minimax there exists a P P P4

K where

EX„P rDKLpX}Zqs “ Θ
`

K2N´2 logN
˘

. (13)

This is done by using marginal density p uniform
on r0, 2{Ks. To get a prior P P P4

K with these
marginals, if K is even, we can pair up indices so
that x2j´1 “ 2{K ´ x2j for all j “ 1, . . . , K{2
(for odd K, set xK “ 1{K) and then symmetrize
by permuting the indices. See Appendix F for more
details.

The dependence on N is worse than N´2 re-
sulting in rLpp, fq “ 8. This shows theoretical
suboptimality of the uniform quantizer. Note also
that the quadratic dependence on K is significantly
worse than the log2K dependence achieved by the
minimax compander.

Incidentally, other single-letter priors such as
ppxq “ p1 ´ αqx´α where α “ K´2

K´1
can achieve

worse dependence on N (specifically, N´p2´αq for
this prior). However, the example above achieves a

bad dependence on both N and K simultaneously,
showing that in all regimes of K,N the uniform
quantizer is vulnerable to bad priors.

Remark 6. Instead of the KL divergence loss on
the simplex, we can do a similar analysis to find
the minimax compander for L2

2 loss on the unit
hypercube. The solution is given by the identity func-
tion fpxq “ x corresponding to the standard (non-
companded) uniform quantization. (See Section VI.)

To show Theorem 1 we formulate and show a
number of intermediate results which are also of
significant interest for a theoretical understanding
of companding under KL divergence, in particular
studying the asymptotic behavior of rLpp, f,Nq as
N Ñ 8. We define:

Definition 2. For p P P and f P F , let

L:pp, fq “
1

24

ż 1

0

ppxqf 1pxq´2x´1 dx

“ EX„p
” 1

24
f 1pXq´2X´1

ı

. (14)

For full rigor, we also need to define a set of
‘well-behaved’ companders:

Definition 3. Let F : Ď F be the set of f such that
for each f there exist constants c ą 0 and α P

p0, 1{2s for which fpxq ´ cxα is still monotonically
increasing.

Then the following describes the asymptotic
single-letter loss of compander f on prior p (with
centroid decoding):

Theorem 2. For any p P P and f P F ,

lim inf
NÑ8

N2
rLpp, f,Nq ě L:pp, fq . (15)

Furthermore, if f P F : then an exact result holds:
rLpp, fq “ L:pp, fq ă 8 . (16)

The intuition behind the formula for L:pp, fq is
that as N Ñ 8, the density p becomes roughly
uniform within each bin Ipnq. Additionally, the bin
containing a given x P r0, 1s will have width rpnq «
N´1f 1pxq´1. Then, letting unifIpnq be the uniform
distribution over Ipnq and ȳpnq « x be the midpoint
of Ipnq (which is also the centroid under the uniform
distribution), we apply the approximation

EX„unif
Ipnq
rX logpX{ȳpnqqs «

1

24
r2
pnqȳ

´1
pnq

«
1

24
N´2f 1pxq´2x´1 .
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Averaging over X „ p and multiplying by N2 then
gives (14). One wrinkle is that we need to use the
Dominated Convergence Theorem to get the exact
result (16), but we cannot necessarily apply it for all
f P F ; instead, we can apply it for all f P F :, and
outside of F : we get (15) using Fatou’s Lemma.

While limiting ourselves to f P F : might seem
like a serious restriction, it does not lose anything
essential because F : is ‘dense’ within F in the
following way:

Proposition 5. For any f P F and δ P p0, 1s,

fδpxq “ p1´ δqfpxq ` δx
1{2 (17)

satisfies fδ P F : and

lim
δÑ0

rLpp, fδq “ lim
δÑ0

L:pp, fδq “ L:pp, fq .

Remark 7. It is important to note that strictly
speaking the limit represented by rLpp, fq may not
always exist if f R F :. However: (i) one can always
guarantee that it exists by selecting f P F :; (ii)
by (15), it is impossible to use f outside F : to
get asymptotic performance better than L:pp, fq;
and (iii) by Proposition 5, given f outside F :, one
can get a compander in F : with arbitrarily close
(or better) performance to f by using fδpxq “
p1 ´ δqfpxq ` δx1{2 for δ close to 0. This suggests
that considering only f P F : is sufficient since there
is no real way to benefit by using f R F :.

Additionally, both f˚K and f˚˚K are in F :. Thus,
in Theorem 1, although the limit might not exist for
certain f P F , p P P1{K , the minimax compander
still performs better since it has less loss than even
the lim inf of the loss of other companders.

Given Theorem 2, it’s natural to ask: for a given
p P P , what compander f minimizes L:pp, fq? This
yields the following by calculus of variations:

Theorem 3. The best loss against source p P P is

inf
fPF

rLpp, fq “ min
fPF

L:pp, fq

“
1

24

´

ż 1

0

pppxqx´1
q
1{3dx

¯3

(18)

where the optimal compander against p is

fppxq “ arg min
fPF

L:pp, fq “

şx

0
ppptqt´1q1{3 dt

ş1

0
ppptqt´1q1{3 dt

(19)

(satisfying f 1ppxq9 pppxqx
´1q1{3).

Note that fp may not be in F : (for instance, if
p assigns zero probability mass to an interval I Ď
r0, 1s, then fp will be constant over I). However, this
can be corrected by taking a convex combination
with x1{2 as described in Proposition 5.

The expression (18) represents in a sense how
hard p P P is to quantize with a compander, and the
maximin density p˚K is the density in P1{K which
maximizes it;5 in turn, the minimax compander f˚K
is the optimal compander against p˚K , i.e.

f˚K “ fp˚K .

So far we considered quantization of a random
probability vector with a known prior. We next
consider the case where quantization guarantee is
given pointwise, i.e. we cover 4K´1 with a finite
number of KL divergence balls of fixed radius. Note
that since the prior is unknown, only the midpoint
decoder can be used.

Theorem 4 (Divergence covering). On alphabet
size K ą 4 and N ě 8 logp2

?
K logK ` 1q

intervals, the minimax and approximate minimax
companders with midpoint decoding achieve worst-
case loss over 4K´1 of

max
xP4K´1

DKLpx}zq ď p1` errpKqqN´2 log2K

where errpKq is an error term satisfying

errpKq ď 18
log logK

logK
ď 7 when K ą 4 .

Note that the non-asymptotic worst-case bound
matches (up to a constant factor) the known-prior
asymptotic result (12). We remark that condition on
N is mild: for example, if N “ 256 (i.e. we are
representing the probability vector with 8 bits per
entry), then N ą 8 logp2

?
K logK`1q for all K ď

2.6ˆ 1025.

Remark 8. When b is the number of bits used
to quantize each value in the probability vector,
using the approximate minimax compander yields a
worst-case loss on the order of 2´2b log2K. In [5]
we prove bounds on the optimal loss under arbi-
trary (vector) quantization of probability vectors
and show that this loss is sandwiched between
2´2b K

K´1 ([5, Proposition 2]) and 2´2b K
K´1 logK ([5,

5The maximizing density over all p P P happens to be ppxq “
1
2
x´1{2; however, EX„prXs “ 1{3 so it cannot be the marginal of

any symmetric P P P4
K when K ą 3.
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Theorem 2]). Thus, the entrywise companders in this
work are quite competitive.

We also consider the natural family of power
companders fpxq “ xs, both in terms of average
asymptotic raw loss and worst-case non-asymptotic
normalized loss. By definition, fpxq P F : and hence
rLpp, fq is well-defined and Theorem 2 applies.

Theorem 5. The power compander fpxq “ xs with
exponent s P p0, 1{2s has asymptotic loss

sup
pPP1{K

rLpp, fq “
1

24
s´2K2s´1 (20)

For K ą 7, (20) is minimized by setting s “ 1
logK

(when K ď 7, 1
logK

ą 1{2) and fpxq “ xs achieves

sup
pPP1{K

rLpp, fq “
e2

24

1

K
log2K

and sup
PPP4

K

rLpP, fq “ e2

24
log2K

Additionally, when s “ 1
logK

, it achieves the
following worst-case bound with midpoint decoding
for K ą 7 and N ą e

2
logK:

max
xP4K´1

DKLpx}zqďp1` errpK,Nqq
e2

2
N´2 log2K

where errpK,Nq “
e

2

logK

N ´ e
2

logK
. (21)

Note in particular that when N ě e logK,
we have errpK,Nq ď 1, giving a bound of
maxxP4K´1

DKLpx}zq ď e2N´2 log2K.
We can think of s “ 1

logK
as a ‘minimax’ among

the class of power companders. This result shows
fpxq “ x

1
logK has performance within a constant

factor of the minimax compander, and hence might
be a good alternative.

B. Experimental Results
We compare the performance of five quantizers,

with granularities N “ 28 and N “ 216, on three
types of datasets of various alphabet sizes:
‚ Random synthetic distributions drawn from the

uniform prior over the simplex: We draw and
take the average over 1000 random samples for
our results.

‚ Frequency of words in books: These frequen-
cies are computed from text available on the

Natural Language Toolkit (NLTK) libraries for
Python. For each text, we get tokens (single
words or punctuation) from each text and sim-
ply count the occurrence of each token

‚ Frequency of k-mers in DNA: For a given
sequence of DNA, the set of k-mers are the
set of length k substrings which appear in the
sequence. We use the human genome as the
source for our DNA sequences. Parts of the
sequence marked as repeats are removed.

Our quantizers are:
‚ Approximate Minimax Compander: As

given by (9). Using the approximate minimax
compander is much simpler than the minimax
compander since the constant cK does not need
to be computed.

‚ Truncation: Uniform quantization (equivalent
to fpxq “ x), which truncates the least signifi-
cant bits. This is the natural way of quantizing
values in r0, 1s.

‚ Float and bfloat16: For 8-bit encodings (N “

28), we use a floating point implementation
which allocates 4 bits to the exponent and
4 bits to the mantissa. For 16-bit encodings
(N “ 216), we use bfloat16, a standard which
is commonly used in machine learning [6].

‚ Exponential Density Interval (EDI): This is
the quantization method we used in an achiev-
ability proof in [1]. It is designed for the
uniform prior over the simplex.

‚ Power Compander: Recall that the compan-
der is fpxq “ xs. We optimize s and find
that s “ 1

logeK
asymptotically minimizes KL

divergence, and also gives close to the best
performance empirically. To see the effects of
different powers s on the performance of the
power compander, see Figure 1.

Because a well-defined prior does not always
exist for these datasets (and for simplicity) we use
midpoint decoding for all the companders. When a
probability value of exactly 0 appears, we do not
use companding and instead quantize the value to
0, i.e. the value 0 has its own bin.

Our main experimental results are given in Fig-
ure 2, showing the KL divergence between the
empirical distribution x and its quantized version z
versus alphabet size K. The approximate minimax
compander performs well against all sources. For
truncation, the KL divergence increases with K and
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Fig. 1. Power compander fpxq “ xs performance with different
powers s used to quantize frequency of words in books. The number
K of distinct words in each book is shown in the legend. The
theoretical optimal power s “ 1

logK
is plotted.
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Fig. 2. Plot comparing the performance of the truncation compander,
the EDI compander, floating points, the power compander, and the
approximate minimax compander (9) on probability distributions of
various sizes.

is generally fairly large. The EDI quantizer works
well for the synthetic uniform prior (as it should),
but for real-world datasets like word frequency in
books, it performs badly (sometimes even worse
than truncation). The loss of the power compander
is similar to the minimax compander (only worse
by a constant factor), as predicted by Theorem 5.

The experiments show that the approximate min-
imax compander achieves low loss on the entire
ensemble of data (even for relatively small gran-

ularity, such as N “ 256) and outperforms both
truncation and floating-point implementations on the
same number of bits. Additionally, its closed-form
expression (and entrywise application) makes it sim-
ple to implement and computationally inexpensive,
so it can be easily added to existing systems to lower
storage requirements at little or no cost to fidelity.

C. Paper Organization
We provide background and discuss previous

work on companders in Section III. We prove Theo-
rem 2 in Section IV (though proofs of some lemmas
and propositions leading up to it are given in Ap-
pendix A). Proposition 5 is proved in Appendix B.
In Section V, we optimize over (14) to get the
maximin single-letter distribution (showing part of
Proposition 2 with other parts left to Appendix D-A)
and the minimax compander, thus showing The-
orems 1 and 3, Corollary 1 and Proposition 3
(leaving Proposition 4 for Appendix D-B). We prove
Theorem 4 and the worst-case part of Theorem 5 in
Appendix E. Other parts of Theorem 5 are discussed
in Appendix C-B. In Section VI we discuss compan-
ders for losses other than KL divergence. Finally,
in Section VII we discuss a connection of our
problem to the problem of information distillation
with proofs given in Appendix G. (The appendices
are included in the supplementary material.)

III. BACKGROUND

Companders (also spelled “compandors”) were
introduced by Bennett in 1948 [2] as a way to
quantize speech signals, where it is advantageous
to give finer quantization levels to weaker signals
and coarser levels to larger signals. Bennett gives a
first order approximation that the mean-square error
in this system is given by

1

12N2

ż b

a

ppxq

pf 1pxqq2
dx (22)

where N is the number quantization levels, a and
b are the minimum and maximum values of the
input signal, p is the probability density of the
input signal, and f 1 is the slope of the compressor
function placed before the uniform quantization.
This formula is similar to our (14) except that we
have an extra x´1 since we are working with KL
divergence. Others have expanded on this line of
work. In [7], the authors studied the same problem
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and determined the optimal compressor under mean-
square error, a result which parallels our result
(18). However, results like those in [2], [7] are
stated either as first order approximations or make
simplifying assumptions. For example, in [7], the
authors state that they assume the values pypnq are
close together enough that probability density within
any given bin can be treated as a constant. In
contrast, we rigorously show that this fundamental
logic holds under very general conditions (f P F :).

Generalizations of Bennett’s formula are also
studied when instead of mean-square error, the loss
is the expected rth moment loss E} ¨ }r. This is
computed for vectors of length K in [8] and [9].

The typical examples of companders used in en-
gineering and signals processing are the µ-law and
A-law companders [10]. For the µ-law compander,
[7] and [11] argue that for mean-squared error, for
a large enough constant µ the distortion becomes
independent of the signal.

Quantizing probability distributions is a well-
studied topic, though typically the loss function is
a norm and not KL divergence [12]. Quantizing for
KL divergence is considered in our earlier work [1],
focusing on average KL loss for Dirichlet priors.

A similar problem to quantizing under KL diver-
gence is information k-means. This is the problem
of clustering n points ai to k centers âj to minimize
the KL divergences between the points and their
associated centers. Theoretical aspects of this are
explored in [13] and [14]. Information k-means has
been implemented for several different applications
[15], [16], [17]. There are also other works that
study clustering with a slightly different but related
metric [18], [19], [20]; however, the focus of these
works is to analyze data rather than reduce storage.

Remark 9. A variant of the classic problem of pre-
diction with log-loss is an equivalent formulation to
quantizing the simplex with KL loss: let x P 4K´1

and A „ x (in the alphabet rKs); we want to predict
A by positing a distribution z P 4K´1, and our loss
is ´ log zA. In the standard version, the problem is
to pick the best z given limited information about x;
however, if we know x but are required to express z
using only log2M bits, it is equivalent to quantizing
the simplex with KL divergence loss.

IV. ASYMPTOTIC SINGLE-LETTER LOSS

In this section we give the proof of Theo-
rem 2 (though the proofs of some lemmas must be
sketched). We use the following notation:

Given an interval I we define ȳI to be its midpoint
and rI to be its width, so that by definition

I “ rȳI ´ rI{2, ȳI ` rI{2s .

Note that if I Ď r0, 1s then rI ď 2ȳI .
Given probability distribution p and interval I ,

we denote the following: p|I is p restricted to I;
πp,I :“ PX„prX P Is is the probability mass of I;
and the centroid of I under p is

ryp,I :“ EX„p|I rXs “ EX„prX |X P Is .

If they are undefined because PX„prX P Is “ 0 then
by convention p|I is uniform on I and ryp,I “ ȳI .

When I “ Ipnq is a bin of the compander, we
can replace it with pnq in the notation, i.e. ȳpnq “
ȳIpnq (so the midpoint of the bin containing x at
granularity N is denoted ȳpnN pxqq and the width of
the bin is rpnN pxqq). When I and/or p are fixed, we
sometimes drop them from the notation, i.e. ryI or
even just ry to denote the centroid of I under p.

A. The Local Loss Function

One key to the proof is the following perspective:
instead of considering X „ p directly, we (equiv-
alently) first select bin Ipnq with probability πp,pnq,
and then select X „ p|pnq. The expected loss can
then be considered within bin Ipnq. This makes it
useful to define:

Definition 4. Given probability measure p and in-
terval I , the single-interval loss of I under p is

`p,I “ EX„p|I rX logpX{ryp,Iqs .

As before, if p and/or I is fixed and clear, we can
drop it from the notation (and if I “ Ipnq is a bin,
we can denote the local loss as `p,pnq). This can be
interpreted as follows: if we quantize all x P I to the
centroid ryI , then `p,I is the expected loss of X „ p
conditioned on X P I . Thus the values of `p,pnq
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can be used as an alternate means of computing the
single-letter loss:

rLpp, f,Nq “ EX„prX logpX{rypXqqs

“

N
ÿ

n“1

πp,pnqEX„p|pnqrX logpX{ryp,pnqqs

“

N
ÿ

n“1

πp,pnq`p,pnq “

ż

r0,1s

`p,pnN pxqq dp .

Thus the normalized single-letter loss (whose limit
is the asymptotic single-letter loss (5)) is

N2
rLpp, f,Nq “

ż

r0,1s

N2 `p,pnN pxqq dp .

For single-letter density p and compander f , we
define the local loss function at granularity N :

gNpxq “ N2 `p,pnN pxqq . (23)

We also define the asymptotic local loss function:

gpxq “
1

24
f 1pxq´2x´1 .

Theorem 2 is therefore equivalent to:

lim inf
NÑ8

ż

gN dp ě

ż

g dp @ p P P , f P F (24)

and lim
NÑ8

ż

gN dp “

ż

g dp @ p P P , f P F :. (25)

To prove (24) and (25), we show:

Proposition 6. For all p P P , f P F , if X „ p then

lim
NÑ8

gNpXq “ gpXq almost surely.

Proposition 7. Let f be a compander and c ą 0
and α P p0, 1s such that fpxq´cxα is monotonically
increasing. Letting gN be the local loss functions as
in (23) and

hpxq “ p22{α
` α221{α´2

qpcαq´2x1´2α
` c´1{α21{α´2

then gNpxq ď hpxq for all x,N . Additionally, if α ď
1{2 then

ş

r0,1s
h dp ă 8.

The lower bound (24) then follows immediately
from Proposition 6 and Fatou’s Lemma; and when
f P F :, by Proposition 7 there is some h which is
integrable over p and dominates all gN , thus show-
ing (25) by the Dominated Convergence Theorem.

To prove Proposition 6, we use the following:

‚ For any x at which f is differentiable, when N
is large, the width of the interval x falls in is

rpnN pxqq « N´1f 1pxq´1 .

‚ For any x at which Fp is differentiable, p|I will
be approximately uniform over any sufficiently
small I containing x.

‚ For a sufficently small interval I containing x
and such that p|I approximately uniform,

`p,I «
1

24
r2
Ix
´1 .

Putting these together, we get that if Fp and f are
both differentiable at x then when N is large,

gNpxq “ N2 `p,pnN pxqq

« N2 1

24
r2
pnN pxqq

x´1
«

1

24
f 1pxq´2x´1

“ gpxq

as we wanted. We formally state each of these
steps in Section A-B and combine them to prove
Proposition 6 in Section A-C.

The proof of Proposition 7 is given in Sec-
tion A-D, along with its own set of definitions and
lemmas needed to show it.

V. MINIMAX COMPANDER

Theorem 2 showed that for f P F :, the asymp-
totic single-letter loss is equivalent to

rLpp, fq “
1

24

ż 1

0

ppxqf 1pxq´2x´1dx .

Using this, we can analyze what is the ‘best’ com-
pander f we can choose and what is the ‘worst’
single-letter density p in order to show Theorems 1
and 3 and their related results.

A. Optimizing the Compander
We show Theorem 3, which follows from Theo-

rem 2 by finding f P F which minimizes L:pp, fq.
This is achieved by optimizing over f 1; we will also
use some concepts from Proposition 5 to connect it
back to inffPF rLpp, fq when the resulting f is not
in F :. Since f : r0, 1s Ñ r0, 1s is monotonic, we
use constraints f 1pxq ě 0 and

ş1

0
f 1pxq dx “ 1. We

solve the following:

minimize L:pp, fq “
1

24

ż 1

0

ppxqf 1pxq´2x´1 dx

subject to
ż 1

0

f 1pxq dx “ 1

and f 1pxq ě 0 for all x P r0, 1s
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The function L:pp, fq is convex in f 1, and thus first
order conditions show optimality. Let λpxq satisfy
ş1

0
λpxqdx “ 0. If f 1pxq9 pppxqx´1q1{3, we derive:

d

dt

1

24

ż 1

0

ppxq
`

f 1pxq ` t λpxq
˘´2

x´1 dx

“
1

24

ż 1

0

ppxqx´1 d

dt

`

f 1pxq ` t λpxq
˘´2

dx

“ ´
1

12

ż 1

0

ppxqx´1
`

f 1pxq ` t λpxq
˘´3

λpxq dx

“ ´
1

12

ż 1

0

ppxqx´1f 1pxq´3λpxq dx pat t “ 0q

9 ´
1

12

ż 1

0

λpxq dx “ 0 (26)

Thus, such f satisfies the first-order optimality
condition under the constraint

ş

f 1pxq dx “ 1.
This gives f 1ppxq9 pppxqx

´1q1{3 and fp0q “ 0 and
fp1q “ 1, from which (18) and (19) follow. If
fp P F :, then fp “ arg minf rLpp, fq, and for any
other f P F ,

rLpp, fpq “ L:pp, fpq ď L:pp, fq

ď lim inf
NÑ8

N2
rLpp, f,Nq

If fp R F :, for any δ ą 0 define fp,δ “ p1 ´
δqfp ` δx1{2 (as in (17)). Then fp,δ ´ δx1{2 “ p1 ´
δqfp is monotonically increasing so fp,δ P F :, so
Theorem 2 applies to fp,δ; additionally, fp,δ ´ p1´
δqfp “ δx1{2 is monotonically increasing as well
so f 1p,δ ě p1 ´ δqf 1p. Hence, plugging into the L:

formula gives:

rLpp, fp,δq “ L:pp, fp,δq ď L:pp, fpqp1´ δq
´2 .

Taking δ Ñ 0 (and since F : Ď F) shows that

L:pp, fpq “ inf
fPF:

rLpp, fq ,

finishing the proof of Theorem 3.

Remark 10. Since we know the corresponding
single-letter source p for a Dirichlet prior, using this
p with Theorem 3 gives us the optimal compander
for Dirichlet priors on any alphabet size. This gives
us a better quantization method than EDI which was
discussed in Section II-B. This optimal compander
for Dirichlet priors is called the beta compander
and its details are given in Appendix C-A.

B. The Minimax Companders and Approximations
To prove Theorem 1 and Corollary 1, we first

consider what density p maximizes equation (18):

1

24

ˆ
ż 1

0

pppxqx´1
q
1{3dx

˙3

i.e. is most difficult to quantize with a compander.
Using calculus of variations to maximize

ż 1

0

pppxqx´1
q
1{3 dx (27)

(which of course maximizes (18)) subject to ppxq ě
0 and

ş1

0
ppxq dx “ 1, we find that maximizer is

ppxq “ 1
2
x´1{2. However, while interesting, this is

only for a single letter; and because ErXs “ 1{3
under this distribution, it is clearly impossible to
construct a prior over 4K´1 (whose output vector
must sum to 1) with this marginal (unless K “ 3).

Hence, we add an expected value constraint to
the problem of maximizing (27), giving:

maximize
ż 1

0

`

ppxqx´1
˘1{3

dx

subject to
ż 1

0

ppxq dx “ 1; (28)
ż 1

0

ppxqx dx “
1

K
; (29)

and ppxq ě 0 for all x .

We can solve this again using variational methods
(we are maximizing a concave function so we only
need to satisfy first-order optimality conditions). A
function ppxq ą 0 is optimal if, for any λpxq where

ż 1

0

λpxq dx “ 0 and
ż 1

0

λpxqx dx “ 0

the following holds:

d

dt

ż 1

0

x´1{3
`

ppxq ` t λpxq
˘1{3

dx “ 0 .

We have by the same logic as before:

d

dt

ż 1

0

x´1{3
`

ppxq ` t λpxq
˘1{3

dx

“
1

3

ż 1

0

x´1{3
`

ppxq ` t λpxq
˘´2{3

λpxq dx

“
1

3

ż 1

0

x´1{3ppxq´2{3λpxq dx pat t “ 0q .

(30)
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Thus, if we can arrange things so that there are
constants aK , bK such that

x´1{3ppxq´2{3
“ aK ` bKx

this ensures (30) equals zero. In that case,

x´1{3ppxq´2{3
“ aK ` bKx

ðñ ppxq´2{3
“ aKx

1{3
` bKx

4{3

ðñ ppxq “
`

aKx
1{3
` bKx

4{3
˘´3{2 (31)

This is the maximin density p˚K from Proposition 2
(8), where aK , bK are set to meet the constraints (28)
and (29). Exact formulas for aK , bK are difficult to
find; we give more details on after the next step.

We want to determine the optimal compander for
the maximin density (31). We know from (26) that
we need to first compute

φpxq “

ż x

0

w´1{3
`

aKw
1{3
` bKw

4{3
˘´1{2

dw

“

2ArcSinh
´b

bKx
aK

¯

?
bK

. (32)

The best compander fpxq is proportional to (32)
and is exactly given by fpxq “ φpxq{φp1q. The
resulting compander, which we call the minimax
compander, is

fpxq “
ArcSinh

´b

bKx
aK

¯

ArcSinh
´b

bK
aK

¯ . (33)

Given the form of fpxq, it is natural to determine an
expression for the ratio bK{aK . We can parameterize
both aK and bK by bK{aK and then examine how
bK{aK behaves as a function of K. The constraints
on aK and bK give that

aK “ 41{3
pbK{aK ` 1q´1{3

bK “ 4a´2
K ´ aK .

The ratio bK{aK grows approximately as K logK.
Hence, we choose to parameterize

bK{aK “ cKK logK .

To satisfy the constraints, we get .25 ă cK ă .75 so
long as K ą 24 (see Section D-A for details), and
Lemma 11 in Section D-A2 shows that cK Ñ 1{2
as K Ñ 8. Combining these gives Proposition 2.

We can then express aK , bK in terms of cK :

aK “ 41{3
pcKK logK ` 1q´1{3

bK “ 4a´2
K ´ aK

“ 41{3
pcKK logK ` 1q2{3

´ 41{3
pcKK logK ` 1q´1{3 (34)

“ 41{3
pcKK logKq2{3p1` op1qq .

When K is large, the second term in (34) is negligi-
ble compared to the first. Thus, plugging into (33)
we get the minimax compander and approximate
minimax compander, respectively:

f˚Kpxq “
ArcSinh

´

a

pcKK logKqx
¯

ArcSinh
`?

cKK logK
˘

« f˚˚K pxq “
ArcSinhp

a

pp1{2qK logKqxq

ArcSinhp
a

p1{2qK logKq
.

The minimax compander minimizes the maximum
(raw) loss against all densities in P1{K , while the
approximate minimax compander performs very
similarly but is more applicable since it can be used
without computing cK .

To compute the loss of the minimax compander,
we can use (18) to get

L:pp˚K , f
˚
Kq “

1

24

˜

2ArcSinh
`?

cKK logK
˘

?
bK

¸3

Substituting we get

L:pp˚K , f
˚
Kq

“
1

24

8
`

log
`?

cKK logK `
?
cKK logK ` 1

˘˘3

2cKK logKp1` op1qq

“
1

24

plog 4pcKK logKqq3

2cKK logK
p1` op1qq

“
1

24

log2K

K
p1` op1qq . (35)

In fact, not only is f˚K optimal against the max-
imin density p˚K , but (as alluded to in the name
‘minimax compander’) it minimizes the maximum
asymptotic loss over all p P P1{K . More formally
we show that pf˚K , p

˚
Kq is a saddle point of L:.

The function L:pp, fq is concave (actually linear)
in p and convex in f 1, and we can show that the pair
pf˚K , p

˚
Kq form a saddle point, thus proving (10)-(11)

from Theorem 1.
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We can compute that

pf˚Kq
1
pxq9 pp˚Kpxqx

´1
q
1{3

“ x´1{3
paKx

1{3
` bKx

4{3
q
´1{2

“
1

?
aKx` bKx2

.

Assume we set aK and bK to the appropriate values
for K. For any p P P1{K ,

L:pp, f˚Kq “

ż 1

0

ppxqx´1
ppf˚Kq

1
pxqq´2dx

“

ż 1

0

ppxqx´1
paKx` bKx

2
qdx

“ aK ` bK
1

K

i.e. L:pp, f˚Kq does not depend on p. Since f˚K is the
optimal compander against the maximin compander
p˚K we can therefore conclude:

sup
pPP1{K

L:pp, f˚Kq “ L:pp˚K , f
˚
Kq

“ inf
fPF

L:pp˚K , fq “ sup
pPP1{K

inf
fPF

L:pp, fq .

Since it is always true that

sup
pPP1{K

inf
fPF

L:pp, fq ď inf
fPF

sup
pPP1{K

L:pp, fq ,

this shows that pf˚K , p
˚
Kq is a saddle point.

Furthermore, f˚K P F : (specifically it behaves as
a multiple of x1{2 near 0), so rLpp, f˚Kq “ L:pp, f˚Kq
for all p, thus showing that f˚K performs well against
any p P P1{K . Using (14) with the expressions for
p˚K and f˚K and (35) gives (12). This completes the
proof of Theorem 1.

Remark 11. While the power compander fpxq “
x1{ logK is not minimax optimal, it has similar prop-
erties to the minimax compander and differs in loss
by at most a constant factor. We analyze the power
compander in Section C-B.

C. Existence of Priors with Given Marginals
While p˚K is the most difficult density in P1{K to

quantize, it is unclear whether a prior P ˚ on 4K´1

exists with marginals p˚K – even though K copies
of p˚K will correctly sum to 1 in expectation, it may
not be possible to correlate them to guarantee they
sum to 1. However, it is possible to construct a prior
P ˚ whose marginals are as hard to quantize, up to a

constant factor, as p˚K , by use of clever correlation
between the letters. We start with a lemma:

Lemma 1. Let p P P1{K . Then there exists a joint
distribution of pX1, . . . , XKq such that (i) Xi „ p
for all i P rKs and (ii)

ř

iPrKsXi ď 2, guaranteed.

Proof. Let F be the cumulative distribution function
of p. Define the quantile function F´1 as

F´1
puq “ inftx : F pxq ě uu.

We break r0, 1s into K uniform sub-intervals
Ii “ ppi ´ 1q{K, i{Ks (let I1 “ r0, 1{Ks). We then
generate X1, X2, . . . , XK jointly by the following
procedure:

1) Choose a permutation σ : rKs Ñ rKs uni-
formly at random (from K! possibilities).

2) Let Uk „ unifIσpkq independently for all k.
3) Let Xk “ F´1pUkq.
Now we consider

ř

kXk. Let bi “ F´1pi{kq
for i “ 0, 1, . . . , K. Note that if σpkq “ i then
Uk P ppi ´ 1q{K, i{Ks and hence Xk “ F´1pUkq P
rbi´1, bis. Therefore Xσ´1piq P rbi´1, bis and thus for
any permutation σ,

K
ÿ

i“1

bi´1 ď

K
ÿ

i“1

Xσ´1piq ď

K
ÿ

i“1

bi

“

´

K
ÿ

i“1

bi´1

¯

` bK ´ b0

ď

´

K
ÿ

i“1

bi´1

¯

` 1 ď 2

as
ř

i bi´1 ď
ř

i ErXσ´1piqs “ KEX„prXs “ 1.

Lemma 1 shows a joint distribution of
W1, . . . ,WK´1 such that Wi „ p˚K for all i
and

řK´1
i“1 Wi ď 2 (guaranteed) exists. Then,

if Xi “ Wi{2 for all i P rK ´ 1s, we have
řK´1
i“1 Xi ď 1. Then setting XK “ 1´

řK´1
i“1 Xi ě 0

ensures that pX1, . . . , XKq is a probability
vector. Denoting this prior P ˚hard and letting
p˚˚K pxq “ 2p˚Kp2xq (so Wi „ p˚K ùñ Xi „ p˚˚K )
we get that

inf
fPF

rLKpP ˚hard, fq ě pK ´ 1q inf
fPF

rLpp˚˚K , fq (36)

“ pK ´ 1q
1

2
L:pp˚K , f

˚
Kq ě

1

2

K ´ 1

K
sup
PPP4

K

rLKpP, f˚Kq .

(37)
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Fig. 3. Each compander (or quantization method) is used on random
distributions drawn from the prior P˚hard. Comparison is given to when
each compander is used on the books and DNA datasets.

The last inequality holds because p˚K is the maximin
density (under expectation constraints). To make
P ˚hard symmetric, we permute the letter indices ran-
domly without affecting the raw loss; thus we get
Corollary 1. To get (37) from (36), we have

inf
fPF

rLp2p˚Kp2xq, fq “
1

24

ˆ
ż 1

0

p2p˚Kp2xqx
´1
q
1{3dx

˙3

“
1

24

ˆ
ż 1

0

p2p˚Kpuq2u
´1
q
1{3 1

2
du

˙3

“
1

2
L:pp˚K , f˚q

This shows Proposition 3. In Figure 3, we validate
the distribution P ˚hard by showing the performance of
each compander when quantizing random distribu-
tions drawn from P ˚hard. For the minimax compander,
the KL divergence loss on the worst-case prior looks
to be within a constant of that for the other datasets.

VI. COMPANDING OTHER METRICS AND SPACES

While our primary focus has been KL divergence
over the simplex, for context we compare our results
to what the same compander analysis would give for
other loss functions like squared Euclidean distance
(L2

2) and absolute distance (L1 or TV distance). For
a vector x and its representation z let

L2
2px, zq “

ÿ

i

pxi ´ ziq
2

L1px, zq “
ÿ

i

|xi ´ zi|

For squared Euclidean distance, asymptotic loss
was already given by (22) in [2], and scales as N´2.

It turns out that the maximin single-letter distribu-
tion over a bounded interval is the uniform distribu-
tion. Thus, the minimax compander for L2

2 is simply
the identity function, i.e. uniform quantization is
the minimax for quantizing a hypercube in high-
dimensional space under L2

2 loss. (For unbounded
spaces, L2

2 loss does not scale with N´2.)
If we add the expected value constraint to the L2

2

compander optimization problem, we can derive the
best square distance compander for the probability
simplex. For alphabet size K, we get that the
minimax compander for L2

2 is given by

fL2
2,K
pxq “

a

1`KpK ´ 2qx´ 1

K ´ 2

and the total L2
2 loss for probability vector x and

its quantization z has the relation

lim
NÑ8

N2L2
2px, zq ď

1

3
.

For L1, unlike KL divergence and L2
2, the loss

scales as 1{N . Like L2
2, the minimax single-letter

compander for L1 loss in the hypercube r0, 1sK is
the identity function, i.e. uniform quantization. In
general, the derivative of the optimal compander for
single-letter density ppxq has the form

f 1L1,K
pxq9

a

ppxq .

On the probability simplex for alphabet size K,
the worst case prior ppxq has the form

ppxq “ pαKx` βKq
´2

where αK , βK are constants scaling to allow
ş

r0,1s
dp “ 1 (i.e. p is a valid probability density)

and
ş

r0,1s
x dp “ 1{K (i.e. EX„prXs “ 1{K so K

copies of it are expected to sum to 1).
Thus, the minimax compander on the simplex for

L1 loss (and letting γK “ αK{βK) satisfies

f 1L1,K
pxq9 pαKx` βKq

´1

ùñ fL1,Kpxq9 logppαK{βKqx` 1q

ùñ fL1,Kpxq “
logpγKx` 1q

logpγK ` 1q

since fL1,Kpxq has to be scaled to go from 0 to 1.
The asymptotic L1 loss for probability vector x

and its quantization z is bounded by

lim
NÑ8

NL1px, zq ď OplogKq .
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Loss Space Optimal Compander Asymptotic Upper Bound

KL Simplex f˚Kpxq “
ArcSinhp

?
cKpK logKqxq

ArcSinhp
?
cKK logKq

N´2 log2K

L2
2 Simplex fL2

2,K
pxq “

?
1`KpK´2qx´1

K´2
N´2

L2
2 Hypercube fL2

2
pxq “ x (uniform quantizer) N´2K

L1 pTV q Simplex fL1,Kpxq “
logpγKx`1q
logpγK`1q

N´1 logK

L1 pTV q Hypercube fL1pxq “ x (uniform quantizer) N´1K

Fig. 4. Summary of results for various losses and spaces. Asymptotic Upper Bound is an upper bound on how we expect the loss of the
optimal compander to scale with N and K (constant terms are neglected).

VII. CONNECTION TO INFORMATION
DISTILLATION

It turns out that the general problem of quantizing
the simplex under the average KL divergence loss,
as defined in (2), is equivalent to recently introduced
problem of information distillation. Information dis-
tillation has a number of applications, including in
constructing polar codes [21], [22]. In this section
we establish this equivalence and also demonstrate
how the compander-based solutions to the KL-
quantization can lead to rather simple and efficient
information distillers.

A. Information Distillation
In the information distillation problem we have

two random variables A P A and B P B, where
|A| “ K (and B can be finite or infinite) under joint
distribution PA,B with marginals PA, PB. The goal
is, given some finite M ă |B|, to find an information
distiller (which we will also refer to as a distiller),
which is a (deterministic) function h : B Ñ rM s,
which minimizes the information loss

IpA;Bq ´ IpA;hpBqq

associated with quantizing B Ñ hpBq. The interpre-
tation here is that B is a (high-dimensional) noisy
observation of some important random variable A
and we want to record observation B, but only
have log2M bits to do so. Optimal h minimizes
the additive loss entailed by this quantization of B.

To quantify the amount of loss incurred by this
quantization, we use the degrading cost [22], [21]

DCpK,Mq “ sup
PA,B

inf
h
IpA;Bq ´ IpA;hpBqq .

Note that in supremizing over PA,B there is no
restriction on B, only on |A|. It has been shown
in [22] that there is a PA,B such that

inf
h
IpA;Bq ´ IpA;hpBqq “ ΩpM´2{pK´1q

q

giving a lower bound to DCpK,Mq. For an upper
bound, [23] showed that if 2K ăM ă |B|, then

DCpK,Mq “ OpM´2{pK´1q
q .

Specifically, DCpK,Mq ď νpKqM´2{pK´1q where
νpKq « 16πeK2 for large K. While [21] focused on
multiplicative loss, their work also implied an im-
proved bound on the additive loss as well; namely,
for all K ě 2 and M1{pK´1q ě 4, we have

DCpK,Mq ď 1268pK ´ 1qM´2{pK´1q . (38)

B. Info Distillation Upper Bounds Via Companders

Using our KL divergence quantization bounds,
we will show an upper bound to DCpK,Mq which
improves on (38) for K which are not too small and
for M which are not exceptionally large. First, we
establish the relation between the two problems:

Proposition 8. For every PA,B define a random
variable X P 4K´1 by setting Xa “ P rA “ a |Bs.
Then, for every information distiller h : B Ñ rM s
there is a vector quantizer z : 4K´1 Ñ 4K´1 with
range of cardinality M such that

IpA;Bq ´ IpA;hpBqq ě ErDKLpX}zpXqqs (39)

Conversely, for any vector quantizer z there exists
a distiller h such that

IpA;Bq ´ IpA;hpBqq ď ErDKLpX}zpXqqs .

The inequalities in Proposition 8 can be replaced
by equalities if the distiller h and the quantizer z
avoid certain trivial inefficiencies. If they do so,
there is a clean ‘equivalent’ quantizer z for any
distiller h, and vice versa, which preserves the
expected loss. This equivalence and Proposition 8
are shown in Appendix G.
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Thus, we can use KL quantizers to bound the
Degrading Cost above (see Appendix G for details):

DCpK,Mq “ sup
PA,B

inf
h
IpA;Bq ´ IpA;hpBqq

“ sup
P

inf
z
EX„P rDKLpX}Zqs

ď inf
z

sup
P

EX„P rDKLpX}Zqs . (40)

We then use the approximate minimax compander
results to give an upper bound to (40). This yields:

Proposition 9. For any K ě 5 and M1{K ą

r8 logp2
?
K logK ` 1qs

DCpK,Mqď

ˆ

1`18
log logK

logK

˙

M´ 2
K log2K .

Proof. Consider the right-hand side of (39). The
compander-based quantizer from Theorem 4 gives a
guaranteed bound on DpX}zpXqq (and M “ NK

substituted), which also holds in expectation.

Remark 12. Similarly, an upper bound on the
divergence covering problem [5, Thm 2] implies

DCpK,Mq ď 800plogKqM´2{pK´1q .

(This appears to be the best known upper bound
on DC.) The lower bound on the divergence cov-
ering, though, does not imply lower bounds on
DC, since divergence covering seeks one collection
of M points that are good for quantizing any P ,
whereas DC permits the collection to depend on
P . For distortion measures that satisfy the triangle
inequality, though, we have a provable relationship
between the metric entropy and rate-distortion for
the least-favorable prior, see [24, Section 27.7].
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APPENDIX ORGANIZATION

Appendix A: We fill in the details of the proof
of Theorem 2.

Appendix B: We prove Proposition 5.
Appendix C: We develop and analyze other

types of companders, specifically beta compan-
ders, which are optimized to quantize vectors from
Dirichlet priors (Section C-A), and power com-
panders, which have the form fpxq “ xs and
have properties similar to the minimax compander
(Section C-B). Supplemental experimental results
are also provided.

Appendix D: We analyze the minimax com-
pander and approximate minimax compander more
deeply, showing that cK P r1{4, 3{4s (Section D-A)
and limKÑ8 cK “ 1{2 (Section D-A2), and show
that when cK « 1{2, the approximate minimax
compander performs similarly to the minimax com-
pander against all priors p P P (Section D-B). Sup-
plemental experimental results are also provided.

Appendix E: We prove Theorem 4, showing
bounds on the worst-case loss (adversarially se-
lected x, rather than from a prior) for the power,
minimax, and approximate minimax companders.

Appendix G: We discuss the connection to
information distillation in detail.

APPENDIX A
ASYMPTOTIC SINGLE-LETTER LOSS PROOFS

In this appendix, we give all the proofs necessary
for Theorem 2, whose proof outline was discussed
in Section IV. We begin with notation in Sec-
tion A-A. In Section A-B, we give some preliminar-
ies for showing Proposition 6 (which shows that the
local loss functions gN converge to the asymptotic
local loss function g a.s. when the input X is
distributed according to p P P). In Section A-C,
we give the proof of Proposition 6. In Section A-D,
we give the proof of Proposition 7 (which shows the
existence of an integrable h dominating gN when the
compander f is from the ‘well-behaved’ set F :).

In order to focus on the main ideas, some of
the more minor details needed for Proposition 6
and Proposition 7 are omitted and left for later
sections. We fill in the details on the lemmas and
propositions used in the proof of Proposition 6,
including proofs for all results from Section A-B
(specifically Lemmas 2 and 3 and Propositions 10
to 12) in Sections A-E to A-I.

We then fill in the details of the lemmas for the
proof of Proposition 7, specifically Lemmas 4 and 7.

A. Notation

Given probability distribution p and interval I ,
p|I denotes p restricted to I , i.e. X „ p|I is the
same as X „ p conditioned on X P I . We also
define the probability mass of I under p as πp,I “
PX„prX P Is. If πp,I “ 0, we let p|I be uniform on
I by default.

Given two probability distributions p, q (over the
same domain), their Kolmogorov-Smirnov distance
(KS distance) is

dKSpp, qq“}Fp ´ Fq}8“sup
x
|Fppxq ´ Fqpxq| (41)

(recall that Fp, Fq are the CDFs of p, q).
We use standard order-of-growth notation (which

are also used in Section II). We review these def-
initions here for clarity, especially as we will use
some of the rarer concepts (in particular, small-ω).
For a parameter t and functions aptq, bptq, we say:

aptq “ Opbptqq ðñ lim sup
tÑ8

|aptq{bptq| ă 8

aptq “ Ωpbptqq ðñ lim inf
tÑ8

|aptq{bptq| ą 0

aptq “ Θpbptqq ðñ aptq “ Opbptqq, aptq “ Ωpbptqq .

We use small-o notation to denote the strict versions
of these:

aptq “ opbptqq ðñ lim
tÑ8

|aptq{bptq| “ 0

aptq “ ωpbptqq ðñ lim
tÑ8

|aptq{bptq| “ 8 .

Sometimes we will want to indicate order-of-growth
as t Ñ 0 instead of t Ñ 8; this will be explicitly
mentioned in that case.

B. Preliminaries for Proposition 6

We first generalize the idea of bins. The bin
around x P r0, 1s at granularity N is the interval I “
Ipnq containing x such that fpIq “ rpn´1q{N, n{N s
for some n P rN s. This notion relies on integers
because fpIq “ rpn ´ 1q{N, n{N s for integers
n,N . We remove the dependence on integers while
keeping the basic structure (an interval I about x
whose image fpIq is a given size):
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Definition 5. For any x P r0, 1s, θ P r0, 1s, and ε ą
0, we define the pseudo-bin Ipx,θ,εq as the interval
satisfying:

Ipx,θ,εq “ rx´ θrpx,θ,εq, x` p1´ θqrpx,θ,εqs where

rpx,θ,εq “ inf
`

r : fpx` p1´ θqrq ´ fpx´ θrq ě ε
˘

(42)

The interpretation of this is that Ipx,θ,εq is the
minimal interval x such that |fpIpx,θ,εqq| ě ε and
such that x occurs at θ within Ipx,θ,εq, i.e. a θ fraction
of Ipx,θ,εq falls below x and 1 ´ θ falls above. Its
width is rpx,θ,εq. This implies that bins are a special
type of pseudo-bins. Specifically, for any x and N
(and any compander f ),

IpnN pxqq “ Ipx,θ,1{Nq for some θ P r0, 1s .

We now consider the size of pseudo-bins as εÑ 0:

Lemma 2. If f is differentiable at x, then

lim
εÑ0

ε´1rpx,θ,εq “ f 1pxq´1

(including going to 8 when f 1pxq “ 0). The limit
converges uniformly over θ P r0, 1s.

The proof is given in Section A-E. Note that
applying this to bins means limNÑ8Nr

pnN pxqq “

f 1pxq´1, and hence when f 1pxq ą 0 we have
rpnN pxqq “ N´1f 1pxq´1 ` opN´1q.

For any interval I , we want to measure how
close p is to uniform over I using the distance
measure dKSpp, qq from (41). We will show that
when F 1ppxq “ ppxq is well-defined and positive at
x, p is approximately uniform on any sufficiently
small interval I around x. Formally:

Proposition 10. If ppxq “ F 1ppxq ą 0 is well-
defined, then for every ε ą 0 there is a δ ą 0 such
that for all intervals I such that x P I and rI ď δ,

dKSpp|I , unifIq ď ε .

We give the proof in Section A-F. This allows us
to use the following:

Proposition 11. Let p be a probability measure and
I be an interval containing x such that rI ď x{4
and dKSpp|I , unifIq ď ε where ε ď 1{2. Then

|`p,I ´ `unifI | ď 2εr2
Ix
´1
`Opr3

Ix
´2
q .

Recall that `p,I is the interval loss of I under
distribution p when all points in I are quantized to

ryp,I , the centroid of the interval. We give the proof
of Proposition 11 in Section A-G.

Proposition 12. For any x ą 0 and any sequence
of intervals I1, I2, ¨ ¨ ¨ Ď r0, 1s all containing x such
that rIi Ñ 0 as iÑ 8,

`unifIi
“

1

24
r2
Ii
x´1

`Opr3
Ii
x´2
q .

The proof is in Section A-H.
Note that the above lemmas are all about asymp-

totic behavior as intervals shrink to 0 in width; to
deal with the (edge) case where they do not, we
need the following lemma:

Lemma 3. For any I such that PX„prX P Is ą 0,
there is some aI ą 0 such that

`p,J ě aI for any J Ě I .

We give the proof in Section A-I.

C. Proof of Proposition 6
We now combine the above results to prove

Proposition 6, i.e. that limNÑ8 gNpXq “ gpXq al-
most surely when X „ p. Because p P P (i.e. it is a
continuous probability distribution) we will treat the
bins as closed sets, i.e. Ipnq “ rfpn´1

N
q´1, fp n

N
q´1s;

this does not affect anything since the resulting
overlap is only a finite set of points.

Proof. Since p P P then when X „ p the following
hold with probability 1:

1) 0 ă X ă 1;
2) f 1pXq is well-defined;
3) ppXq “ F 1ppXq is well defined;
4) ppXq ą 0.

This is because if p P P , and |S| denotes the
Lebesgue measure of set S, then

|S| “ 0 ùñ PX„prX P Ss “ 0

This implies (1) since t0, 1u is measure-0.
Additionally, by Lebesgue’s differentiation theo-

rem for monotone functions, any monotonic func-
tion on r0, 1s is differentiable almost everywhere
on r0, 1s (i.e. excluding at most a measure-0 set),
and compander f and CDF Fp are monotonic. This
implies 2) and 3). Finally, 4) follows because the set
of X such that ppXq “ 0 has probability 0 under p
by definition.

Therefore, we can fix X „ p and assume it
satisfies the above properties.
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We now consider the bin size rpnN pXqq as N Ñ 8;
there are two cases, (a) limNÑ8 rpnN pXqq “ 0 and
(b) lim supNÑ8 rpnN pXqq ą 0. For case (b), since the
length of the interval does not go to zero, gNpXq “
N2`p,pnN pXqq Ñ 8; additionally, gpXq “ 8 by
default since case (b) requires that f 1pXq “ 0, and
so gNpXq Ñ gpXq as we want.

Case (a): In this case (which holds for all X if
f P F :), any δ ą 0 there is some sufficiently large
N˚ (which can depend on X) such that

N ě N˚
ùñ rpnN pXqq ď δ .

By Proposition 10, for any ε ą 0 there is some
δ ą 0 such that for all intervals I where X P I and
rI ď δ, we have dKSpp|I , unifIq ď ε. Putting this
together implies that for any ε ą 0, there is some
sufficiently large N˚

ε such that for all N ě N˚
ε ,

dKSpp|pnN pXqq, unifpnN pXqqq ď ε .

i.e. p is ε close to uniform on IpnN pXqq. Furthermore,
we can always choose ε ď 1{2 and N˚

ε sufficiently
large that rpnN pXqq ď X{4 (since limNÑ8 rpnN pXqq “
0). Under these conditions, for N ą N˚

ε we can
apply Proposition 11 and get

|`p,pnN pXqq ´ `unifpnN pXqq
|

ď 2εr2
pnN pXqq

X´1
`Opr3

pnN pXqq
X´2

q .

We can then turn this around: as N Ñ 8, we have
εÑ 0 and hence ε “ op1q (as N Ñ 8), so

|`p,pnN pXqq ´ `unifpnN pXqq
| “ opr2

pnN pXqq
X´1

q . (43)

We then apply Proposition 12 (note that since
rpnN pXqq ď X{4 and X ď 2ȳpnN pXqq, we know
automatically that rpnN pXqq ď ȳpnN pXqq{2) to get that

`unifpnN pXqq
“

1

24
r2
pnN pXqq

ȳ´1
pnN pXqq

`Opr3
pnN pXqq

X´2
q

However, since X is fixed and rpnN pXqq Ñ 0 as N Ñ

0 (and |X´ ȳpnN pXqq| ď rpnN pXqq since they are both
in the bin IpnN pXqq), we know that ȳpnN pXqq “ Xp1`
op1qq where op1q is in terms of N (as N Ñ 8).
Hence (noting that p1 ` op1qq´1 is still 1 ` op1q
and Opr3

pnN pXqq
X´2q is op1qr2

pnN pXqq
X´1) we can re-

write the above and combine with (43) to get

`unifpnN pXqq
“

1

24
p1` op1qqr2

pnN pXqq
X´1

ùñ `p,pnN pXqq “
1

24
p1` op1qqr2

pnN pXqq
X´1 .

We now split things into two cases: (i) f 1pXq ą 0;
(ii) f 1pXq “ 0.

Case i (f 1pXq ą 0): For all N there is a θ P r0, 1s
such that IpnN pXqq “ IpX,θ,1{Nq (bins are pseudo-
bins, see Definition 5). Thus, by Lemma 2 (which
shows uniform convergence over θ),

lim
NÑ8

NrpnN pXqq “ f 1pXq´1

Thus, we may re-write as a little-o and plug into
gNpXq:

rpnN pXqq “ N´1f 1pXq´1
` opN´1

q

“ N´1f 1pXq´1
p1` op1qq

ùñ gNpXq “ N2`p,pnN pXqq

“ N2 1

24
p1` op1qqr2

pnN pXqq
X´1

“ N2 1

24
p1` op1qqN´2f 1pXq´2X´1

“
1

24
p1` op1qqf 1pXq´2X´1

implying limNÑ8 gNpXq “ gpXq as we wanted.
Case ii (f 1pXq “ 0): As before, for any N there

is some θ P r0, 1s such that IpnN pXqq “ IpX,θ,1{Nq.
Thus, by Lemma 2 and as f 1pXq “ 0, we have

lim
NÑ8

NrpnN pXqq “ 8 .

since the convergence in Lemma 2 is uniform over
θ. We can then re-write this as a little-ω:

rpnN pXqq “ ωpN´1
q .

This implies that

gNpXq “ N2`p,pnN pXqq

“ N2 1

24
p1` op1qqr2

pnN pXqq
X´1

“ N2 1

24
p1` op1qqωpN´2

qX´1

“ ωp1q

where ωp1q means limNÑ8 gNpXq “ 8. But since
f 1pXq “ 0, by convention we have gpXq “
1
24
f 1pXq´2X´1 “ 8 and so limNÑ8 gNpXq “

gpXq as we wanted.
Case (b): lim supNÑ8 rpnN pXqq ą 0. Note that this

can only happen if f 1pXq “ 0, so gpXq “ 8; hence
our goal is to show that limNÑ8 gNpXq “ 8.

Related to the above, this only happens if f is
not strictly monotonic at X , i.e. if there is some
a ă X or some b ą X such that fpXq “ fpaq or
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fpXq “ b (or both). If both, ra, bs Ď IpnN pXqq for
all N . Since ppXq is well-defined and positive, any
nonzero-width interval containing X has positive
probability mass under p. Thus, by Lemma 3, there
exists some α ą 0 such that all J Ě ra, bs satisfies
`p,J ě α. But then gNpXq ě N2α and goes to 8.

If only a exists, we divide the granularities N
into two classes: first, N such that IpnN pXqq has
lower boundary exactly at X (which can hap-
pen if fpXq is rational), and second, N such
that IpnN pXqq has lower boundary below X . Call
the first class N p1qp1q, N p1qp2q, . . . and the sec-
ond N p2qp1q, N p2qp2q, . . . . Then as no b exists,
limiÑ8 r

pn
Np1qpiq

pXqq
“ 0, i.e. the bins corresponding

to the first class shrink to 0 and the asymptotic
argument applies to them, showing gNp1qpiqpXq Ñ
8. For the second class, for any i, we have
I
pn
Np2qpiq

pXqq
Ě ra,Xs and so we have an α ą 0

lower bound of the interval loss, and multiplying
by N2 takes it to 8. Thus since both subsequences
of N take gNpXq to 8, we are done. An analogous
argument holds if b exists but not a.

As this holds for any X under conditions 1-4,
which happens almost surely, we are done.

D. Proof of Proposition 7

To finish our Dominated Convergence Theorem
(DCT) argument, we to prove Proposition 7, which
gives an integrable function h dominating all the
local loss functions gN . As with Proposition 6, we
do this in stages. We first define:

Definition 6. For any interval I , let

`˚I “ sup
q
`q,I

where q is a probability distribution over r0, 1s. If
I “ Ipnq we can denote this as `˚

pnq.

Since `q,I is only affected by q|I (i.e. what q
does outside of I is irrelevant), we can restrict
q to be a probability distribution over I without
affecting the value of `˚I . The question is thus: what
is the maximum single-interval loss which can be
produced on interval I?

Then, we can use the upper bound

gNpxq “ N2`p,pnN pxqq ď N2`˚pnN pxqq . (44)

This has the benefit of simplifying the term by
removing p. We now bound `˚I :

Lemma 4. For any interval I , `˚I ď
1
2
r2
I ȳ
´1
I .

We give the proof in Section A-J. We can then
add the above result to (44) in order to obtain

gNpxq ď N2`˚pnN pxqq ď N2 1

2
r2
pnN pxqq

ȳ´1
pnN pxqq

(45)

However, it is hard to use this as the boundaries
of IpnN pxqq in relation to x are inconvenient. Instead,
use an interval which is ‘centered’ at x in some way,
with the help of the following:

Lemma 5. If I Ď I 1, then `˚I ď `˚I 1 .

Proof. This follows as any q over I is also a distri-
bution over I 1 (giving 0 probability to I 1zI).

Thus, if we can find some interval J such that
IpnN pxqq Ď J (but of the right size) and which
had more convenient boundaries, we can use that
instead. We define:

Definition 7. For compander f at scale N and x P
r0, 1s, define the interval

Jf,N,x “ f´1
´”

fpxq ´
1

N
, fpxq `

1

N

ı

X r0, 1s
¯

As mentioned, we want this because it contains
IpnN pxqq:

Lemma 6. For any strictly monotonic f and integer
N ,

IpnN pxqq Ď Jf,N,x

Proof. Since f is strictly monotonic, it has a well-
defined inverse f´1.

By definition the bin IpnN pxqq, when passed
through the compander f , returns rn´1

N
, n
N
s, i.e.

fpIpnN pxqqq “
”n´ 1

N
,
n

N

ı

.

Note that this interval has width 1{N and includes
fpxq and (by definition) it is in r0, 1s. Hence,

fpIpnN pxqqq Ď
”

fpxq ´
1

N
, fpxq `

1

N

ı

X r0, 1s

ùñ fpIpnN pxqqq Ď fpJf,N,xq

ùñ IpnN pxqq Ď Jf,N,x

and we are done.

Now we can consider the importance of f P F ::
by dominating a monomial cxα, we can ‘upper
bound’ the interval Jf,N,x by the equivalent interval
with the compander f˚pxq “ cxα (i.e. Jf,N,x Ď
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Jf˚,N,x), which is then much nicer to work with.6

This also guarantees that f is strictly monotonic.

Lemma 7. If f1, f2 P F are strictly monotonic
increasing companders such that f2 ´ f1 is also
monotonically increasing (not necessarily strictly)
and f1p0q “ 0, then for any x P r0, 1s and N ,

Jf2,N,x Ď Jf1,N,x

The proof is given in Section A-K. Finally, we
need a quick lemma concerning the guarantee that
if f P F :, the function gpxq “ 1

24
f 1pxq´2x´1 is

integrable under any distribution p:

Lemma 8. Let f P F :, and let gpxq “
1
24
f 1pxq´2x´1. Then for any probability distribution

p over r0, 1s,
ż

r0,1s

g dp ă 8 .

Proof. If f P F :, then there is some c ą 0 and
α P p0, 1{2s such that fpxq ´ cxα is monotonically
increasing. Thus (whenever it is well-defined, which
is almost everywhere by Lebesgue’s differentiation
theorem for monotone functions) we have f 1pxq ě
cαxα´1 and since α P p0, 1{2s, we have 1´2α ě 0.
Thus, for all x P r0, 1s,

0 ď gpxq ď
1

24
c´2α´2x1´2α

ď
1

24
c´2α´2

which of course implies that
ş

r0,1s
g p ă 8.

We can now prove Proposition 7, which will
complete the proof of Theorem 2.

Proof of Proposition 7. As before, let f˚pxq “ cxα;
thus f˚p0q “ 0 so we can apply Lemma 7. We begin,
as outlined in (45), with:

gNpxq “ N2`p,pnN pxqq

ď N2`˚pnN pxqq (46)

ď N2`˚Jf,N,x (47)
ď N2`˚Jf˚,N,x (48)

where (46) follows from the definition of `˚I ; (47)
follows from Lemmas 5 and 6; and (48) follows
from Lemma 7. However, since f˚pxq “ cxα, we
have a specific formula we can work with. We

6While f˚pxq may not map to all of r0, 1s, it’s a valid compander
(but sub-optimal as it only uses some of the N labels).

have f 1˚pxq “ αcxα´1 and f´1
˚ pwq “ pw{cq1{α “

c´1{αw1{α. Note that this means we can re-write

hpxq “ p22{α
` α221{α´2

qf 1˚pxq
´2x´1

` c´1{α21{α´2

which sheds some light on the structure of hpxq.
Using Lemma 8 proves that

ş

r0,1s
h dp is finite if

f P F , which occurs when α ď 1{2.
Fix a value of x. Let rNpxq be the width of

Jf˚,N,x. We consider two cases: (i) cxα ă 1{N ;
and (ii) cxα ě 1{N .

Case (i): This implies fpJf˚,N,xq Ď r0, 2{N s so

x ă c´1{αN´1{α

ùñ rNpxq ď c´1{α
pN{2q´1{α

Then, as Jf˚,N,x has lower boundary 0 in this case,
ȳpnN pxqq “ rNpxq{2. Thus, using (45),

gNpxq ď N2 1

2
rNpxq

2ȳ´1
pnN pxqq

ď c´1{α2´1{αN´1{α`2 .

If α ď 1{2, then N´1{α`2 is maximized at N “ 1,
and thus

gNpxq ď c´1{α2´1{α .

If α ą 1{2, the value N´1{α`2 is maximized for the
largest possible N still satisfying Case (i). Since
cxα ă 1{N , this implies that N ă c´1x´α. Then,

gNpxq ď c´1{α
pc´1x´αq´1{α`22´1{α

“ c´2x1´2α2´1{α

“ α2
pcαxα´1

q
´2x´12´1{α

“ α2f 1˚pxq
´2x´12´1{α .

Thus, for Case (i) we have that for any a P p0, 1s,

gNpxq ď α2f 1˚pxq
´2x´12´1{α

` c´1{α2´1{α .

Case (ii): When cxα ě 1{N , since x P I ùñ

ȳI ě x{2 (the midpoint of an interval cannot be less
than half the largest element of the interval), we can
upper-bound gNpxq (using (48) and Lemma 4) by

gNpxq ď N2 1

2
rNpxq

2ȳ´1
Jf˚,N,x

ď N2rNpxq
2x´1 .

(49)

We then bound rNpxq using the Fundamental The-
orem of Calculus: since f is monotonically increas-
ing, for any a ď b,

ż b

a

f 1ptq dt ď fpbq ´ fpaq
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(any discontinuities can only make f increase
faster). Additionally rNpxq “ b1´a1 where fpb1q “

maxpfpxq`1{N, 1q and fpa1q “ fpxq´1{N (since
it’s Case (ii) we know fpxq ´ 1{N ě 0 and since
f P F : is strictly monotonic a1, b1 are unique).
Thus, if we define a2, b2 such that
ż x

a2

f 1ptq dt “ 1{N and
ż b2

x

f 1ptq dt “ 1{N

(or a2 “ 0 or b2 “ 1 if they exceed the r0, 1s
bounds) we have rNpxq ď b2 ´ a2. Then, because
f ´ f˚ is monotonically increasing, we can define
a3, b3 where
ż x

a3

f 1˚ptq dt “ 1{N and
ż b3

x

f 1˚ptq dt “ 1{N

and get that rNpxq ď b3 ´ a3 (also allowing b3 ě 1
if necessary). This yields:

rNpxq ď c´1{α

ż minp1,cxα`1{Nq

maxp0,cxα´1{Nq

pf´1
˚ q

1
pwq dw

“ c´1{α

ż minp1,cxα`1{Nq

maxp0,cxα´1{Nq

α´1w1{α´1 dw

ď c´1{α

ż minp1,cxα`1{Nq

maxp0,cxα´1{Nq

α´1
pcxα ` 1{Nq1{α´1 dw

ď c´1{α

ż cxα`1{N

cxα´1{N

α´1
pcxα ` 1{Nq1{α´1 dw

“ p2{Nqc´1{αα´1
pcxα ` 1{Nq1{α´1

ùñ rNpxq ď p2{Nqc
´1{αα´1

pcxα ` 1{Nq1{α´1

ď 2N´1c´1{αα´1
p2cxαq1{α´1

“ N´1c´1{αα´121{α
pcxαq1{α´1

“ 21{αN´1
`

c´1α´1x1´α
˘

“ 21{αN´1f 1˚pxq
´1

Thus, we can incorporate this into our bound (49)

gNpxq ď N2rNpxq
2x´1

ď 22{αf 1˚pxq
´2x´1 .

So, hpxq, as the sum of the two cases, upper bounds
gNpxq no matter what.

We can also note that if α ď 1{2, then x1´2α ď 1
and hence we can upper-bound h by a constant.
Thus

ş

r0,1s
h dp “ EX„prhpXqs ă 8 trivially, for

any p, and we are done.

This completes the proof of (16) in Theorem 2.

E. Proof of Lemma 2

Proof. Note that for fixed θ and x, rpx,θ,εq is nonneg-
ative and monotonically decreases as ε decreases.
Thus limεÑ0 r

px,θ,εq ě 0 is well defined.
We first assume that limεÑ0 r

px,θ,εq “ 0 for all
θ P r0, 1s. Let sθprq be defined as

sθprq :“
fpx` p1´ θqrq ´ fpx´ θrq

r
.

We want to show that limrÑ0 sθprq “ f 1pxq for all
θ P r0, 1s, and that this limit is uniform over θ P
r0, 1s. For θ P t0, 1u we get respectively the right
and left derivatives and since f is differentiable at
x we are done for those cases. For θ P p0, 1q we
write:

sθprq “
fpx` p1´ θqrq ´ fpx´ θrq

r

“
fpx` p1´ θqrq ´ fpxq

r

`
fpxq ´ fpx´ θrq

r

“ p1´ θq
fpx` p1´ θqrq ´ fpxq

p1´ θqr

` θ
fpx´ θrq ´ fpxq

´θr
.

This implies

lim
rÑ0

sθprq “ lim
rÑ0

ˆ

p1´ θq
fpx` p1´ θqrq ´ fpxq

p1´ θqr

` θ
fpx´ θrq ´ fpxq

´θr

˙

“ p1´ θqf 1pxq ` θf 1pxq “ f 1pxq .

Furthermore we note that the convergence is uni-
form over θ P r0, 1s. This is because for any α ą 0,
there is a δ ą 0 such that for |r| ď δ,

ˇ

ˇ

ˇ

ˇ

fpx` rq ´ fpxq

r
´ f 1pxq

ˇ

ˇ

ˇ

ˇ

ď α .
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But |r| ď δ ùñ | ´ θr| ď δ and |p1 ´ θqr| ď δ.
Thus,

|sθprq ´ f
1
pxq|

“

ˇ

ˇ

ˇ

ˇ

p1´ θq
fpx` p1´ θqrq ´ fpxq

p1´ θqr

` θ
fpx´ θrq ´ fpxq

´θr
´ f 1pxq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

p1´ θq
fpx` p1´ θqrq ´ fpxq

p1´ θqr
´ p1´ θqf 1pxq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

θ
fpx´ θrq ´ fpxq

´θr
´ θf 1pxq

ˇ

ˇ

ˇ

ˇ

ď p1´ θqα ` θα

“ α .

Thus we have uniform convergence of sθprq to f 1pxq
over all θ P r0, 1s as r Ñ 0. Since rpx,θ,εq Ñ 0 as
εÑ 0,

f 1pxq “ lim
εÑ0

sθpr
px,θ,εq

q

“ lim
εÑ0

fpx` p1´ θqrpx,θ,εqq ´ fpx´ θrpx,θ,εqq

rpx,θ,εq

“ lim
εÑ0

ε

rpx,θ,εq

ùñ lim
εÑ0

ε´1 rpx,θ,εq “ f 1pxq´1

as we wanted. The third equality comes from the
definition of rpx,θ,εq (42) and the fact that f 1pxq is
well-defined.

Now we need to consider what happens if
limεÑ0 r

px,θ,εq ‰ 0 for some values of θ; this can
either be because the limit is positive or because the
limit does not exist, but in either case it is clearly
only possible if f is not strictly monotonic at x and
hence only if f 1pxq “ 0. Additionally, it can only
happen if f is flat at x, i.e. there is either some a ă x
or some a ą x such that fpaq “ fpxq (or both). In
this case, for any 0 ă θ ă 1, Ipx,θ,εq contains the
interval between a and x and hence rpx,θ,εq ě |x´a|.
For θ “ 0 and θ “ 1, either rpx,θ,εq is bounded
away from 0, or it approaches 0; in the first case,
ε´1rpx,θ,εq Ñ 8 by default, while in the second the
proof for the limεÑ0 r

px,θ,εq “ 0 case holds.
Thus, for all values of θ P r0, 1s, we know that

limεÑ0 ε
´1rpx,θ,εq “ 8 as we need; and this is

uniform over θ because for any θ P p0, 1q we have
ε´1rpx,θ,εq ě ε´1|x´ a|, meaning that for any large
α ą 0, we can choose ε˚ small enough so that for all
ε ă ε˚ all of the following hold: (i) ε´1|x´a| ą α;

(ii) ε´1rpx,0,εq ą α; and (iii) ε´1rpx,0,εq ą α. Thus,
we have uniform convergence and we are done.

F. Proof of Proposition 10

Proof. We can assume that ε ď 1{2 (if not, just use
the value of δ corresponding to ε “ 1{2). Let δ ą 0
be such that for all x1 such that |x1 ´ x| ď δ,

ˇ

ˇ

ˇ

Fppx
1q ´ Fppxq

x1 ´ x
´ ppxq

ˇ

ˇ

ˇ
ď ppxqε{8

Since the derivative ppxq “ F 1ppxq is well-defined,
this δ must exist. Then for x1 P I ,

ˇ

ˇpFppx
1
q ´ Fppxqq ´ px

1
´ xqppxq

ˇ

ˇ

ď |x1 ´ x|ppxqε{8 ď rIppxqε{8

Now let x2 also be such that |x2 ´ x| ď δ. Then
ˇ

ˇpFppx
2
q ´ Fppx

1
qq ´ px2 ´ x1qppxq

ˇ

ˇ

“
ˇ

ˇppFppx
2
q ´ Fppxqq ´ px

2
´ xqppxqq

´ ppFppx
1
q ´ Fppxqq ´ px

1
´ xqppxqq

ˇ

ˇ

ď rIppxqε{4 (50)

Let x1 be the lower boundary of I , so x1` rI is the
upper boundary of I (for which the above of course
applies). Then we get
ˇ

ˇpFppx
1
` rIq ´ Fppx

1
qq ´ rIppxq

ˇ

ˇ ď rIppxqε{4

ùñ

ˇ

ˇ

ˇ

Fppx
1 ` rIq ´ Fppx

1q

rIppxq
´ 1

ˇ

ˇ

ˇ
ď ε{4 . (51)

Then we know that for any x2 P I ,

Fp|I px
2
q “

Fppx
2q ´ Fppx

1q

Fppx1 ` rIq ´ Fppx1q
.

By (50) we know that

px2 ´ x1qppxq´rIppxqε{4 ď Fppx
2
q ´ Fppx

1
q

ď px2 ´ x1qppxq ` rIppxqε{4

ùñ rIppxqppx
2
´ x1q{rI ´ ε{4q ď Fppx

2
q ´ Fppx

1
q

ď rIppxqppx
2
´ x1q{rI ` ε{4q

and by (51) we know that

rIppxq ´ rIppxqε{4 ď Fppx` rIq ´ Fppx
1
q

ď rIppxq ` rIppxqε{4

ùñ rIppxqp1´ ε{4q ď Fppx` rIq ´ Fppx
1
q

ď rIppxqp1` ε{4q .
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Noting that px2 ´ x1q{rI “ FunifI px
2q P r0, 1s is the

CDF of the uniform distribution on I , we get that

Fp|I px
2
q ě

rIppxqppx
2 ´ x1q{rI ´ ε{4q

rIppxqp1` ε{4q

“
px2 ´ x1q{rI ´ ε{4

1` ε{4

ě FunifI px
2
q ´ ε

and similarly that

Fp|I px
2
q ď

rIppxqppx
2 ` x1q{rI ´ ε{4q

rIppxqp1´ ε{4q

“
px2 ´ x1q{rI ` ε{4

1´ ε{4

ď FunifI px
2
q ` ε

and hence for such a δ ą 0 we have for all I
containing x and such that rI ď δ we have

|Fp|I px
2
q ´ FunifI px

2
q| ď ε

for all x2 P I . For x2 R I “ rx1, x1 ` rIs we then
observe that

Fp|I px
2
q “ FunifI px

2
q “

#

0 if x2 ă x1

1 if x2 ą x1 ` rI

thus finishing the proof.

G. Proof of Proposition 11

Proof. Let ξ “ ryp,I ´ ȳI . Then:

|ξ| “

ˇ

ˇ

ˇ

ˇ

ż

I

`

PX„p|I rX ě xs ´ PX„unifI rX ě xs
˘

dx

ˇ

ˇ

ˇ

ˇ

ď

ż

I

ˇ

ˇPX„p|I rX ě xs ´ PX„unifI rX ě xs
ˇ

ˇ dx

ď rIε .

For any distribution q and any fixed value w, define
the shift operator Twpqq to denote the distribution of
X ´ w where X „ q (i.e. just shift it by w). Note
that T

ryp,I pp|Iq and TȳI punifIq are both constructed
to have expectation 0, and in particular TȳI punifIq
is the uniform distribution over an interval of width
rI centered at 0. Additionally,

dKSpTryp,I pp|Iq, TȳI punifIqq

ď dKSpTryp,I pp|Iq, Tryp,I punifIqq

` dKSpTryp,I punifIq, TȳI punifIqq

ď 2ε

since dKSp¨, ¨q is a metric, dKSpq1, q2q “

dKSpTwpq1q, Twpq2qq for any q1, q2 and w, and

dKSpTz1punifIq, Tz2punifIqq ď |z2 ´ z1|{rI .

For convenience, let q1 “ T
ryp,I pp|Iq and q2 “

TȳI punifIq, and let W1 „ q1 and W2 „ q2. We know
the following: ErW1s “ ErW2s “ 0; dKSpq1, q2q ď

2ε; and q1, q2 have support on r´rI , rIs.
Let ηi “ ErW i

1s ´ ErW i
2s. Then we can compute

the following:

|ηi| “

ˇ

ˇ

ˇ

ˇ

ż riI

0

pPrW i
1 ě xs ´ PrW i

2 ě xsq dx

´

ż riI

0

pPrW i
1 ď ´xs ´ PrW i

2 ď ´xsq dx

ˇ

ˇ

ˇ

ˇ

If i is odd, then we do a u-substitution with u “ x1{i

and get

|ηi| “

ˇ

ˇ

ˇ

ˇ

ż riI

0

pPrW1 ě x1{i
s ´ PrW2 ě x1{i

sq dx

´

ż 0

´riI

pPrW1 ď ´x
1{i
s ´ PrW i

2 ď ´x
1{i
sq dx

ˇ

ˇ

ˇ

ˇ

“ i

ˇ

ˇ

ˇ

ˇ

ż rI

0

ui´1
pPrW1 ě us ´ PrW2 ě usq du

´

ż 0

´rI

ui´1
pPrW1 ď us ´ PrW2 ď usq du

ˇ

ˇ

ˇ

ˇ

ď 2

ż rI

0

iui´12εdu “ 4εriI

Similarly if i is even we get

|ηi| “

ˇ

ˇ

ˇ

ˇ

ż riI

0

pPrW1 ě x1{i
s ´ PrW2 ě x1{i

sq dx

`

ż 0

´riI

pPrW1 ď ´x
1{i
s ´ PrW i

2 ď ´x
1{i
sq dx

ˇ

ˇ

ˇ

ˇ

“ i

ˇ

ˇ

ˇ

ˇ

ż rI

0

ui´1
pPrW1 ě us ´ PrW2 ě usq du

`

ż 0

´rI

ui´1
pPrW1 ď us ´ PrW2 ď usq du

ˇ

ˇ

ˇ

ˇ

ď 2

ż rI

0

iui´12εdu “ 4εriI

and we can conclude that |ηi| ď 4εriI in general.
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Then we can take the respective Taylor expan-
sions: let X1 „ p|I and X2 „ unifI (and W1 „

q1,W2 „ q2 as above). We get

`p,I “ ErX1 logpX1{ryp,Iqs

“ ryp,IErpW1{ryp,I ` 1q logpW1{ryp,I ` 1qs

“ ryp,IE
„

W1{ryp,I `
pW1{ryp,Iq

2

2
´
pW1{ryp,Iq

3

6p1` ηq2



(52)

where η is a number between 0 and W1{ryp,I (we
get this using Lagrange’s formula for the error).

Since W1 ` ryp,I P I , we know that

ryp,I ´ rI ď w ` ryp,I ď ryp,I ` rI .

Since rI ă x{4 and ryp,I ě x ´ rI (as x, ryp,I share
the width-rI interval I), we get that ryp,I ą 3rI , and
therefore

2

3
ryp,I ă W1 ` ryp,I ă

4

3
ryp,I

ùñ
´1

3
ă W1{ryp,I ă

1

3
.

This gives that |η| ă 1{3. Using this and the fact
that ErW1s “ 0 by construction, we can write (52)
as

`p,I ď
1

2
ErW 2

1 s{ryp,I `
|ErW 3

1 s|

8{3
pryp,Iq

´2

ď
1

2
ErW 2

1 s{ryp,I `
r3
I

8{3px´ rIq2
.

Since rI ă x{4, we know that x´ rI ą p3{4qx, and
hence

`p,I ď
1

2
ErW 2

1 s{ryp,I ` p2{3qr
3
Ix
´2 .

Hence we get

`p,I “
1

2
ErW 2

1 s{ryp,I `Opr
3
Ix
´2
q .

Because x ´ rI ď ȳI as well (and W2 has support
on r´rI , rIs) we can repeat the above arguments to
conclude similarly that

`unifI “
1

2
ErW 2

2 s{ȳI `Opr
3
Ix
´2
q . (53)

Hence their difference is

|`p,I ´ `unifI | ď

1

2

ˇ

ˇErW 2
1 s{ryp,I ´ ErW 2

2 s{ȳI
ˇ

ˇ`Opr3
Ix
´2
q (54)

Taking the main term, we split it into three parts:
ˇ

ˇErW 2
1 s{ryp,I ´ ErW 2

2 s{ȳI
ˇ

ˇ

ď
ˇ

ˇErW 2
1 s{ryp,I ´ ErW 2

1 s{x
ˇ

ˇ (55)
`
ˇ

ˇErW 2
2 s{ȳI ´ ErW 2

2 s{x
ˇ

ˇ (56)
`
ˇ

ˇErW 2
1 s{x´ ErW 2

2 s{x
ˇ

ˇ . (57)

The first part (55) can be bounded by
ˇ

ˇErW 2
1 s{ryp,I ´ ErW 2

1 s{x
ˇ

ˇ ď |ErW 2
1 s| |1{ryp,I ´ 1{x|

ď r2
I

|x´ ryp,I |

ryp,Ix

ď p4{3qr3
Ix
´2

“ Opr3
Ix
´2
q .

An analogous argument bounds (56), giving
ˇ

ˇErW 2
2 s{ȳI ´ ErW 2

2 s{x
ˇ

ˇ “ Opr3
Ix
´2
q .

Finally, (57) follows from
ˇ

ˇErW 2
1 s{x´ ErW 2

2 s{x
ˇ

ˇ “ |η2|x
´1
ď 4εr2

Ix
´1 .

Thus, plugging it all into (54) we get

|`p,I ´ `unifI | ď 2εr2
Ix
´1
`Opr3

Ix
´2
q .

H. Proof of Proposition 12
Proof. Let i˚ be such that rIi˚ ď x{4 for all
i ě i˚ (since limiÑ8 rIi “ 0 this exists) and
WLOG consider the sequence of i ě i˚. The result
then follows from the Taylor series of `unifIi

, as
shown by (53) (see proof of Proposition 11 in
Section A-G). Keeping the definition from the proof
of Proposition 11, we let W2 „ TȳIi punifIiq, i.e.
uniform over a width-rIi interval centered at 0. Thus
we have ErW 2

2 s “
1
12
r2
Ii

and hence (53) yields

`unifIi
“

1

2
ErW 2

2 s{ȳIi `Opr
3
Ix
´2
q

“
1

24
r2
Ii
ȳ´1
Ii
`Opr3

Ii
x´2
q (58)

But ȳIi and x share the interval Ii and hence as
rIi Ñ 0,

ȳIi “ x`OprIiq

“ xp1`OprIix
´1
qq

ùñ ȳ´1
Ii
“ x´1

p1`OprIix
´1
qq

since when rIi is very small, OprIix
´1q is very small

so p1 ` OprIix
´1q´1 “ 1 ` OprIix

´1q (the inverse
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of a value close to 1 is also close to 1). Thus, we
can replace ȳ´1

Ii
in (58) to get

`unifI “
1

24
r2
Ii
x´1

`Opr3
Ii
x´2
q

as we wanted.

I. Single-Interval Loss Function Properties and
Proof of Lemma 3

We prove Lemma 3 here; to do so, we show a few
lemmas concerning the single-interval loss function
`p,I . First, we show an alternative formula for `p,I
which sheds some light on it:

Lemma 9. For any p, I ,

`p,I “ EX„p|I rX logXs ´ ryp,I logpryp,Iq

Proof. We compute `p,I as follows:

`p,I “ EX„prX logpX{ryp,Iq |X P Is

“ EX„p|I rX logpX{ryp,Iqs

“ EX„p|I rX logpXq ´X logpryp,Iqs

“ EX„p|I rX logXs ´ EX„p|I rXs logpryp,Iq

“ EX„p|I rX logXs ´ ryp,I logpryp,Iq

since ryp,I “ EX„p|I rXs.

We now want to show that it really does represent
something resembling a loss function: first, that it
is nonnegative, and second that it achieves equality
if and only if X „ p on I is known for sure (so the
decoded value can be guaranteed to equal X).

Lemma 10. For any p and I Ď r0, 1s (even p is not
continuous),

`p,I ě 0

with equality if and only if there is some w P I s.t.

PX„prX “ w |X P Is “ 1 .

Proof. Using Lemma 9, if we define the function
hptq “ t log t then since h is strictly convex, by
Jensen’s Inequality (where all expectations are over
X „ p|I)

`p,I “ ErhpXqs ´ hpErXsq ě 0

with equality if and only if X „ p|I is fixed with
probability 1.

This yields the following corollary:

Corollary 2. If p P P and I has nonzero width,

`p,I ą 0 .

This follows because p P P is continuous and
so cannot have all its mass on a particular value in
any nonzero-width I . If I has zero probability mass
under p, then `p,I defaults to the interval loss under
a uniform distribution.

Finally, we can prove Lemma 3. Recall that it
shows that if I has nonzero probability mass under
p, one cannot get the interval loss to approach 0 by
choosing J Ě I , i.e. if p P P and I is such that
PX„prX P Is ą 0, then there is some α ą 0 (which
can depend on I) such that

`p,J ě α for all J Ě I .

Proof of Lemma 3. We can re-write `p,J as

`p,J “ EX„prX logpX{ryp,Jq |X P Js

“

ż

J

ppxq
ş

J
dp
x logpx{ryp,Jq dx

where
ş

J
dp is just the integral representation of

PX„prX P Js.
Therefore, since p P P , `p,J is continuous at

J with respect to the boundaries of J (the in-
verse probability mass p

ş

J
dpq´1 is continuous since

ş

J
dp ě

ş

I
dp ą 0).

Thus, we can consider `p,J as a continuous func-
tion over the boundaries of J on the domain where
I Ď J Ď r0, 1s; this domain can be represented
as a closed subset of r0, 1s2 and hence is compact.
Thus, by the Weierstrass extreme value theorem, `J,p
achieves its minimum α on this domain, and by
Corollary 2 it must be positive.

Hence, we have shown that there is an α ą 0
such that for any J Ě I , `p,J ą α.

J. Proof of Lemma 4

Proof. We WLOG restrict ourselves to q which are
probability distributions over I . Let PI denote the
set of probability distributions over I (not necessar-
ily continuous) and P 1I denote the set of probability
distributions over I which place all the probability
mass on the boundaries ȳI ´ rI{2 and ȳI ` rI{2, i.e.
for all q1 P P 1I we have

PX„q1rX P tȳI ´ rI{2, ȳI ` rI{2us “ 1 .

We then make the following claim:
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Claim 1: For all q P PI , exists q1 P P 1I such that
`q,I ď `q1,I .

This follows from the convexity of the function
x logpxq and the definition of `q,I , i.e.

`q,I “ EX„qrX logpX{ryq,Iqs

(since q in this case is a distribution over I , we
removed the condition X P I as it is redundant).
In particular, if q1 is the (unique) distribution in
P 1I such that EX„q1rXs “ ryq,I (i.e. we move all
the probability mass to the boundary but keep the
expected value the same), then `q1,I can be computed
by considering the average over the linear function
which connects the end points of X logpX{ryq,Iq
over I . Because of convexity, this linear function
is always greater than or equal to X logpX{ryq,Iq on
I , and therefore `q,I ď `q1,I . Thus, Claim 1 holds
and we can restrict our attention to P 1I .

For simplicity we introduce a linear mapping w
from r´1{2, 1{2s to I: for θ P r´1{2, 1{2s, let
wpθq “ ȳI ` θrI (so wp´1{2q “ ȳI ´ rI{2 is the
lower boundary of I , wp1{2q “ ȳI ` rI{2 is the
upper boundary, and wp0q “ ȳI is the midpoint). We
also specially denote a “ wp´1{2q to be the lower
boundary and b “ wp1{2q to be the upper boundary.
Then, since any q P P 1I can only assign probabilities
to a and b, we can parametrize all q P P 1I : let qpθq
denote the distribution assigning probability 1{2`θ
to the upper boundary b and 1{2 ´ θ to the lower
boundary a. Then this gives the nice formula:

ryqpθq,I “ ȳI ` θrI “ wpθq

i.e. qpθq is the unique distribution in P 1I with expec-
tation wpθq. This brings us to our next claim:

Claim 2: `qpθq,I ď 2`qp0q,I for any θ P r´1{2, 1{2s.
Ignoring the redundant condition X P I , we use

`q,I “ EX„qrX logpXqs ´ ryq,I logpryq,Iq (59)

to re-write `qpθq,I as follows:

`qpθq,I “ p1{2´ θqa logpaq ` p1{2` θqb logpbq

´ wpθq logpwpθqq

This implies that

`qpθq,I ď `qpθq,I ` `qp´θq,I

“
`

a logpaq ` b logpbq
˘

´
`

wpθq logpwpθqq ` wp´θq logpwp´θqq
˘

ď
`

a logpaq ` b logpbq
˘

´ 2ȳI logpȳIq

“ 2`qp0q,I

where the inequality follows because x logpxq is
convex and the mean of wpθq and wp´θq is wp0q “
ȳI , showing Claim 2.

Claim 3: 2`qp0q,I ď
1
2
r2
I ȳ
´1
I .

This comes from rewriting according to (59) and
then applying the Taylor series expansion of p1 `
tq logp1 ` tq. Define t “ rI{p2ȳIq ď 1 (otherwise
I R r0, 1s), we get:

2`qp0q,I

“
`

a logpaq ` b logpbq
˘

´ 2ȳI logpȳIq

“ pȳI ´ rI{2q logpȳI ´ rI{2q

` pȳI ` rI{2q logpȳI ` rI{2q ´ 2ȳI logpȳIq

“ pȳI ´ rI{2qplogpȳI ´ rI{2q ´ logpȳIqq

` pȳI ` rI{2qplogpȳI ` rI{2q ´ logpȳIqq

“ ȳI
`

p1´ tq logp1´ tq ` p1` tq logp1` tq
˘

We can use the inequality that p1 ´ tq logp1 ´ tq `
p1` tq logp1` tq ď 2t2 for |t| ď 1, to get

2`qp0q,I ď 2ȳIt
2
“

1

2
r2
I ȳ
´1
I

This resolves Claim 3.
The lemma then follows from Claims 1, 2, and

3.

K. Proof of Lemma 7
Proof. First, note that the above conditions imply
that f2pxq ě f1pxq and that f 12pxq ě f 11pxq for all x
where both are defined (almost everywhere).

Let Jfi,N,x “ rai, bis for i “ 1, 2. We will prove
that a1 ď a2 and b1 ě b2. Note that by definition if
f1pxq ´ 1{N ď 0 then a1 “ 0 and a1 ď a2 happens
by default; thus this is also the case if f2pxq´1{N ď

0 since f2 ě f1 means this implies f1pxq´1{N ď 0.
Meanwhile, if f2pxq ` 1{N ě 1 we have

1{N ě 1´ f2pxq ě f2p1q ´ f2pxq ě f1p1q ´ f1pxq

meaning that b1 “ 1 (and b2 “ 1) so b1 ě b2; and
similarly f1pxq` 1{N ě 1 simply implies b1 “ 1 ě
b2.

Thus we do not need to worry about the bound-
aries hitting 0 or 1 (i.e. we can ignore the ‘Xr0, 1s’
in the definition), as the needed result easily holds
whenever it happens.

Then a1 and a2 are the values for which
ż x

a2

f 12ptq dt “

ż x

a1

f 11ptq dt “ 1{N
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But since 0 ď f 11ptq ď f 12ptq, we know that
ż x

a2

f 12ptq dt “ 1{N “

ż x

a1

f 11ptq dt ď

ż x

a1

f 12ptq dt

which implies that a2 ě a1. An analogous proof on
the opposite side proves b1 ě b2 and hence

Jf2,N,x “ ra2, b2s Ď ra1, b1s “ Jf1,N,x

as we needed.

APPENDIX B
PROOF OF PROPOSITION 5

Proof. First, note that fδ ´ δx1{2 “ p1 ´ δqf is
monotonically increasing so f P F :. Furthermore,
where the derivative f 1 exists (which is almost
everywhere since it is monotonic and bounded),

f 1δpxq “ p1´ δqf
1
pxq ` pδ{2qx´1{2

Thus, pointwise, limδÑ0 f
1
δpxq “ f 1pxq for all x.

Since for all δ ą 0 we have f P F :, Theorem 2
applies to fδ. So, we have

lim
δÑ0

rLpp, fδq “ lim
δÑ0

L:pp, fδq

“ lim
δÑ0

1
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ż 1

0

ppxqf 1δpxq
´2x´1 dx

and limδÑ0 ppxqf
1
δpxq

´2x´1 “ ppxqf 1pxq´2x´1, i.e.
pointwise convergence of the integrand. We now
consider two possibilities: (i)

ş1

0
ppxqf 1pxq´2x´1 ă

8; (ii)
ş1

0
ppxqf 1pxq´2x´1 “ 8.

In case (i), WLOG assume that δ ď 1{2; then
f 1δpxq ą

1
2
f 1pxq, which implies f 1δpxq

´2 ă 4f 1pxq´2.
Thus, we have an integrable dominating function
(4ppxqf 1pxq´2x´1) and we can apply the Dominated
Convergence Theorem, which shows what we want.

In case (ii), we need to show
limδÑ0

ş1

0
ppxqf 1δpxq

´2x´1 dx “ 8. Let
X`
δ “ tx P r0, 1s : f 1pxq ě δx´1{2u and

X´
δ “ r0, 1szX`

δ , with 1¨p¨q denoting their
respective indicator functions. Then

f 1δpxq “ p1´ δqf
1
pxq ` pδ{2qx´1{2

ď f 1pxq ` δx´1{2

ď 2f 1pxq1X`δ
pxq ` 2δx´1{2 1X´δ

pxq

ùñ f 1δpxq
´2
ě

1

4
f 1pxq´2 1X`δ

pxq `
1

4
δ´2x1X´δ

pxq .

This then shows that (switching to
ş

¨dp notation)
ż

f 1δpxq
´2x´1 dp ě

1

4

ż

1X`δ
pxqf 1pxq´2x´1 dp

`
1

4

ż

1X´δ
pxqδ´2 dp .

Note that X`
δ expands as δ Ñ 0. We then have

two sub-cases (a) limδÑ0 PX„prX P X`
δ s “ 1; (b)

limδÑ0 PX„prX P X`
δ s ă 1, which implies that

there is some β ą 0 such that PX„prX P X´
δ s ą β

for all δ. Then in sub-case (a), we have

lim
δÑ0

1

4

ż

1X`δ
pxqf 1pxq´2x´1 dp

“
1

4
lim
δÑ0

EX„pr1X`δ
pXqf 1pXq´2X´1

s “ 8 .

This is infinite because X`
0 :“ limδÑ8X`

δ is
probability measure-1 set, and by the definition
of Lebesgue integration, integration over X`

0 is
equivalent to the limit of integration over X`

δ , and
since it is probability measure 1 integrating over it
with respect to p is equivalent to integrating over
r0, 1s. Meanwhile in sub-case (b) we have

1

4

ż

1X´δ
pxqδ´2 dp “

δ´2

4
PX„prX P X´

δ s ě
δ´2

4
β

which goes to 8 as δ Ñ 0, and we are done.

APPENDIX C
BETA AND POWER COMPANDERS

In this appendix, we analyze beta compan-
ders, which are optimal companders for symmetric
Dirichlet priors and are based on the normalized
incomplete beta function (Section C-A) and power
companders, which have the form fpxq “ xs

and which have properties similar to the minimax
compander when s “ 1{ logK (Section C-B).

We also add supplemental experimental results.
First, we compare the beta compander with trunca-
tion (identity compander) and the EDI (Exponential
Density Interval) compander we developed in [1]
in the case of the uniform prior on 4K´1 (which
is equivalent to a Dirichlet prior with all parameters
set to 1), on book word frequencies, and on DNA k-
mer frequencies. EDI was, in a sense, developed to
minimize the expected KL divergence loss for the
uniform prior (specifically to remove dependence
on K) as a means of proving a result in [1]; the
beta compander was then directly developed for all
Dirichlet priors.
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Second, we compare the theoretical prediction
for the power compander against various data sets;
this demonstrates a close match to the theoreti-
cal performance for synthetic (uniform on 4K´1)
data and DNA k-mer frequencies, while the power
compander performs better on book word frequen-
cies. Note that this is not a contradiction, as the
theoretical prediction is for its performance on the
worst possible prior – it instead indicates that book
word frequencies are somehow more suited to power
companders than the uniform distribution or DNA
k-mer frequencies.

Finally, we compare how quickly the beta and
power companders converge to their theoretical lim-
its (with uniform prior); specifically how quickly
N2

rLpp, f,Nq converges to rLpp, fq. The results
show that for large K (« 105), both are already
very close by N “ 28 “ 256; while for smaller
values of K, power companders still converge very
quickly while beta companders may take even until
N “ 216 “ 65536 or beyond to be close.

A. Beta Companders for Symmetric Dirichlet Priors
Definition 8. When X is drawn from a Dirichlet
distribution with parameters α “ α1, . . . , αK , we
use the notation X „ Dirpαq. When α1 “ ¨ ¨ ¨ “

αK “ α, then X is drawn from a symmetric
Dirichlet with parameter α and we use the notation
X „ DirKpαq.

As a corollary to Theorem 3, we get that the
optimal compander for the symmetric Dirichlet dis-
tribution is the following:

Corollary 3. When x „ DirKpαq, let ppxq be
the associated single-letter density (same for all
elements due to symmetry). The optimal compander
for p satisfies

f 1pxq “ B
´α ` 1

3
,
pK ´ 1qα ` 2

3

¯´1

xpα´2q{3
p1´ xqppK´1qα´1q{3 (60)

where Bpa, bq is the Beta function. Therefore, fpxq
is the normalized incomplete Beta function Ixppα`
1q{3, ppK ´ 1qα ` 2q{3q.

Then

rLpp, fq

“
1

2
B
´α ` 1

3
,
pK ´ 1qα ` 2

3

¯3

Bpα, pK ´ 1qαq´1

(61)
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Fig. 5. Comparing the beta compander and the EDI method. The
random data is drawn with DirKp1q (i.e. uniform).

This result uses the following fact:

Fact 1. For X „ Dirpα1, . . . , αKq, the marginal
distribution on Xk is Xk „ Betapαk, βkq, where
βk “

ř

j‰k αj . When the prior is symmetric with
parameter α, we get that all Xk are distributed
according to Betapα, pK ´ 1qαq.

Remark 13. Since (61) scales with K´1, this means
that pLKpDirKpαq, fq is constant with respect to K.
This is consistent with what we get with the EDI
compander (see [1]).

We will call the compander f derived from inte-
grating (60) the beta compander. (This is because
integrating (60) gives an incomplete beta function.)
The beta compander naturally performs better than
the EDI method since this compander is optimized
to do so. We can see the comparison in Figure 5
that on random uniform distributions, the beta com-
pander is better than the EDI method by a constant
amount for all K.

The beta compander is not the easiest algorithm
to implement however. It is necessary to compute
an incomplete beta function in order to find the
compander function f , which is not known to have a
closed form expression. We reiterate Remark 4 that
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Fig. 6. Comparing theoretical performance (62) of the power
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it is indeed interesting that the minimax compander,
on the other hand, does have a closed form.

B. Analysis of the Power Compander

Starting with Theorem 2, we can use the asymp-
totic analysis to understand why the power compan-
der works well for all distributions. The following
proposition proves the first set of results in Theo-
rem 5.

Proposition 13. Let single-letter density p be the
marginal probability of one letter on any symmetric
probability distribution P over K letters. For the
power compander fpxq “ xs where s ď 1

2
,

rLpp, fq ď
1

K

1

24
s´2K2s

and for any prior P P P4
K ,

rLKpP, xsq ď
1

24
s´2K2s .

Optimizing over s gives

rLKpP, fq ď
e2

24
log2K . (62)

Proof. Since fpxq “ xs we have that f 1pxq “
sxs´1. Using Theorem 2, this gives

rLpp, fq

“
1

24
s´2

ż 1

0

x1´2sppxqdx “
1

24
s´2EX„prX1´2s

s .

The function x1´2s is increasing and also a con-
cave function. We want to find the maximin prior

distribution P P P4
K (with marginals p) with the

constraint
ÿ

i

EXi„prXis “ 1

(another constraint is that values of p are such that
must sum to one, but we give a weaker constraint
here).

We want to choose P to maximize
ÿ

i

EXi„prX1´2s
i s “ EpX1,...,XKq„P

«

ÿ

i

X1´2s
i

ff

.

By concavity (even ignoring any constraint that P
is symmetric), the maximum solution is given when
X1 “ ¨ ¨ ¨ “ XK . Therefore, the maximin P is such
that the marginal on one letter p is

pp1{Kq “ 1 .

The probability mass function where 1{K occurs
with probability 1 is a limit point of a sequence of
continuous densities of the form

ppxq “
1

2ε
on x P

„

1

K
´ ε,

1

K
` ε



as ε Ñ 0. We use this since we are restricting to
continuous probability distributions.

Evaluating with this gives

rLpp, fq “
1

24
s´2EX„prX1´2s

s

ď
1

24
s´2

ˆ

1

K

˙1´2s

“
1

K

1

24
s´2K2s

which shows (62). Multiplying by K gives
rLKpP, fq for symmetric P .

Note that for any non-symmetric P , we can
always symmetrize P to a symmetric prior Psym
by averaging over all random permutations of the
indices. Because the loss rLKpP, fq is concave in
P , the symmetrized prior Psym will give an higher
value, that is rLKpP, fq ď rLKpPsym, fq. Hence
rLKpP, fq ď 1

24
s´2K2s holds for all priors.

Finding the s which minimizes 1
24
s´2K2s is

equivalent to finding s which minimizes s logK ´

log s.

0 “
d

ds
s logK ´ log s “ logK ´

1

s

ùñ s “
1

logK
.
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We can plug this back into our equation, using the
fact that elogK “ K implies that K

1
logK “ e.

Thus, using fpxq “ x
1

logK gives that

rLKpP, fq ď
e2

24
log2K for any P P P4

K .

To generate a prior P P P4
K that matches this upper

bound, we note that this means we want its marginal
p to maximize 1

24
plog2KqEX„prX1´2{ logKs, and

from before we know that fixing X “ 1{K does
this (since EX„prXs “ 1{K as p is the marginal of
P ). While p has to represent a probability density
function, and therefore cannot be a point mass,
we can restrict its support to an arbitrarily small
neighborhood around 1{K (and it is obvious that
there are priors P P P4

K with such a marginal),
thus getting a match and showing that

sup
PPP4

K

rLKpP, fq “
e2

24
log2K .

The power compander turns out to give guar-
antees bounds on the value on rLKpP, fq when
f is chosen so that s “ 1{logK. We show the
comparison between this theoretical result on raw
loss with the experimental results in Figure 6.

C. Converging to Theoretical

For both the power compander and the beta
compander, we show in Figure 7 how quickly
the experimental results converge to the theoretical
results. Experimental results have a fixed granular-
ity N whereas the theoretical results assume that
N Ñ 8. The plots show that by N “ 216 (each
value gets 16 bits), the experimental results for the
power compander are very close to the theoretical
results, and even for N “ 28 they are not so far.
For the beta compander, the experimental results
are close to the theoretical when K is large. When
K “ 100, the results for N “ 216 is not that close
to the theoretical result, which demonstrates the
effect of using unnormalized (or raw) values. The
difference between normalizing and not normalizing
gets smaller as K increases.

APPENDIX D
MINIMAX AND APPROXIMATE MINIMAX

COMPANDERS

In this appendix, we analyze the minimax
compander and approximate minimax compander.
Specifically, we analyze the constant cK , to show
that it falls in r1{4, 3{4s (Section D-A) and that
limKÑ8 cK “ 1{2 (Section D-A2). We also show
that when cK is close to 1{2, the approximate
minimax compander (which is the same as the
minimax compander except it replaces cK with 1{2)
has performance close to the minimax compander
against all priors p P P (Section D-B).

A. Analysis of Minimax Companding Constant
1) Determining bounds on cK: If aK , bK ě 0,

then ppxq is well-behaved (and bigger than 0).
We need aK and bK to be such that ppxq is a

density that integrates to 1 and also that ppxq has
expected value of 1{K. To do this, first we compute
that

EX„prXs “
ż 1

0

x
`

aKx
1{3
` bKx

4{3
˘´3{2

dx

“
´2

bK
?
aK ` bK

`

2ArcSinh
´b

bK
aK

¯

b
3{2
K

The constraint that
ş1

0
ppxq dx “ 1 requires that

aK
?
aK ` bK “ 2. We can use this to get

EX„prXs “
´aK
bK

`

aK
b

aK
bK
` 1ArcSinh

´b

bK
aK

¯

bK

“
´1

r
`

b

1
r
` 1ArcSinh p

?
rq

r

“
´1

r
`

b

1
r
` 1 log

`?
r `

?
r ` 1

˘

r
(63)

where we use r “ bK{aK . We will find upper and
lower bounds in order to approximate what r should
be. Using (63), we can get

EX„prXs ď
1

2

log r

r
so long as r ą 3. If we choose r “ c1K logK and
set c1 “ .75, then

EX„prXs ď
1

2

logpc1K logKq

c1K logK

ď
1

2c1K
`

log logK

2c1K logK
`

log c1

2c1K logK
ď

1

K
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Fig. 7. Comparing theoretical expression rLpp, fq with experimental result. The KL divergence value of the experimental results are multiplied
to N2 in order to be comparable to rLpp, fq.
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Fig. 8. Comparing theoretical performance (35) of the approximate
minimax compander to experimental results.

so long as K ą 4. Similarly, we have

EX„prXs ě
1

3

log r

r

for all r. If we choose r “ c2K logK and set c2 “

.25, then

EX„prXs ě
1

3

logpc2K logKq

c2K logK
ě

1

K

so long as K ą 24.
Changing the value of c changes the value of

EX„prXs continuously. Hence, for each K ą 24,
there exists a cK so that if r “ cKK logK, then

EX„prXs “
1

K
.

such that .25 ă cK ă .75.
This proves the result for K ą 24; numerical

evaluation of cK for K “ 5, 6, . . . , 24 then confirms
that the result holds for all K ą 4.

2) Limiting value of cK:

Lemma 11. In the limit, cK Ñ 1{2.

Proof. We start with r “ bK
aK
“ cKK logK, and we

need to meet the condition that

´1

r
`

b

1
r
` 1 log

`?
r `

?
r ` 1

˘

r
“

1

K
.

Substituting we get

1

K
“

´1

cKK logK
`

c

1

cKK logK
` 1

log
`?

cKK logK `
?
cKK logK ` 1

˘

cKK logK

ùñ cK “
´1

logK
`

c

1

cKK logK
` 1

log
`?

cKK logK `
?
cKK logK ` 1

˘

logK

Let c “ limKÑ8 cK . Since cK is bounded, we know
that limKÑ8 cKK logK “ 8 since cK is bounded
below by 1{4; additionally log cK is bounded (above
and below) since for K ą 4 we have cK P

r1{4, 3{4s.
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c “ lim
KÑ8

´1

logK

`

c

1

cKK logK
` 1

log
`?

cKK logK `
?
cKK logK ` 1

˘

logK

“ 0` 1 lim
KÑ8

log
`

2
?
cKK logK

˘

logK

“ lim
KÑ8

log 2` 1
2

log cK `
1
2

logK ` 1
2

log logK

logK

“
1

2

B. Approximate Minimax Compander vs. Minimax
Compander

For any K, cK can be approximated numerically.
To simplify the quantizer, recall we can use cK « 1

2
for large K to get the approximate minimax com-
pander (9).

This is close to optimal without needing to com-
pute cK . Here we prove Proposition 4.

Proof. Since f˚K , f
˚˚
K P F :, we know that

rLpp, f˚Kq “ L:pp, f˚Kq and rLpp, f˚˚K q “ L:pp, f˚˚K q .

We define the corresponding asymptotic local loss
functions

g˚pxq “
1

24
pf˚Kq

1
pxq´2x´1

g˚˚pxq “
1

24
pf˚˚K q

1
pxq´2x´1

so that our goal is to prove
ż

g˚˚ dp ď p1` εq

ż

g˚ dp .

Let γ˚ “ cKpK logKq and γ˚˚ “ 1
2
pK logKq

(the constants in f˚K and f˚˚K respectively) and
let φ˚pxq “ ArcSinhp

?
γ˚xq and φ˚˚pxq “

ArcSinhp
?
γ˚˚xq. Then

pφ˚q1pxq “

?
γ˚

2
?
x
?
γ˚x` 1

and pφ˚˚q1pxq “

?
γ˚˚

2
?
x
?
γ˚˚x` 1

.

Note that f˚Kpxq “ φ˚pxq{φ˚p1q and f˚˚K pxq “
φ˚˚pxq{φ˚˚p1q. We now split into two cases: (i)
cK ą 1{2 and (ii) cK ă 1{2.

In case (i) (which implies γ˚ ą γ˚˚, and note that
γ˚{γ˚˚ “ 2cK ď 1` ε), we get for all x P r0, 1s,

pφ˚q1pxq

pφ˚˚q1pxq
“

c

γ˚

γ˚˚

c

γ˚˚x` 1

γ˚x` 1

P r1,
a

γ˚{γ˚˚s Ď r1,
?

1` εs

since
b

γ˚˚x`1
γ˚x`1

P r
a

γ˚˚{γ˚, 1s. Because γ˚ ě γ˚˚

and ArcSinh is an increasing function, we know that
φ˚p1q ě φ˚˚p1q. Thus, for any x P r0, 1s,

pf˚˚K q
1
pxq “

pφ˚˚q1pxq

φ˚˚p1q

ě

1?
1`ε
pφ˚q1pxq

φ˚p1q

“
1

?
1` ε

pf˚Kq
1
pxq

ùñ pf˚˚K q
1
pxq´2

ď p1` εqpf˚Kq
1
pxq´2

ùñ g˚˚pxq ď p1` εqg˚pxq

ùñ

ż

g˚˚ dp ď p1` εq

ż

g˚ dp

which is what we wanted to prove.
Case (ii), where cK ă 1{2 (implying γ˚˚ ą γ˚)

can be proved analogously:

pφ˚˚q1pxq

pφ˚q1pxq
“

c

γ˚˚

γ˚

c

γ˚x` 1

γ˚˚x` 1

P r1,
a

γ˚˚{γ˚s Ď r1,
?

1` εs

which then gives us pφ˚˚q1pxq ě pφ˚q1pxq and

φ˚˚p1q “

ż 1

0

pφ˚˚q1ptq dt

ď
?

1` ε

ż 1

0

pφ˚q1ptq dt

ď p
?

1` εqφ˚p1q .
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Thus, for any x P r0, 1s,

pf˚˚K q
1
pxq “

pφ˚˚q1pxq

φ˚˚p1q

ě
pφ˚q1pxq

p
?

1` εqφ˚p1q

“
1

?
1` ε

pf˚Kq
1
pxq

ùñ pf˚˚K q
1
pxq´2

ď p1` εqpf˚Kq
1
pxq´2

ùñ g˚˚pxq ď p1` εqg˚pxq

ùñ

ż

g˚˚ dp ď p1` εq

ż

g˚ dp

completing the proof for both cases.

We show the comparison of the theoretical
(asymptotic in K result) of the approximate min-
imax compander with the experimental results in
Figure 8.

APPENDIX E
WORST-CASE ANALYSIS

In this section, we prove Theorem 4 which ap-
plies both to the minimax compander and the power
compander. Since we are dealing with worst-case
(i.e. not a random x) the centroid is not defined;
therefore this theorem works with the midpoint
decoder. Thus, the (raw) decoded value of x is
ȳpnN pxqq.

Additionally, we are not using the raw reconstruc-
tion but the normalized reconstruction, and hence it
does not suffice to deal with a single letter at a time.
Thus, we will work with a full probability vector
x P 4K´1.

Proof of Theorem 4 and (21) in Theorem 5. Let
x P 4K´1 be the vector we are quantizing, with
ith element (out of K, summing to 1) xi; since
we are dealing with midpoint decoding, our (raw)
decoded value of xi is ȳnN pxiq. For simplicity, let
us denote it as ȳi, and the normalized value as
zi “ ȳi{

`
ř

j ȳj
˘

.
Let δi “ ȳi´xi be the difference between the raw

decoded value ȳi and the original value xi. Then:

DKL px}zq “
ÿ

i

xi log
xi
zi

“
ÿ

i

xi log
xi
ȳi
` log

´

ÿ

i

ȳi

¯

“
ÿ

i

pȳi ´ δiq log
ȳi ´ δi
ȳi

` log
´

1`
ÿ

i

δi

¯

.

Next we use that logp1` wq ď w.

DKL px}zq ď
ÿ

i

pȳi ´ δiq
´δi
ȳi
`
ÿ

i

δi (64)

“
ÿ

i

´δi `
ÿ

i

δ2
i

ȳi
`
ÿ

i

δi

“
ÿ

i

pȳi ´ xiq
2

ȳi

(note that in (64) we used the inequality logp1 `
wq ď w on both appearances of the logarithm, as
well as the fact that ȳi ´ δi “ xi ě 0).

We now consider each bin Ipnq induced by f . For
simplicity let the dividing points between the bins
be denoted by

βpnq “ f´1
´ n

N

¯

“ ȳpnq ` rpnq{2

(where rpnq is the width of the nth bin) so that
Ipnq “ pβpn´1q, βpnqs. Since all the companders we
are discussing are strictly monotonic, there is no
ambiguity. Then, the Mean Value Theorem (which
we can use since the minimax compander, the
approximate minimax compander, and the power
compander are all continuous and differentiable )
says that, for each Ipnq there is some value wpnq
such that

f 1pwpnqq “
fpβpnqq ´ fpβpn´1qq

βpnq ´ βpn´1q

“ N´1r´1
pnq

(since fpβpnqq ´ fpβpn´1qq “ n{N ´ pn ´ 1q{N “

1{N and βpnq ´ βpn´1q “ rpnq by definition).
Thus, we can re-write this as follows:

rpnq “ N´1f 1pwpnqq
´1 .

We will also denote the following for simplicity:
Ii “ IpnN pxiqq; ri “ rpnN pxiqq; and wi “ wpnN pxiqq (the
bin, bin length, and bin mean value corresponding
to xi).

Trivially, since wi P Ii, we know that wi
2
ď ȳi.

Thus, we can derive (since ȳi is the midpoint of Ii
and xi P Ii, we know that |ȳi ´ xi| ď ri{2) that

DKL px}zq ď
ÿ

i

pȳi ´ xiq
2

ȳi

ď
1

4

ÿ

i

r2
i

ȳi

ď
1

4

ÿ

i

1

N2pwi{2qpf 1pwiqq2

“
1

2
N´2

ÿ

i

1

wipf 1pwiqq2
. (65)
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Note that while we are using midpoint decoding for
our quantization, for the purposes of analysis, it is
more convenient to express the all the terms in the
KL divergence loss using the mean value.

We now examine the worst case performance of
the three companders: the power compander, the
minimax compander, and the approximate minimax
compander.

Power compander: In this case, we have

fpxq “ xs and f 1pxq “ sxs´1

for s “ 1
logK

(which is optimal for minimizing raw
distortion against worst-case priors). This yields

DKL px}zq ď
1

2
N´2s´2

ÿ

i

1

wiw
2s´2
i

“
1

2
N´2s´2

ÿ

i

w1´2s
i .

So long as s ă 1{2 (which occurs for K ą 7),
the function w1´2s

i is concave in wi. Thus, replacing
all wi by their average will increase the value.
Furthermore, Ks “ K

1
logK “ e. Thus, we can

derive:

DKL px}zq ď
1

2
N´2s´2K

ˆř

iwi
K

˙1´2s

“
1

2
N´2

plog2Kqe2
´

ÿ

i

wi

¯1´2s

ď
e2

2
N´2

plog2Kqmax
!

1,
ÿ

i

wi

)

.

(66)
Next, we need to bound max t1,

ř

iwiu. Assume
that

ř

iwi ą 1 (otherwise our bound is just 1).
Then, we note the following:

ř

i xi “ 1 by defi-
nition; s´1 “ logK; and

ri “ N´1f 1pwiq
´1
“ N´1s´1w1´s

i .

This allows us to make the following derivation:
ÿ

i

|wi ´ xi| ď
1

2

ÿ

i

ri

ùñ
ÿ

i

wi ď
ÿ

i

xi `
1

2
N´1s´1

ÿ

i

w1´s
i

ď 1`
1

2
N´1 logpKqK

ˆř

iwi
K

˙1´s

(67)

“ 1`
e

2
N´1 logpKq

´

ÿ

i

wi

¯1´s

(68)

ď 1`
e

2
N´1 logpKq

´

ÿ

i

wi

¯

.

We get (67) by the same concavity trick: because
w1´s
i is concave in wi, replacing each individual wi

with their average can only increase the sum. We
get (68) because Ks “ K

1
logK “ e.

We can combine terms with
ř

iwi.
´

1´
e

2
N´1 logK

¯

ÿ

i

wi ď 1 .

This implies that if N ą e
2

logK, then
ÿ

i

wi ď
1

1´ e
2
N´1 logK

“
N

N ´ e
2

logK
“ 1`

e

2

logK

N ´ e
2

logK
.

(69)

Furthermore, if N ě e logK, we get that
ř

iwi ď 2.
Combining (66) with (69), we have

DKLpx}zq

ď
e2

2
N´2

plog2Kqmax

"

1,

ˆ

1`
e

2

logK

N ´ e
2

logK

˙*

“
e2

2
N´2

plog2Kq

ˆ

1`
e

2

logK

N ´ e
2

logK

˙

for N ą e
2

logK. When N ě e logK, this becomes
the pleasing

DKLpx}zq ď e2N´2 log2K .

Minimax compander and approximate minimax
compander: Since they are very similar in form,
it is convenient to do both at once. Let c be a
constant which is either cK if we are considering
the minimax compander, or 1

2
if we’re considering

the approximate minimax compander; and let γ “
cK logK. Then our compander and its derivative
will have the form

fpxq “
ArcSinhp

?
γxq

ArcSinhp
?
γq

f 1pxq “
1

2ArcSinhp
?
γq

?
γ

?
x
?

1´ γx

ùñ f 1pxq´1
“ 2ArcSinhp

?
γq

c

x

γ
` x2

This then yields that

ri “ N´1f 1pwiq
´1

“ 2N´1ArcSinhp
?
γq

c

wi
γ
` w2

i
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Then we can derive from (65) that

DKLpx}zq ď
1

2
N´2

p2ArcSinhp
?
γqq2

ÿ

i

wi
γ
` w2

i

wi

“ 2N´2
pArcSinhp

?
γqq2

˜

K

γ
`
ÿ

i

wi

¸

ď 2N´2
pArcSinhp

?
γqq2

˜

K

γ
`max

#

1,
ÿ

i

wi

+¸

(70)
Assuming that

ř

iwi ą 1 (otherwise the bound is
just 1),
ÿ

i

|wi ´ xi| ď
ÿ

i

ri
2

ùñ
ÿ

i

wi ď
ÿ

i

xi `N
´1ArcSinhp

?
γq

ÿ

i

c

wi
γ
` w2

i

“ 1`N´1ArcSinhp
?
γq

ÿ

i

c

wi
γ
` w2

i

(71)
To bound the sum in (71), using the fact that

?
¨ is

concave (so averaging the inputs of a sum of square
roots makes it bigger), we get
ÿ

i

c

wi
γ
` w2

i ď
ÿ

i

c

wi
γ
`

b

w2
i

ď K

ˆ ř

iwi
KpcK logKq

˙1{2

`
ÿ

i

wi

ď

ˆ ř

iwi
c logK

˙1{2

`
ÿ

i

wi

ď

ř

iwi
pc logKq1{2

`
ÿ

i

wi

“

´

ÿ

i

wi

¯

ˆ

1`
1

pc logKq1{2

˙

“ η
´

ÿ

i

wi

¯

where η “ 1` pc logKq´1{2. Then (71) becomes
ÿ

i

wi ď 1` ηN´1ArcSinhp
?
γq
´

ÿ

i

wi

¯

.

Since we have
ř

iwi on both sides of the equation,
we can combine these terms like before.

p1´ ηN´1ArcSinhp
?
γqq

ÿ

i

wi ď 1

ùñ
ÿ

i

wi ď
N

N ´ ηArcSinhp
?
γq

if N ą ηArcSinhp
?
γq. Combining these and using

the expression ArcSinhp
?
wq “ logp

?
w ` 1 `

?
wq ď logp2

?
w ` 1q we get from (70) that

DKLpx}zq

ď 2N´2
pArcSinhp

?
γqq2

ˆ

K

γ
`

N

N ´ ηArcSinhp
?
γq

˙

“ 2N´2
pArcSinhp

a

cK logKqq2
ˆ

K

cK logK
`

N

N ´ ηArcSinhp
?
cK logKq

˙

ď 2N´2
plogp2

a

cK logK ` 1qq2
ˆ

1

c logK
`

N

N ´ η logp2
?
cK logK ` 1q

˙

This holds for all N ą η logp2
?
cK logK ` 1q;

furthermore, if N ą 3η logp2
?
cK logK ` 1q, the

second term in the parentheses is at most 3{2 (and if
N is larger, this term goes to 1). Recall c is between
1{4 and 3{4 (as it is either cK or 1{2) when K ą 4.
Then, we know that for all K ą 4 that η ă 2.57 . . .
and 1{pc logKq ă 5{2. Thus, for

N ą 8 logp2
a

cK logK ` 1q

ą 3p2.6q logp2
a

cK logK ` 1q

ą 3η logp2
a

cK logK ` 1q

we can bound the entire parenthesis term by 4. Then,

DKLpx}zq ď 8N´2
plogp2

a

cK logK ` 1qq2

ď 8N´2
plogp3

a

cK logKqq2

“ 2N´2
plogpcK logKq ` 2 log 3q2 (72)

“ 2N´2
´

1`O
´ log logK

logK

¯¯

log2K .

Note that whether c is cK or 1{2, it is always
between 1{4 and 3{4, and so it has no effect on
the order of growth. We also note that the above
(stated more crudely) is an order of growth within
OpN´2 log2Kq.

We can obtain a relatively clean upper bound on
the error term O

`

log logK
logK

˘

by setting c “ 3{4 (which
is larger than the whole range of possible values); in
this case, numerically computing (72), we get that
the error term is at most 18 log logK

logK
for K ą 4. The

quantity 18 log logK
logK

has a maximum value of around
6.62183.



37

The statement above (which is used for Theo-
rem 4) computes constants for our bound which
work for both the minimax compander and approx-
imate minimax compander and only requires that
K ą 4.

If we are only concerned with large alphabet
sizes, to improve the constants for the approxi-
mate minimax compander (where c “ 1{2), we
can instead use the following: For K ě 55 and
N ą 6 logp2

?
cK logK ` 1q,

DKLpx}zq ď N´2
´

1` 6
log logK

logK

¯

log2K

APPENDIX F
UNIFORM QUANTIZATION

In this section, we examine of the performance
of uniform quantization under KL divergence loss.
This is the same as applying the truncate compander.

First, we will prove (13) of Remark 5.

Proof of (13). Let p be the single-letter distribution
which is uniform over r0, 2{Ks for each symbol.
Specifically, the probability density function is

ppxq “
K

2
for x P

„

0,
2

K



and since the expected value under p is 1{K, we
have that p P P1{K .

We want to compute the single-letter loss for p,
but notice that we cannot use Theorem 2 to do so,
since the quantity L:pp, fq is not finite here (this is
not surprising since we are showing a case where
the dependence of rLpp, f,Nq on N is larger than
ΘpN´2q). Thus we need to compute the single-letter
loss starting with (4).

rLpp, f,Nq “ EX„p
“

X logpX{rypXqq
‰

“

N
ÿ

n“1

ż

Ipnq
ppxqx log

x

ỹn
dx

“

N
ÿ

n“1

ż

Ipnq
Itx ă 2{Ku

K

2
x log

x

ỹn
dx

ě
K

2

t2N{Ku
ÿ

n“1

ż pn`1q{N

n{N

x log
x

ỹn
dx

“
K

2

t2N{Ku
ÿ

n“1

ż ỹn`
r
2

ỹn´
r
2

x log
x

ỹn
dx

where we let r “ 1{N .
Using the Taylor expansion for logp1 ` xq, we

can get that
ż ỹn`

r
2

ỹn´
r
2

x log
x

ỹn
dx “

r3

24ỹn
`O

ˆ

r5

ỹ3
n

˙

This gives that

rLpp, f,Nq ě
K

2

t2N{Ku
ÿ

n“1

r3

24ỹn
´O

ˆ

r5

ỹ3
n

˙

“
K

48

1

N3

t2N{Ku
ÿ

n“1

1

ỹn
´

t2N{Ku
ÿ

n“1

O

ˆ

1

N5ỹ3
n

˙

Because the intervals are uniform, the centroid is
the midpoint of each interval, which means that

ỹn “
n´ 1{2

N

This gives that
t2N{Ku
ÿ

n“1

1

ỹn
“

t2N{Ku
ÿ

n“1

1
n´1{2
N

ą N

t2N{Ku
ÿ

n“1

1

n

ą C1N logp2N{Kq

We also need to bound the smaller order terms to
make sure they are not too big,

t2N{Ku
ÿ

n“1

1

ỹ3
n

ă N3

˜

23
`

t2N{Ku
ÿ

n“2

1

pn´ 1q3

¸

“ N3C3

Combining these give

rLpp, f,Nq ě
K

48N3
C1N logp2N{Kq ´O

ˆ

1

N2

˙

“ Ω

ˆ

K

N2
logN

˙

All the inequalities we used for the lower bound
can easily be adjusted to make an upper bound. For
instance, the floor function in the summation can
be replaced with a ceiling function. The quantity ỹn
can be rounded up or down and the inequalities ap-
proximating sums can have different multiplicative
constants. This gives that for ppxq, we have

rLpp, f,Nq “ Θ

ˆ

K

N2
logN

˙
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Combining this single-letter density with the
proof of Proposition 3 gives a prior P over the
simplex so that

rLKpP, f,Nq “ KrLpp, f,Nq “ Θ

ˆ

K2

N2
logN

˙

.

(73)

when f is the truncate compander.
We want to relate the raw loss in (73) to the

expected loss LKpP, f,Nq. This requires us to look
at the normalization constant.

EX„P

«

log

˜

K
ÿ

k“1

ỹk

¸ff

“ EX„P

«

log

˜

K
ÿ

k“1

ỹk ´
K
ÿ

k“1

xk `
K
ÿ

k“1

xk

¸ff

“ EX„P

«

log

˜

K
ÿ

k“1

δk ` 1

¸ff

where δk “ ỹk ´ xk. We can bound

´
1

2N
ď δk ď

1

2N

´
K

2N
ď

K
ÿ

k“1

δk ď
K

2N

Additionally, we know that by construction,

EX„p

«

K
ÿ

k“1

δk

ff

“

K
ÿ

k“1

pỹk ´ xkq “ 0

since ỹk is produced by the centroid decoder. There-
fore, since log is concave, we have

EX„P

«

log

˜

K
ÿ

k“1

δk ` 1

¸ff

ě
1

2

ˆ

log

ˆ

1´
K

2N

˙

` log

ˆ

1`
K

2N

˙˙

ě
1

2
¨ 2 ¨

´pK{p2Nqq2

2

“ ´
1

8
K2N´2

where the second inequality follows from the Taylor
series of logp1` wq. But this means that

´EX„P

«

log

˜

K
ÿ

k“1

δk ` 1

¸ff

“ O

ˆ

K2

N2

˙

and hence by the proof of Proposition 1

LpP, f,Nq

“ rLpP, f,Nq ` EX„P

«

log

˜

K
ÿ

k“1

δk ` 1

¸ff

“ Θ

ˆ

K2

N2
logN

˙

`O

ˆ

K2

N2

˙

“ Θ

ˆ

K2

N2
logN

˙

since the extra logN factor causes the first term to
dominate the second.

The density ppxq which produces (73) is not nec-
essarily the worst possible density function in terms
of the dependence of raw loss on the granularity
N ; however, it achieves simultaneously a worse-
than-ΘpN´2q dependence on N and a very large
dependence on the alphabet size K (namely ΘpK2q)
with the uniform quantizer (i.e. truncation), and
is therefore an ideal example of why the uniform
quantizer is vulnerable to having poor performance.

For illustration, we will also sketch an analysis of
the performance of the uniform prior against prior
ppxq “ p1´αqx´α where α “ K´2

K´1
(as mentioned in

Remark 5); this is constructed so that EX„prXs “
1{K and hence p P P1{K . The analysis shows that
the loss is proportional to N´p2´αq.

Let N be large; for this sketch we will treat p
as roughly uniform over any bin Ipnq :“ ppn ´
1q{N, n{N s. Note that this does not strictly hold
for small n (no matter how large N gets, p never
becomes approximately uniform over e.g. Ip1q) but
this inaccuracy is most pronounced on the first
interval Ip1q “ p0, 1{ns. Additionally, p on p0, 1{ns
is a stretched and scaled version of p on p0, 1s; for
n “ 2, 3, . . . , N , the distribution p over Ipnq is closer
to being uniform, and hence the distortion over any
bin under p can be bounded below (and above) by a
constant multiple of the distortion under a uniform
distribution (the constant can depend on K but not
N ). Thus for determining the dependence of the
(raw) distortion on N , this simplification does not
affect the result.

Then, the expected distortion given that X P

Ipnq is proportional (roughly) to N´2pn{Nq´1 “

n´1N´1 (since the interval has width 9N´1 and
is centered at a point 9n{N ), and the probability
of falling into Ipnq is proportional to pn{Nq1´α ´
ppn ´ 1q{Nq1´α « n´αN´p1´αq; therefore (up to
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a multiplicative factor which is constant in N ) the
expected distortion is roughly

N
ÿ

n“1

n´1N´1n´αN´p1´αq
“ N´p2´αq

N
ÿ

n“1

n´p1`αq

But, noting that
ř

n´p1`αq is a convergent series,
we can apply an upper bound

N
ÿ

n“1

n´p1`αq ă
8
ÿ

n“1

n´p1`αq

which is a (finite) constant which depends only
on K (through α) but not N . Hence, we obtain
our ΘpN´p2´αqq “ ΘpN´2 ¨ Nαq order for the
distortion. We note that as discussed this is worse
than ΘpN´2 logNq.

APPENDIX G
CONNECTION TO INFORMATION DISTILLATION

DETAILS

In this section, we go over the technical re-
sults connecting quantizing probabilities with KL
divergence and information distillation (discussed
in Section VII), in particular the proof of Propo-
sition 8, which shows that information distillers
and quantizers under KL divergence have a close
connection.

In this section, we will use the notation rB to
denote hpBq. We denote by PA, PB the marginals
of A and B under the joint distribution PA,B.

A. Equivalent Instances of Information Distillation
and Simplex Quantization

We consider an information distillation instance,
consisting of a joint probability distribution PA,B
over AˆB where |A| “ K (and B can be arbitrarily
large or even uncountably infinite) and a number
of labels M to which we can distill; WLOG we
will assume A “ rKs. The objective of information
distillation is to find a distiller h : B Ñ rM s which
preserves as much mutual information with A as
possible, i.e. minimizes the loss

LIDpPA,B, hq :“ IpA;Bq ´ IpA; rBq

where rB “ hpBq.7 We denote an instance of the
information distillation problem as pPA,B,MqID.

7We do not include the parameter M in the loss expression because
it is already implicitly included as the range of the distiller h.

What is important about b P B for information
distillation is what B “ b implies about A. We
therefore denote by xpbq P 4K´1 the conditional
probability of A given B “ b, i.e.

xapbq “ PA|Bpa|bq “ PrA “ a |B “ bs .

This then suggests a way to define the equivalent
simplex quantization instance to a given information
distillation instance. Recall that a simplex quanti-
zation instance (with average KL divergence loss)
consists of a prior P over 4K´1 and a number of
quantization points M ; the goal is to find a quantizer
z : 4K´1 Ñ 4K´1 such that its range Z has
cardinality M (or less) and which minimizes the
expected KL divergence loss

LSQpP, zq :“ EX„P rDKLpX}zpXqqs

We denote an instance of the simplex quantiza-
tion problem (with average KL divergence loss) as
pP,MqSQ.

Definition 9. We call an information distillation
instance pPA,B,MqID and a simplex quantization
instance pP,MqSQ equivalent if they use the same
value of M and P is the push-forward distribution
induced by xp¨q on PB, i.e.

B „ PB ùñ X “ xpBq „ P

We denote this pPA,B,MqID ” pP,MqSQ.

We show that any instance of one problem has at
least one equivalent instance of the other.

Lemma 12. For any information distillation in-
stance pPA,B,MqID, there is some pP,MqSQ such
that pPA,B,MqID ” pP,MqSQ and vice versa.

Proof. In either case, given the limit on the number
of labels/quantization points M , we use it for the
equivalent instance.

Given an information distillation instance with
joint distribution PA,B, we have a well-defined func-
tion x : B Ñ 4K´1 and therefore the push-forward
distribution P of PB under xp¨q is well-defined,
giving us the equivalent instance pP,MqSQ.

Given a simplex quantization instance with prior
P , we let B “ 4K´1 and let PA,B “ PA|BPB given
by PB “ P (a probability distribution over 4K´1)
and PA|Bpa|bq “ xapbq, i.e. A is distributed on A “
rKs according to B P 4K´1. Then xp¨q is just the
identity function and therefore P “ PB is the push-
forward distribution as we need.
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Note that each information distillation instance
pPA,B,MqID has a unique equivalent simplex quan-
tization instance (since P is determined by being
the push-forward distrbution of PB), whereas each
simplex quantization instance pP,MqSQ may have
many different equivalent information distillation
instances, as B can be arbitrarily large and elaborate.

The goal will be to show that if we have equiv-
alent instances pPA,B,MqID ” pP,MqSQ then a
distiller h for pPA,B,MqID will have an ‘equivalent’
quantizer z for pP,MqSQ (achieving the same loss)
and vice versa. This is generally achieved by the fol-
lowing scheme: we arbitrarily label the M elements
of Z as zpjq for j P rM s, so

Z “ tzp1q, . . . ,zpMqu .

Then we will generally have equivalence between h
and z if the following relation holds:

zpxpbqq “ zphpbqq for all b P B .

Then we will derive

LIDpPA,B, hq “ LSQpP, zq .

However, as mentioned, this may be true (and/or
possible) only if h or z avoid certain trivial inef-
ficiencies, hence the inequalities in Proposition 8.
These will be formally defined and discussed in the
following subsections.

B. Separable Information Distillers
We consider what happens when we have b, b1

such that xpbq “ xpb1q, i.e. B “ b and B “

b1 induce the same conditional probability for A
over A. In this case, in the ‘equivalent’ simplex
quantization instance, the quantizer z will quantize
x “ xpbq “ xpb1q to a single value zpjq P Z , while
the distiller has the option of assigning hpbq ‰ hpb1q;
if so, it is not clear what value the ‘equivalent’
quantizer z will assign to x “ xpbq “ xpb1q.
However, we will show that we can ignore such
cases. We define:

Definition 10. We call a quantizer h separable if
for any b, b1 P B,

xpbq “ xpb1q ùñ hpbq “ hpb1q

i.e. if b and b1 induce the same conditional prob-
ability vector for A, they are assigned the same
quantization label.

We call the set of information distillers H and
the set of separable information distillers Hsep.

Since the important attribute of any b P B (for
information distillation) is how B “ b affects the
distribution of A, there is no reason why b, b1 P B
should be assigned different labels by the distiller if
xpbq “ xpb1q; thus, intuitively, it is clear that consid-
ering separable distillers is sufficient for discussing
bounds the the performance of optimal distillers. We
show this formally:

Lemma 13. For any h P H (inducing rB “ hpBq),
there is some h˚ P Hsep (inducing rB˚ “ h˚pBq)
such that

IpA; rBq ď IpA; rB˚q

This then implies:

sup
hPH

IpA; rBq “ sup
hPHsep

IpA; rBq

Proof. This follows from the fact that it is optimal
to only consider deterministic distiller (or quantiza-
tion) functions, as shown in [21]. We may assume
WLOG that h R Hsep.

First, note that PB induces a push-forward distri-
bution P over 4K´1 through xpbq. If h P Hsep, this
means there is a deterministic h4 : 4K´1 Ñ rM s
satisfying

hpbq “ h4pxpbqq for all b P B .

Then IpA;hpBqq “ IpA;h4pxpBqqq.
If h R Hsep, we still have a joint distribution

PxpBq rB; then we consider the conditional probability
distribution P

rB|xpBqp
rb|xpbqq. This can be viewed as

a non-deterministic distiller h4 : 4K´1 Ñ rM s (it
returns a random output with distribution dependent
on input b) under prior P , and similarly

IpA;hpBqq “ IpA;h4pxpBqqq

since the joint distribution PA rB is the same either
way. But by [21], for X „ P over 4K´1 and any
non-deterministic distiller h4 : 4K´1 Ñ rM s, there
is a deterministic distiller h˚4 : 4K´1 Ñ rM s such
that

IpA;h4pXqq ď IpA;h˚4pXqq .

Finally, any deterministic h˚4 : 4K´1 Ñ rM s has
an equivalent (separable) h˚ : B Ñ rM s such
that h˚pbq “ h˚4pxpbqq for all b P B, simply by
definition. Thus, for any non-separable h P H, there
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is an equivalent non-deterministic distiller h4 for
X „ P ; for every non-deterministic distiller h4 for
X „ P , there is a better deterministic distiller h˚4;
and for every deterministic distiller h˚4 for X „ P ,
there is an equivalent h˚ P Hsep, i.e.

IpA;hpBqq “ IpA;h4pXqq

ď IpA;h˚4pXqq “ IpA;h˚pBqq

This then implies that

sup
hPH

IpA; rBq ď sup
hPHsep

IpA; rBq

while the fact that Hsep Ď H implies

sup
hPH

IpA; rBq ě sup
hPHsep

IpA; rBq

thus producing the equality we want

This of course also implies that for any h P H,
there is some h˚ P Hsep such that

LIDpPA,B, hq ě LIDpPA,B, h
˚
q.

and furthermore that

inf
hPH

LIDpPA,B, hq “ inf
hPHsep

LIDpPA,B, hq.

C. Decoding-Optimal Simplex Quantizers
We now consider simplex quantizers under av-

erage KL divergence loss. In particular, we note
an obvious potential inefficiency: letting Z “

tzp1q, . . . ,zpMqu be the range of quantizer z, we
define X pjq :“ tx P 4K´1 : zpxq “ zpjqu for all j;
then, given X pjq there will be some optimal choice
for the value of zpjq which minimizes the expected
KL divergence. If z does not use the optimal
value (which will turn out to be the conditional
expectation e.g. centroid of X pjq), for instance by
using a value of zpjq which is completely unrelated
to X pjq, then there is an obvious and easily-fixed
inefficiency.

One way to frame this is by breaking the quan-
tization process into two steps, an encoder g :
4K´1 Ñ rM s and a decoder Dec : rM s Ñ 4K´1

so that the quantization of X is Z “ zpXq “
DecpgpXqq; we WLOG label the elements of Z
such that zpjq “ Decpjq. Then the encoder g
partitions 4K´1 into the M ‘bins’ (analogous to the
compander bins) X p1q, . . .X pMq (the same as defined
above):

X pjq
“ tx P 4K´1 : gpxq “ ju .

Lemma 14. Given encoder g and prior P , the
optimal decoder function (for g on P ) is

Dec˚g “ arg min
Dec

EX„P rDKLpX}DecpgpXqqqs

satisfies, for all j P rM s,

Dec˚gpjq “ EX„P rX |X P X pjq
s

We call any quantizer consisting of an encoder g
and the optimal decoder function Dec˚g decoding-
optimal. This implies that for any quantizer z on
prior P , there is a decoding-optimal z˚ such that

LSQpP, z
˚
q ď LSQpP, zq .

Proof. This is proved by [24, Corollary 4.2].

Note that the optimal Dec˚gpjq is the centroid
(conditional expectation under P ) of the bin X pjq

induced by g.

D. Deriving the Connection

We now prove Proposition 8. We first define
what it means for a distiller and a quantizer to be
equivalent:

Definition 11. If we have equivalent informa-
tion distillation and simplex quantization problems
pPA,B,MqID ” pP,MqSQ, then the distiller h and
quantizer z are equivalent for these problems if:
‚ h is separable and z is decoding-optimal;
‚ there is a labeling zp1q, . . . ,zpMq of the ele-

ments of Z such that zpxpbqq “ zphpbqq for all
b P B.

We denote this as h ” z.

We then claim that all separable distillers and
decoding-optimal quantizers have equivalent coun-
terparts:

Lemma 15. For any pPA,B,MqID ” pP,MqSQ,
any separable h for pPA,B,MqID has an equivalent
(decoding-optimal) z, and any decoding-optimal z
for pP,MqSQ has an equivalent (separable) h.

Proof. We handle the two directions separately:
Any h has an equivalent z: Since h is separable,

we know that xpbq “ xpb1q ùñ hpbq “ hpb1q.
Thus, we can define X pjq as

X pjq :“ tx P 4K´1 : hpbq “ j @b s.t. xpbq “ xu
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for all j P rM s. Then we define z as follows:
zpxq “ zpjq for all x P X pjq, where

zpjq “ EX„P rX |X P X pjq
s .

Then by construction of zpjq we have that z is
decoding-optimal and for x P X pjq we have hpbq “
j for all b such that xpbq “ x and zpxq “ zpjq,
hence zpxq “ zphpbqq, so they are equivalent.

Any z has an equivalent h: We label the elements
of Z arbitrarily as zp1q, . . . ,zpMq; then we let hpbq “
j for all b such that zpxpbqq “ zpjq, which implies
zpxpbqq “ zphpbqq.

Now we show that equivalent solutions have the
same loss:

Proposition 14. If pPA,B,MqID ” pP,MqSQ and
h ” z, then

LIDpPA,B, hq “ LSQpP, zq

Proof. Let pA,Bq „ PA,B and let X “ xpBq and
Z “ zpXq. Then we know since pPA,B,MqID ”
pP,MqSQ that X „ P . Furthermore, defining

X pjq
“ tx P 4K´1 : hpbq “ j @b s.t. xpbq “ xu

and zpjq “ ErX |X P X pjqs, we know that since
h ” z we have Z “ zphpBqq. We now let Zi refer
to the ith element of vector Z, and let rB “ hpBq

and rb “ hpbq. We then derive:

LIDpPA,B, hq “ IpA;Bq ´ IpA; rBq

“

ż

ÿ

a

PA,Bpa, bq log
PA|Bpa|bq

PApaq
db

´
ÿ

a,rb

PA, rBpa,
rbq log

PA| rBpa|
rbq

PApaq

“

ż

ÿ

a

PA,Bpa, bq log
PA|Bpa|bq

PApaq

´ PA,Bpa, bq log
PA| rBpa|

rbq

PApaq
db

“

ż

ÿ

a

PA,Bpa, bq log
PA|Bpa|bq

PA| rBpa|
rbq
db

“

ż

PBpbq
ÿ

a

PA|Bpa|bq log
PA|Bpa|bq

PA| rBpa|
rbq
db

“ EB
„

ÿ

a

PA|Bpa|bq log
PA|Bpa|bq

PA| rBpa|
rbq



“ EB
“

DKLppA|Bq}pA| rBqq
‰

“ EX

“

DKLpX}Zq
‰

(74)
“ LSQpP, zq

where (74) holds as B „ PB ùñ X „ P and

Z “ zpXq “ zp
rBq
“ EX„P rX |X P X p rBq

s

and since A „ X “ XpBq, we know that
PA| rBpa|

rbq “ EX„P rXa |X P X prbqs.

Proof of Proposition 8. We get the proof of Propo-
sition 8 as a corollary to Proposition 14 and Lem-
mas 13 to 15 (which show, respectively, that non-
separable distillers can be replaced by separable dis-
tillers, that non-decoding-optimal quantizers can be
replaced by decoding-optimal quantizers, and that
any separable distiller has an equivalent decoding-
optimal quantizer and vice versa).

Note that Proposition 8 ensures pPA,B,MqID ”
pP,MqSQ through its definition of X .

Then, given a distiller h P H, by Lemma 13 we
can find a separable h˚ P Hsep such that

LIDpPA,B, h
˚
q ď LIDpPA,B, hq .

By Proposition 14, there is a quantizer z such that

LSQpP, zq ď LIDpPA,B, h
˚
q ď LIDpPA,B, hq .

completing the result in the first direction.
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Given a quantizer z, by Lemma 14 there exists a
decoding-optimal z˚ such that

LSQpP, z
˚
q ď LIDpP, zq .

By Proposition 14, there is a distiller h such that

LIDpPA,B, hq ď LSQpP, z
˚
q ď LSQpP, zq .

completing the result in the second direction.

Now that we have shown Proposition 8, we
can use it to derive the connection between the
performance of our companders and the Degrading
Cost DC:

Proposition 15. For any K,M :

DCpK,Mq “ sup
P over 4K´1

inf
z

|Z|“M
LSQpP, zq (75)

Proof. We show inequalities in both directions to
get the equality.

First, note that for any joint distribution PA,B on
A ˆ B where |A| “ K (WLOG we can assume
A “ rKs), we know there is some prior P over
4K´1 such that

pPA,B,MqID ” pP,MqSQ

for all M , by Lemma 12, and that for any distiller
h : B Ñ M there is some quantizer z with
cardinality-M range such that

LSQpP, zq ď LIDpPA,B, hq

by Lemma 15 and Proposition 14. Thus for any PA,B
and M , for the equivalent P ,

inf
h:BÑM

LIDpPA,B, hq ě inf
z

|Z|“M
LSQpP, zq

and hence we have

DCpK,Mq “ sup
PA,B
|A|“K

inf
h:BÑM

LIDpPA,B, hq

ě sup
P over 4K´1

inf
z

|Z|“M
LSQpP, zq

Then, for any P over 4K´1, we have the same
logic: by Lemma 12 there is an equivalent PA,B, so
for any P,M we can find PA,B for which

inf
z

|Z|“M
LSQpP, zq ě inf

h:BÑM
LIDpPA,B, hq

Then we get that

DCpK,Mq “ sup
PA,B
|A|“K

inf
h:BÑM

LIDpPA,B, hq

ď sup
P over 4K´1

inf
z

|Z|“M
LSQpP, zq

and hence the equality in (75) holds.

Proposition 15 is used to show (40).

E. Comparison
Compared to (38), our bound in Proposition 9

which uses the approximate minimax compander
has a worse dependence on M . Our dependence on
M is worse since our compander method performs
scalar quantization on each entry, and the raw quan-
tized values do not necessarily add up to 1. Other
quantization schemes can rely on the fact that the
values add up to 1 to avoid encoding one of the K
values. Offsetting this are the improved dependence
on K (log2K versus K´ 1, as stated) and constant
(ď 19 and decreasing to 1 as K Ñ 8 versus
1268); this yields a better bound when M is not
exceptionally large. For example, when K “ 10, our
bound is better than (38) so long as the conditions
on M1{K in Proposition 9 are met (which requires
M ą 1610) and if M ă 1.014 ˆ 1097. While these
may both seem like very large numbers, the former
corresponds with only 4 bits to express each value in
the probability vector, while the latter corresponds
with more than 32 bits per value. In general, the
‘crossing point’ (at which both bounds give the
same result) is at

M “

˜

1268

ˆ

1`18
log logK

logK

˙´1
K ´ 1

log2K

¸

KpK´1q
2

or, to put it in terms of ‘bits per vector entry’ b
(taking log2 of the above to get bits and dividing
by K),

b «
K ´ 1

2

ˆ

log2pKq ´ 2 log2 logK ` 10.3

˙

for large K. The disadvantage is that our bound
does not apply to the case of K ă 5 or M
which is not large. Note that scalar quantization
in general only works with very large M , since
even 2 different encoded values per symbol requires
M “ 2K different quantization values.


