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Abstract—We present finite-blocklength achievability bounds
for the unsourced A-channel. In this multiple-access channel,
users noiselessly transmit codewords picked from a common
codebook with entries generated from a q-ary alphabet. At each
channel use, the receiver observes the set of different transmitted
symbols but not their multiplicity. We show that the A-channel
finds applications in unsourced random-access (URA) and group
testing. Leveraging the insights provided by the finite-blocklength
bounds and the connection between URA and non-adaptive group
testing through the A-channel, we propose improved decoding
methods for state-of-the-art A-channel codes and we showcase
how A-channel codes provide a new class of structured group
testing matrices. The developed bounds allow to evaluate the
achievable error probabilities of group testing matrices based on
random A-channel codes for arbitrary numbers of tests, items
and defectives. We show that such a construction asymptotically
achieves the optimal number of tests. In addition, every efficiently
decodable A-channel code can be used to construct a group
testing matrix with sub-linear recovery time.

I. INTRODUCTION

We consider the problem where K users transmit symbols
from a q-ary input alphabet [q] = {1, . . . , q} over a noiseless
channel. Specifically, let ci,j ∈ [q] be the transmitted symbol
from user j ∈ [K] at channel use i. The channel output Yi at
channel use i is given by

Yi =

K⋃
j=1

ci,j . (1)

In this channel, sometimes referred to as A-channel [1], [2],
the receiver observes the set of transmitted symbols but not
who transmitted them, and also not the multiplicity.1 The A-
channel was introduced by Chang and Wolf in [1] as the
“T -user M -frequency channel without intensity information”,
and it is also known as the hyperchannel [3]. The mutual
information of the A-channel under uniform inputs was ob-
tained in [1]. Its limit when K and q tend to infinity but
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1Note that, for the case where K = 2, the multiplicity can be inferred from
the cardinality of Y , and thus, for q = 2, the A-channel is equivalent to the
binary-adder channel (BAC).

its ratio λ = K/q is fixed was studied in [2]. Specifically,
in [2], it was shown that in this limit the mutual information
grows proportional to q. Also in [2], it was shown that
uniform inputs are not optimal in general, although they
become optimal in the limit λ → 0 and when λ = ln 2,
where ln(·) denotes the natural logarithm. Besides, when the
input distributions of the users are constrained to be equal,
uniform distributions become asymptotically optimal for all
λ ≤ ln 2 [2]. The mutual information with uniform inputs
in the sparse limit of K, q → ∞ with fixed ratio (logK)/q
was computed in [4] and it was shown that in this limit the
mutual information grows proportional to log q. Furthermore,
in this regime the simplified cover decoder, which checks each
codeword individually for consistency with the channel output,
is optimal. For general K and q, the optimal input distribution
as well as the capacity of the A-channel are still unknown.

In the case where all users transmit their messages from a
common codebook, we will refer to (1) as the unsourced A-
channel. Under this setup, the receiver can only recover a list
of transmitted codewords up to permutation. The information
theoretic question of multiple-access in the unsourced setting
was first formulated in [5] for the AWGN multiple-access
channel (MAC), where it was established that a relevant setup
should consider the following aspects: i) the decoder only aims
to return a list of messages without recovering users’ identities;
ii) the error event should be defined per user; iii) the error
probability has to be averaged over the users; iv) each user
sends a fixed amount of information bits within a finite frame
length.

This formulation is well suited for short-packet random-
access wireless communications since, in theory, it does
not require coordination among users. As such, it captures
the requirements of massive machine-type communications
(mMTC), one of the new emerging communication scenarios
in next generation wireless networks, where a huge amount
of battery-limited devices is expected to connect sporadically
to the network to send short information packets. Since its
inception, this problem has been commonly referred in the
literature as unsourced random access (URA). Several papers
establishing fundamental limits for different relevant multiple-
access channel models and setups appeared since then (see,
e.g., [6]–[9]), and many transmission schemes trying to per-
form as close as possible to this fundamental limits has been
proposed (e.g., [10]–[12]).



The A-channel played an important role for codes design in
URA. In [13], a coding scheme for AWGN URA termed coded
compressed sensing (CCS) was introduced. It used a random
inner code of size q concatenated with an outer q-ary A-
channel code. The A-channel code constructed for this purpose
was termed tree code. The flexibility of this code construction
allowed it to be extended to different channel models. Several
follow-up works on URA (e.g, [11], [14]–[17]) made use of
an outer A-channel code. In [4] an asymptotically Bayesian
optimal inner decoder for the AWGN channel was constructed
and it was shown that the CCS construction can achieve the
Shannon limit when K and q grow but its ratio λ → 0. In
practical applications the density λ is not zero.

In fact, the A-channel is of relevance to URA in a more
general sense: Every unsourced K-user code for B bits at
blocklength n0 can be extended to a code of length nn0 for
nBRA(n,K) bits by concatenating with an outer unsourced
A-channel code of rate RA with n A-channel uses. The loss in
rate of RA does not appear in classical multiple-access where
user identification is done based on the codebook. A system
that can transmit 1 bit for each user with zero error can be used
to transmit arbitrary many bits by simple repetition. For the
unsourced channel this is not possible and an outer A-channel
code is necessary to couple repeated transmissions.

Furthermore, the blocklength of the outer A-channel used
for concatenated coding (e.g., [4], [13], [14]) is in the order of
10 − 40. Therefore, the asymptotic results for the A-channel
are not necessarily insightful for code design.

In this paper, we study the unsourced A-channel in the finite
blocklength regime with arbitrary K and q. In particular, we
present two novel non-asymptotic achievability bounds. Also,
we provide a second-order asymptotic approximation whose
relevance is validated by means of numerical examples in
different scenarios of interest.

The A-channel finds interesting applications in noiseless
non-adaptive group testing. The goal in group testing is to
identify K defective items in a large population of N items
by applying T binary tests. A group-testing design is a
T × N binary matrix where each column specifies the test
in which that item participates. A test is declared positive
if at least one tested item is defective. Group testing was
developed by Dorfman in 1943 [18] for syphilis testing.
Dorfman discovered that it is possible to test more people
with a limited number of tests by pooling blood samples
together. The topic has seen a recent rise in popularity since
the COVID-19 pandemic led to a shortage of available tests for
which group testing provides an appropriate solution. Group
testing finds further important applications in DNA screening,
large scale manufacturing control, neighborhood discovery,
random access, machine learning, anomaly detection in routing
networks, etc. [19]–[23]. For a recent survey on group testing
from an information theoretic view, see [24].

The connection to the A-channel is as follows: Each code-
book for the unsourced q-ary A-channel with blocklength n
and size M gives rise to a group-testing design for N = M

items with T = nq tests. To convert the codebook to a group-
testing design, each q-ary symbol ci is converted to a binary
vector of size q with a 1 at position ci. The defective items
take the role of the transmitting users and the set of defective
items can be obtained by recovering the transmitted messages.
This A-channel group-testing design has a fixed number n of
tests per item. The pair (n, q) can be used to optimize the
group-testing design.

It is known that a fixed number of tests leads to improved
error probabilities compared to an independent and identically
distributed (i.i.d.) Bernoulli test design, even if the average
number of tests is the same [24]. A popular design, analyzed in
[25], uses a fixed number of tests per item, which are chosen at
random from all tests. Compared to that, an A-channel design
offers more structure as each item participates in exactly one of
each group of q tests. The Kautz-Singleton (KS) construction
[26] is another popular group-testing design that naturally
has a q-ary structure. In particular, it is based on a q-ary
Reed-Solomon code of length n. The KS construction was
recently shown to be optimal for probabilistic group testing
in certain scaling regimes [27]. The random coding bound
developed in this paper gives a concrete finite blocklength
achievability result for a random, but highly structured, group-
testing design.

Motivated by the insights of our results and the algorithms
developed in group testing, we also propose an improved
decoder for the tree code. Numerical simulations confirm that
the improved decoder significantly increases the achievable
rates of the tree code.

II. FINITE-BLOCKLENGTH FRAMEWORK

We consider the channel model introduced in (1), where
K users transmit codewords from a common codebook with
entries drawn from a q-ary input alphabet [q] = {1, . . . , q}
over n channel uses of a noiseless channel. To denote the
n-length input-output relation, we shall also write

Y =
⋃
j∈[K]

cj (2)

where cj ∈ [q]n denotes the codeword transmitted by user j.
We next define the notion of URA code for the A-channel.

Definition 1 (Code): Let
(

[a]
b

)
denote the set of combina-

tions of b-element subsets of [a]. Assume q > K, and let
Wj , j ∈ [K], denote the transmitted message by user j.
An (M,n, ε)-code for the unsourced A-channel (2), where
cj ∈ [q]n, consists of an encoder-decoder pair,
• encoder: f : [M ] 7→ [q]n;
• decoder: g :

{⋃K
k=1

(
[q]
k

)}n
7→
(

[M ]
K

)
,

satisfying either the per-user probability of error (PUPE)

P (p)
e , P[{Wj /∈ g(Y )} ∪ {Wj = Wi, j 6= i}] ≤ ε (3)

or the joint probability of error (JPE)

P (j)
e , P

[
{{Wj}Kj=1 6= g(Y )} ∪ {Wj = Wi, j 6= i}

]
≤ ε.

(4)



We assume that {Wj}Kj=1 are independent and uniformly
distributed on [M ], and that f(Wj) = cj ∈ [q]n. For each
type of error probability, we say the code achieves a rate
R = log2M/n.

Hence, we have K users selecting randomly a codeword
from a common codebook, and the decoder’s task is to provide
an estimate of the transmitted list of length K. In this paper,
we assume K is known at the receiver.

A. Achievability Non-Asymptotic Bounds

In this section, we present our finite-blocklength achievabil-
ity bounds for the unsourced A-channel. To do so, we consider
a random-coding scheme where a codebook C contains M ran-
domly generated codewords of length n distributed according
to PX(c) =

∏n
i=1 PX(ci), where PX = Unif[q]. According

to Definition 1, user j selects uniformly at random a message
Wj ∈ [M ], and transmits the corresponding encoded codeword
f(Wj) = cj . Due to symmetry, we assume without loss of
generality that the first K codewords are transmitted. We shall
consider two different decoders, which will lead to our two
different achievability bounds:

Cover decoder: From the received sequence Y , the
decoder first discards all codewords from the codebook that
are incompatible with the received sequence, i.e., those ones
that are not covered by Y . Then, the decoder outputs a
list of K codewords chosen uniformly at random from the
surviving codewords. Since the A-channel is noiseless, the
list of surviving codewords always contains the transmitted
list plus Nfa,c ∈ [0 : M − K] false alarms. Therefore, P (p)

e

can be upper-bounded by the PUPE achieved by this decoding
rule, namely, P (p)

e ≤ ENfa,c

[
Nfa,c

K+Nfa,c

]
. Similarly, P (j)

e can be
upper-bounded by the probability of having at least one false
alarm, i.e., P (j)

e ≤ P[Nfa,c ≥ 1].
Joint decoder: This decoder finds all combinations of K

codewords from the codebook that can be selected to generate
the output Y . If there is more than one valid combination, the
decoder chooses one, uniformly at random, and outputs the
list of indices in that combination. Note, that this is exactly
the maximum likelihood decoder. Since the A-channel is
noiseless, the combination containing only the K transmitted
codewords will always be valid. A wrong combination will
differ from the correct one in Nfa,j = Nmd,j indices, i.e.,
same number of misdetections and false alarms. Hence, we
can bound the error probability as P (p)

e ≤ ENfa,j

[
Nfa,j

K

]
and

P
(j)
e ≤ P[Nfa,j ≥ 1].
Remark 1: Recall that, in this paper, we assumed K to be

known at the receiver. The cover decoder does not require this
knowledge and works unaltered if K is unknown. The joint
decoder can be adopted in two ways to deal with the missing
information. One possibility is to extend the code design and
use additional channel uses to estimate the number of users.
Another way is to let the receiver find the smallest set of
messages that recreate the channel output, as in the smallest
satisfying set algorithm in group testing [24].

We are now ready to present our two achievability bounds.
Theorem 1 (Cover decoding): There exists an (M,n, ε)-code

for the unsourced K-user A-channel with PUPE satisfying

ε≤
K−1∑
`=1

`

K + `
E

[
min

{
1,

(
M −K

`

) K∏
k=1

(
k

q

)Ak`
}]

+ E

[
min

{
1,

(
M −K
K

) K∏
k=1

(
k

q

)AkK
}]

+

(
K
2

)
M

(5)

and there exists an (M,n, ε)-code with JPE satisfying

ε≤
(
K
2

)
M

+ E

[
min

{
1, (M −K)

K∏
k=1

(
k

q

)Ak
}]

. (6)

In both (5) and (6), Ak is the k-th element of A =
[A1, . . . , AK ]T, which is a multinomial-distributed random
vector with n trials and K possible outcomes with probabilities
{pk}Kk=1, which are given by

pk =
q!S(K, k)

(q − k)!qK
(7)

where S(K, k) denotes the Stirling number of the second kind
[28, Sec. 26.8.6].

Proof: See Appendix A-B.
Theorem 2 (Joint decoding): There exists an (M,n, ε)-code

for the unsourced K-user A-channel with PUPE satisfying

ε ≤
(
K
2

)
M

+

K∑
`=1

`

K
E

[
min

{
1,

(
K

K − `

)(
M −K

`

)

×
K∏
k=1

(
η∑
η=η

p̄ηp(k, `, η)

)Ak
}]

(8)

and there exists an (M,n, ε)-code with JPE satisfying

ε ≤
(
K
2

)
M

+

K∑
`=1

E

[
min

{
1,

(
K

K − `

)(
M −K

`

)

×
K∏
k=1

(
η∑
η=η

p̄ηp(k, `, η)

)Ak
}]

. (9)

In (8) and (9),

p̄η =
k!S(K − `, η)

(k − η)!kK−`Zη
(10)

with Zη being a normalizing constant ensuring that∑η
η=η p̄η = 1. Here η , max{0, k− `} and η , min{k,K −

`}. Finally

p(k, `, η) =

(
k

q

)`
π(k, `, η) (11)

where the first factor (k/q)` is the probability that the `
non-transmitted codewords hit one of the k output symbols,
and π(k, `, η) is the conditional probability that the ` non-
transmitted codewords hit the remaining k− η symbols given
they all hit one of the k output symbols. Note that the
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Fig. 1: Markov chain describing the state evolution yielding π(k, `, η), which
denotes the probability that ` non-transmitted codewords hit the remaining
k−η symbols of Yi of cardinality k at channel use i, conditioned on the fact
that the the ` non-transmitted codewords lie within the set of symbols in Yi.

probability π(k, `, η) resembles the classical coupon collector
problem, which can be modelled by the Markov chain depicted
in Fig. 1. Specifically, the problem is analogous to the coupon
collector problem in the sense that π(k, `, η) is the probability
of collecting k out of k possible coupons in ` steps when
starting with η coupons. The case η = 0 can be computed in
closed form as π(k, `, 0) = S(`, k)k!/k`. For η > 0, π(k, `, η)
can be efficiently computed recursively. The specific formulas
are given in Appendix B.

Proof: See Appendix A-C.

B. Asymptotic Analysis

Let

µ`(K, q) , E

[
log

PY |X[K]
(Y |X[K])

PY |X[K−`]
(Y |X[K−`])

]
= I(X[K−`+1:K];Y |X[K−`]), (12)

σ2
` (K, q) , Var

[
log

PY |X[K]
(Y |X[K])

PY |X[K−`]
(Y |X[K−`])

]
(13)

where XS = (Xi)i∈S for any S ⊂ [K]. We drop the explicit
dependence on K, q for readability whenever it is clear from
the context, so µ` ≡ µ`(K, q). Since the channel is noiseless,
µK = −E[logPY (Y )], i.e., the mutual information coincides
with the output entropy, and σ2

` = −Var[logPY (Y )].2 In the
case ` = K, each output sequence y with cardinality k has
probability PY,|Y |(y, k) = S(K, k)k!/qK . Since there are

(
q
k

)
different outputs y for |y| = k,

µK(K, q) = −
K∑
k=1

∑
y:|y|=k

S(K, k)k!

qK
log

S(K, k)k!

qK
(14)

= −
K∑
k=1

(
q

k

)
S(K, k)k!

qK
log

S(K, k)k!

qK
(15)

= K log q −
K∑
k=1

pk log(S(K, k)k!) (16)

where in the last equality we used the definition of pk in (7).
The output entropy for the noiseless A-channel with uniform
inputs (16) was already obtained in [1], [2]. By similar steps,

σ2
K(K, q) =

K∑
k=1

pk

[
log

S(K, k)k!

qK

]2

− µK(K, q)2. (17)

2When PY is the output distribution induced by a capacity achieving input
distribution, µK is also the channel capacity.

Throughout the rest of this section, we will use

IK,q ,
µK(K, q)

K log q
, (18)

VK,q ,
σ2
K(K, q)

(K log q)2
. (19)

Recall that in Theorem 2, Ak is the k-th entry of A =
[A1, . . . , Ak]T, which is multinomial distributed with param-
eters {pk}Kk=1 (with pk given in (7)) and

∑K
k=1Ak = n. Let

ck , log2(
∑η
η p̄ηp(k, `, η)). It follows that

∑K
k=1Akck

d
=∑n

i=1 Zi, where d
= denotes equality in distribution, and where

{Zi}ni=1 is a sequence of i.i.d. random variables taking values
on ck with probability pk for k ∈ [K]. In the following, a
generic realization of the random variable Zi will be denoted
simply by Z. Then, by applying the so-called normal ap-
proximation (Berry-Esseen theorem [29, Ch. XVI.5] and [30,
Lemma 47]) to the expected value of (8), it follows that for
some constant B independent of n (see, e.g., [30, Eqs. (255)-
(267)]),

ε ≤
K∑
`=1

`

K
Q

 µ`

` −R log2 q −
log2(( e

` )`( K
K−`))

`n

σ`/(`
√
n)


+

B√
n

+

(
K
2

)
M

. (20)

It is shown in Appendix C that basic properties of the
conditional mutual information and the symmetry of the Xi’s
imply

µ`
`
≥ µ`+1

`+ 1
(21)

for every ` ∈ [K−1]. Then, as n grows and the rate approaches
IK,q, the ` = K term in (8) becomes dominant while the
` < K terms still decay exponentially fast with n.

Remark 2: Usually, the capacity region of the multiple
access channel is the union of K-dimensional pentagon con-
strained by the different conditional mutual information terms
µ`. In the unsourced case, where all input distributions are
constrained to be equal, it is apparent from (21) that µK
is the most constraining limit and therefore it dominates the
n→∞ limit. Formula (20) shows that the conditional mutual
information terms still influence the random coding error
probabilities in the finite blocklength regime. Nonetheless,
their contribution vanishes exponentially with the blocklength.

By collecting the ` < K terms and
(
K
2

)
/M in (20) in a

o(1/n) term, after some standard manipulations, (20) can be
expressed in terms of the rate as

R = IK,q −
√
VK,q
n

Q−1

(
ε− B√

n
+ o

(
1

n

))
+

log2(K/e)

n log2(q)
.

(22)
The constant B is determined by the Berry-Esseen theo-
rem [29, Ch. XVI.5] and [30, Lemma 47]. For sufficiently
large n, it follows that Q−1(ε−B/√n+o(n−1)) = Q−1(ε)+
B/
√
n + O(1/n), for some B independent of n. Numerical
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Fig. 2: Rate versus blocklength n for q = 16, K = 5 and ε = 0.05.

experiments suggest that for the A-channel, the value of B that
can be obtained by applying the Berry-Esseen theorem [29,
Ch. XVI.5] and [30, Lemma 47] is not tight. In other words,∑n
i=1 Zi converges much faster to the Gaussian distribution

than the speed suggested by B. In Fig. 2, we show that the
approximation

R = IK,q −
√
VK,q
n

Q−1(ε) +
log2(K/e)

n log2(q)
(23)

can indeed provide accurate estimates of the bound provided in
Theorem 2 for small values of n. This approximation is tight
as long as the true value of B is sufficiently small so that the
resulting B is much smaller than log2(K/e)/ log2(q). When
this is true, ignoring the term B/

√
n does not compromise the

accuracy of the approximation for small n.
This is shown in Fig. 2, where we compare the non-

asymptotic random coding bound with joint decoding given
in Theorem 2, and the normal approximation (23) with and
without the 1/n-term. We further plot the maximum coding
rate achievabile with uniform inputs IK,q. We can observe
that the 1/n-term of the normal approximation is necessary to
capture the behaviour of the non-asymptotic bound in the small
blocklength regime, where rates are higher than IK,q (Fig. 2a).
As n grows large the dispersion term becomes dominant

and the achievability curve starts to show the typical 1/
√
n

convergence to the asymptotic limit from below (Fig. 2b).

III. A-CHANNEL CODE: TREE CODE

A. Code Construction

A B-bit message is divided into blocks of size {bi}ni=1 such
that

∑n
i=1 bi = B and such that b1 = J and bi < J for

all i ∈ [2 : n]. Each subblock i ∈ [2 : n] is augmented to
size J by appending πi = J − bi parity bits, obtained using
pseudo-random linear combinations of the information bits of
the previous blocks i′ < i. Note that there is a one-to-one
association between the set of all sequences of coded blocks
and the paths of a tree of depth n. The pseudo-random parity-
check equations generating the parity bits are identical for
all users, i.e., each user makes use exactly of the same outer
tree code. This makes the code compatible with the unsourced
paradigm. Each user then transmits the n coded symbols over
the 2J -ary A-channel.

Let Yi, i ∈ [n], be the channel outputs of the A-channel.
Since the sections contain parity bits with parity profile
{0, π2, . . . , πn}, not all message sequences in Y1×Y2×· · ·×Yn
are possible. The role of the outer decoder is to identify all
possible message sequences, i.e., those corresponding to paths
in the tree of the outer tree code [13]. The output list L is
initialized as an empty list. Starting from i = 1 and proceeding
in order, the decoder converts all the integer indices in Yi
back to their binary representation, separates data and parity
bits, computes the parity checks for all the combinations with
messages from the list L, and extends only the paths in the
tree which fulfill the parity checks. A precise analysis of the
error probability in various asymptotic regimes as well as an
algorithm to optimize the parity profile for a target complexity
and error probability are provided in [13].

The analysis in [13] and [4] showed that the tree code per-
forms well in the regime of vanishing sparsity, i.e., K/q → 0,
which is the regime where both joint and cover decoding
bounds (see Theorems 1 and 2) perform similarly. However,
for moderate sparsity, our numerical evaluation of Theorems 1
and 2 reveals that the joint and cover decoding bounds exhibit
a considerable gap (See Fig. 3). Since the original tree decoder
outputs all codewords that satisfy the parity checks, the tree
code described above cannot outperform the cover decoding
bound. In the next section, we propose enhanced decoding
strategies for the original tree code based on ideas from group
testing and insights from the analysis of the joint decoder.

B. Enhanced Decoding

The proof of Theorem 2 shows that joint decoding can
improve upon cover decoding by considering combinations
of codewords instead of just individual codewords. In this
section, we use this concept to develop two improved decoding
algorithms for the tree code. These methods strictly improve
the performance of the tree code since they consists of a post-
processing step of the output list when the output list is greater
than K. In earlier works such as [14] and [4], codewords



were discarded at random to reduce the output list to the
required size. This necessarily results in a large number of
errors when the output list is significantly larger than K. Since
the output list contains only false alarms and no misdetections,
the decoding performance can be improved by filtering the
output list to remove false alarms. Let the size of the cover
decoder output list be K + ∆. A valid strategy is to check all(
K+∆
K

)
combinations of K codewords from the list. Of course

this leads to a complexity that grows exponentially in ∆. When
K is not known, one can search for the combination with the
least codewords that produces the channel output. In the group-
testing literature, this approach is called the smallest-satisfying
set (SSS) method [24]. Note that finding the SSS is in general
NP hard, as it can be shown to be equivalent to the set cover
problem [24, Remark 2.1]. In the following we describe two
methods, developed for group testing, that approximate the
combinatorial search in a greedy manner. In particular, we will
consider the so-called definitive defectives (DD) and sequential
combinatorial pursuit (SCOMP) algorithms [31].3 They both
work by filtering the original output list. Specifically, SCOMP
is a strict improvement over DD, in the sense that it consists
of applying DD followed by an additional processing step.
Therefore, the algorithm can be chosen based on complexity
and/or rate requirements, since each processing step increases
the decoding complexity, but also increases the performance.

DD : As a first step we re-encode all the messages
in the output list of the tree decoder, which we denote by
m1, ...,m|L|. For i ∈ [n], the DD algorithm isolates all indices
i for which mj,i is unique among {m1,i, ...,m|L|,i}. The
messages with indices isolated this way have for sure been
transmitted since they were the only ones in the list that can
explain the observed channel output. Let LDD be the list of
isolated messages and let LR denote the remaining messages
that were not isolated. If |LDD| < K we choose random
messages from LR to fill the output list up to size K.

SCOMP : The SCOMP algorithm proceeds by scanning
the list of remaining entries LR after DD processing for
appropriate candidates using the following greedy heuristic:
i) The symbols in the channel output that have been covered
by the DD list are removed. The remaining symbols are called
unexplained. ii) The index jmax is searched for which mj cov-
ers the most unexplained symbols. This index is added to the
output list LSCOMP = LDD∪ jmax. iii) The symbols covered by
mjmax are removed from the list of unexplained symbols. The
algorithm repeats this process until no unexplained symbols
are left. If |LSCOMP| < K we again add messages at random.
This algorithm will always terminate in at most K steps, since
the transmitted messages are always contained in the original
output list.
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Fig. 3: Rate versus number of active users K (Fig. 3a) and versus blocklength
n (Fig. 3b) including the tree code with DD and SCOMP post-processing.

C. Numerical Results

In Fig. 3, we compare the performance of the original tree
code described in Section III-A with the enhanced versions
described in Section III-B. As performance benchmarks, we
use the finite-blocklength bounds derived in Theorems 1 (cover
decoding) and 2 (joint decoding), and the maximum coding
rate achievabile asymptotically by uniform inputs IK,q (18).
We use q = 2J with J = 8. Let the rate R = B/(B + P ),
where B denotes the number of information bits, and P the
number of parity check bits. We fix the error constraint ε ≤
0.05, and select the largest rate R (smallest value of P ) such
that the error constraint is satisfied. The parity profile is set by
choosing πn = J and dividing the remaining parity check bits
evenly between sections 2, ..., n. If the remaining parity check
bits cannot be divided evenly, the later sections are prioritized.
We remark that the resulting parity profile provides a good
balance between decoding complexity and error probability.

We can observe that there is a considerable gap between
joint and cover decoding. Furthermore, we can observe that

3An alternative approach is based on linear programming [32]. It is very
similar to SCOMP in terms of achievable rates and complexity, so we exclude
it from the comparison in this paper. A more detailed comparison is left for
future work.



IK,q is exceeded for small blocklengths as are the achievable
rates of all tree code variants. We can also observe that the
suggested group-testing-motivated post-processing strategies
(Tree code - DD, Tree code - SCOMP) allow to increase the
achievable rates of the tree code significantly. Remarkably,
both DD and SCOMP post-processing strategies allow to
outperform the cover decoding bound.

IV. A-CHANNEL DESIGNS IN GROUP TESTING

Recall from Section I that an unsourced q-ary A-channel
code of blocklength n and size M can be thought of as a
group-testing matrix for N = M items with T = nq tests.
Here, the number of active users is analog to the number of
defective items. The tests are divided into n groups of size q
so that each item participates in exactly n tests, i.e., in one
test per group. Even though A-channel-based group-testing
constructions are less flexible (they require the number of tests
T to be a multiple of q), they also provide more structure,
which allows for efficient recovery and an easier analysis.

The finite-blocklength achievability bounds given in The-
orems 1 and 2 allow to compute concrete achievable test
numbers for a fixed q and a fixed error probability ε. In
particular, q can be seen as an optimization parameter that
can be chosen to minimize the number of required tests. The
analogy between unsourced A-channel codes and group testing
motivates the following results.

Corollary 1: There exist group-testing matrices, constructed
from unsourced A-channel codes, such that d defective items
out of N items can be recovered with T = nq tests and
the error probability given by Theorems 1 and 2 without the
penalty term

(
K
2

)
/M (since random collisions among items

are not possible).
The following theorem shows that it is possible to achieve

the optimal number of tests T = O(d logN).
Theorem 3: There exists a sequence of group-testing matri-

ces, constructed from unsourced A-channel codes, such that d
defective items out of N items can be recovered with an error
probability that vanishes in the limit d,N, T →∞ if

T = d logN. (24)

Proof: Let K, q → ∞ with λ = K/q fixed. The mutual
information for the K-user A-channel with uniform inputs in
this limit is given by [2]:

lim
K,q→∞

I(X[K];Y )

q
= h(1− e−λ) (25)

where h(·) is the binary entropy function. By the channel
coding theorem [33, Ch. 7.7], there exist codes with sum-
rates Rsum = K logM/(nq) for which the error probability
vanishes as long as Rsum < h(1 − e−λ). The right hand side
is maximised for λ = ln 2. Assuming that a code achiev-
ing this performance is used, we obtain (24) by replacing
n = K logM/q in T = nq, and using that in the standard
group-testing notation M = N .
If the optimal sparsity λ = ln 2 cannot be attained, the number
of required tests becomes T = h(1 − e−λ)−1d logN . This

500 750 1000 1250 1500 1750 2000 2250 2500
0

0,2

0,4

0,6

0,8

1

number of tests, T

P
su

c
c
e
ss

Theorem 2 (joint)
RC - SCOMP

constant - SCOMP
Theorem 1 (cover)

RC - cover
constant - cover

Tcap

Fig. 4: Psuccess versus number of tests T in a group-testing setup with d =
100 and N = 2000. In the A-channel designs, q = 27.

result lies in the realm of probabilistic group testing [24] as
for finite values of N and T , there is always a non-zero chance
of failure, albeit it can be made arbitrary small by increasing
N and T . Note also that the relative scaling of N and d is
not specified in Theorem 3. It is implicitly assumed though,
through the order of limits (first N,T →∞ then d, q →∞),
that N is much larger than d. Instead of taking the second
limit, we can generalize (24) to hold for all d by setting

T = d logN min
q

q

µd(d, q)
(26)

where µd(d, q) is given in (16).
It is known that group-testing designs with a constant

number w of tests per item perform better than unstructured
random designs, even when the average number of test per
item is the same [25]. A commonly analyzed setup consists
in fixing w and choosing the tests randomly from the set
of all w-weight vectors. An A-channel design also has a
fixed number of test per item w = T/q but has even more
structure, which provides some advantages. In particular, the
q-ary structure of the A-channel allows to represent the group-
testing matrix in an efficient way using only n log q bits to
specify the test in which each item participates. If a structured
code is used, such as the tree code, the group-testing matrix
does not need to be stored explicitly as each column can be
constructed in O(logN) time. Furthermore, the reconstruction
of the defective set can be done in O(d2 logN) time. As such,
the tree code falls into the category of sub-linear group-testing
designs [24]. They are especially useful in problems where the
recovery time is the limiting factor, rather than the acquisition
of tests. This is the case, for example, in big data and computer
science applications. Theorem 3 shows the existence of A-
channel codes achieving the optimal test scaling, but it requires
q to scale proportional to d. The analysis of the tree code in
such a scaling regime is an interesting open problem, which
is left for future work.

A. Numerical Results

Fig. 4 shows the performance of Theorems 1 and 2 (without
the

(
K
2

)
/M term) in the group-testing setup in terms of



probability of success Psuccess = 1− P (j)
e , where a success is

declared if the set of defective items is perfectly recovered.4

We compare our achievability bounds with empirical error
rates achieved by a random A-channel code under cover (RC
- cover) and SCOMP (RC - SCOMP) decoding. The black
dotted line shows Tcap , d logNq/µd(d, q) for q = 27, which
provides an asymptotic achievability bound since for T > Tcap,
by the channel coding theorem, there exist A-channel codes
achieving Psuccess → 1 in the limit N,T →∞ with (logN)/T
fixed. We also compare our bounds with a constant design
(constant - cover; constant - SCOMP in Fig. 4) with exactly
w = (ln 2)T/d test per item given in [24].

We assume that d out of N items are defective and set
d = 100 and N = 2000. We choose q = 27, which was found
empirically to give the best results. As we can observe, the
A-channel design, which has w = T/q, exhibits almost the
same performance as the constant weight designs, when using
both the cover and the SCOMP decoders.

V. CONCLUSIONS

We present finite-blocklength achievability bounds for the
unsourced A-channel, and we propose easy-to-evaluate refined
asymptotic approximations, which are accurate from block-
lengths as small as n = 10. Motivated by the analytical
solution of the finite-blocklength bounds and the connection
between URA and group testing through the unsourced A-
channel, we introduce improved decoding algorithms of the so-
called tree codes used as part of coding schemes for URA. We
show that the proposed decoding algorithms allow to improve
the rates achieved by off-the-shelf tree codes significantly
at the cost of a moderate increase in decoding complexity.
Finally, we adapt our finite-blocklength bounds so that they
can be compared against well-known group-testing bounds and
schemes. We show that A-channel constructions can perform
close to constant tests-per-item constructions, albeit with a
much more structured test matrix, which can enable its use in
applications such as big data and computer science that usually
demand stringent recovery times. For example, A-channel tree-
codes test-matrices can be constructed in O(log n) time, and
the defective set can be reconstructed in O(d2 log n) time.

APPENDIX A
PROOFS OF ACHIEVABILITY BOUNDS

A. Preliminaries

In both error definitions (3) and (4), we assumed that
any collision among the transmitted codewords automatically
results in error. It follows that

P[∪j 6=i{Wj = Wi}] ≤
(
K
2

)
M

. (27)

We shall replace the measure under which (3) and (4) are
computed by the one under which {Wj}Kj=1 are uniformly
sampled without replacement from [M ], at the expense of

4This corresponds to probabilistic group testing. For the PUPE bounds in
Theorems 1 and 2, this would correspond to partial recovery [24][Ch. 5.1].

adding a penalty term equal to
(
K
2

)
/M to the upper bounds

on the error probability.
Due to symmetry, we assume without loss of generality that

the first K codewords are transmitted. For any set S ∈ [M ],
let c(S) ,

⋃
j∈S cj . Similarly, for any set S ∈ [M ], we shall

use ci(S) to denote
⋃
j∈S ci,j , where ci,j indicates the input

of cj at channel use i. We shall omit the subindeces i and
j when immaterial. Furthermore, we let S` denote a generic
subset of K − ` elements in [K], and S′` denote a generic
subset of ` elements in [M ]\[K].

Finally, the following definition will turn out useful through-
out the proofs. Let Ak , {i ∈ [n] : |Yi| = k} for k ∈ [K].
In words, Ak is the set of channel uses where the channel
output Y has cardinality k. Note that

∑K
k=1 |Ak| = n. Hence,

Ak is the k-th element of A = [A1, . . . , AK ]T, which is a
multinomial-distributed random vector with parameters n and
{pk}Kk=1, where n denotes the number of trials, K the number
of possible outcomes in each trial, and pk the probability that
the cardinality of the output is k at channel use i, which is
given by

pk = P[|Yi| = k] =
q!S(K, k)

qK(q − k)!
. (28)

B. Proof of Theorem 1

It follows that

P (p)
e ≤ E

[
Nfa,c

K +Nfa,c

]
+

(
K
2

)
M

(29)

=

M−K∑
`=1

`

K + `
P[Nfa,c = `] +

(
K
2

)
M

(30)

≤
K−1∑
`=1

`

K + `
P[Nfa,c ≥ `] + P[Nfa,c ≥ K] +

(
K
2

)
M

. (31)

Hence, to complete the proof of Theorem 1, we next show
that

P[Nfa,c ≥ `] ≤ E

[
min

{
1,

(
M −K

`

) K∏
k=1

(
k

q

)`Ak
}]

. (32)

Since the messages are independent and uniform on [M ] (see
Def. 1), it follows that

P[Nfa,c ≥ `] = P

⋃
S′`

c(S′`) ∈ Y

 (33)

= P

⋃
S′`

⋂
k∈[K]

⋂
i∈Ak

{ci(S′`) ∈ Yi}

 . (34)



We next use that {Ak}Kk=1 are disjoint sets together with the
law of total probability to write

P[Nfa,c ≥ `]

= EA

P
⋃
S′`

⋂
k∈[K]

⋂
i∈Ak

{ci(S′`) ∈ Yi}
∣∣ |Ak| = Ak

 (35)

≤ EA

[
min

{
1,

(
M −K

`

) K∏
k=1

(P[c(S′`) ∈ Y ])
Ak

}]
(36)

= EA

[
min

{
1,

(
M −K

`

) K∏
k=1

(
k

q

)`Ak
}]

(37)

where the first inequality follows from the union bound,
because the messages are independent and uniform on [M ]
(see Def. 1), and because the probability that ci(S′`) ∈ Yi
is independent of i, which also justifies why we omitted the
subscript i. Finally, (37) follows since

P[c(S′`) ∈ Y ] = P

 ⋂
j∈S′`

{cj ∈ Y }

 = (P[c̄ ∈ Y ])` (38)

for some generic non-transmitted symbol c̄, and because
P[c̄ ∈ Y ] = k/q.

C. Proof of Theorem 2

It follows that

P[Nfa,j = `] ≤ P

⋃
S`

⋃
S′`

{c(S`) ∪ c(S′`) = Y }

+

(
K
2

)
M

(39)

and

P

⋃
S`

⋃
S′`

{c(S`) ∪ c(S′`) = Y }


= EA

[
P

[⋃
S`

⋃
S′`

K⋂
k=1

⋂
i∈Ak

{ci(S`) ∪ ci(S′`) = Y }
∣∣∣ |Ak| = Ak

]]
. (40)

Since the messages are independent and uniform on [M ] (see
Def. 1), by applying the union bound on the right-hand side

of (40), we have

P

⋃
S`

⋃
S′`

{c(S`) ∪ c(S′`) = Y }


≤ E

[
min

{
1,

(
K

K − `

)(
M −K

`

)

×P
[
K⋂
k=1

⋂
i∈Ak

{ci(S`) ∪ ci(S′`) = Yi}
∣∣∣ |Ak| = Ak

]}]
(41)

= E

[
min

{
1,

(
K

K − `

)(
M −K

`

)

×
K∏
k=1

(P[{c(S`) ∪ c(S′`) = Y }])Ak

}]
(42)

where the last equality follows because {Ak}Kk=1 are disjoint
sets together with the law of total probability, and because
the considered input distribution is a product distribution. We
conclude the proof by showing that

P[{c(S`) ∪ c(S′`) = Y }] =

η∑
η=η

p̄ηp(k, `, η). (43)

Recall that, in the statement of Theorem 2, we defined
η = |c(S`)|, i.e., the cardinality of the subset of transmitted
codewords c(S`) at a given channel use. Furthermore, we
defined η = max{0, k − `} and η = min{k,K − `}, where
` ∈ [K] denotes the number of elements from the subset of
non-transmitted codewords c(S′`). Thus, K − ` corresponds
to the number of elements from the subset of transmitted
codewords c(S`). In words, η represents the minimum number
of symbols in channel uses of cardinality k that that need to be
covered by the subset of K−` transmitted symbols to create a
valid output together with the symbols of the subset of ` non-
transmitted codewords. Similarly, η represents the maximum
number of symbols that the subset of K − ` transmitted
codewords could hit in channel uses of cardinality k, when we
consider ` non-transmitted codewords. The probability term
in (42) can be expressed as

P[{c(S`) ∪ c(S′`)} = Y ]

=

η∑
η=η

P
[
{c(S`) ∪ c(S′`)} = Y

∣∣ |c(S`)| = η
]

×P[|c(S`)| = η] (44)

=

η∑
η=η

p̄ηp(k, `, η). (45)

where p(k, `, η) = P
[
{c(S`) ∪ c(S′`) = Y }

∣∣ |c(S`)| = η
]
,

and

p̄η = P[|c(S`)| = η] =
k!S(K − `, η)

(k − η)!kK−`Zη
(46)



with Zη being a normalizing constant used to make sure that∑η
η=η p̄η = 1. Note that p̄η is similar to pk in (28), except that

in p̄η not all the values of η ∈ [K − `] are possible, since we
are considering channel uses of cardinality k, and the number
of symbols hit by the subset of transmitted codewords needs
to be sufficiently large so that the subset of ` non-transmitted
codewords can hit the remaining symbols. Also, η cannot be
larger than the cardinality k. This implies that without Zη ,∑η
η=η p̄η could be different from one.
Given the definition of p(k, `, η) in (11), it remains to show

how to compute π(k, `, η), which can be computed in closed
form only when η = 0 (see Theorem 2). In Appendix B, we
present a possible way to compute π(k, `, η) for η > 0.

APPENDIX B
COMPUTATION OF π(k, `, η)

Recall that π(k, `, η) denotes the conditional probability,
given that c(S′`) ∈ Y , that the subset of non-transmitted sym-
bols cover the remaining k− η symbols. This problem resem-
bles the classical coupon collector problem where π(k, `, η) is
exactly the probability to draw k out of k coupons in ` steps
when one starts with η coupons and each coupon appears with
probability 1/k. The evolution of coupons can be modeled
by the Markov Chain depicted in Fig. 1. The inter-arrival
times in this chain are independent geometrically distributed
random variables. The probability generating function of the
final arrival time can be expressed as

Gk,`,η(z) = zk−η
(k − η)!

kk−η

k∏
i=η

1

1− i
kz
. (47)

Finally, π(k, `, η) can be obtained as the sum of the first
` coefficients of the polynomial representation of Gk,`,η(z).
These terms can be calculated recursively to avoid numerical
issues. Since Gk,`,k(z) = 1 we have π(k, `, k) = 1. Then

Gk,`,η−1(z) = z
k − η
k

(
1− η

k
z
)−1

Gk,`,η(z) (48)

= z
k − η
k

∞∑
i=0

(η
k
z
)i
Gk,`,η(z). (49)

Therefore, the polynomial representation of Gk,`,η−1(z) can
be computed from Gk,`,η(z) by convolution with the poly-
nomial

∑∞
i=0

(
η
kz
)i

. Note that only the first ` coefficients of
Gk,`,η(z) are relevant, so it suffices to compute the convolution
with

∑`
i=0

(
η
kz
)i

.

APPENDIX C
PROOF OF (21)

By symmetry we write µ` = I(X[`];Y |X[`+1:K]). We next
show that

µ`
`
≥ µK

K
(50)

for every ` ≤ K, which implies (21).
First, note that, since all Xi are iid, it holds that

I(XS ;Y |XS′) ≤ I(XS ;Y |XS′′) for S, S′, S′′ ⊂ [K] when-
ever S ∩ S′ = S ∩ S′′ = ∅ and S′ ⊂ S′′ which follows

from I(X2;Y ) ≤ I(X2;Y |X1) for independent X1, X2. In
other words, for independent random variables, conditioning
increases mutual information. The latter follows from the
convexity of I(X2;Y ) in p(y|x2) =

∑
x1
p(y|x1, x2)p(x1).

Second, again, due to the iid property, the elements of X can
be arbitrary permuted. With these two properties and repeated
use of the chain rule for mutual information we can show that
µ`

` ≥
µ`+1

`+1 :

`µ`+1 = `I(X[`];Y |X[`+1:K]) + `I(X`+1;Y |X[`+2:K])

= `µ` + `I(X1;Y |X[`+2:K]).
(51)

By the chain rule µ` can be expressed as

µ` =
∑̀
i=1

I(Xi;Y |X[i+1:K]). (52)

It is apparent that the righ-hand side of (51) can be upper
bound by µ` by conditioning on additional Xi’s, which shows
that `µ`+1 ≤ (`+ 1)µ`.
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of the Kautz-Singleton construction in probabilistic group testing,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5592–5603, Mar. 2019.

[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, The NIST
Handbook of Mathematical Functions. Cambridge Univ. Press, 2010.

[29] W. Feller, An Introduction to Probability Theory and Its Applications,
2nd ed. New York, NY, USA: Wiley, 1971, vol. II.

[30] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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