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Abstract—We study the design of low-density parity check
(LDPC) codes for the 2-user binary adder channel (BAC) in the
unsourced setting. That is, both users employ the same code. We
show that classic design criteria for LDPC codes do not capture
the special requirements needed to deal with the interference in
an unsourced BAC (UBAC). Instead, we give a graph theoretic
analysis that allows to calculate the expected fraction of good
pivots for any LDPC ensemble with a given degree distribution
pair. A good pivot is a variable node associated with a received
”erasure” symbol for which revealing its value allows to recover
both transmitted messages up to a vanishing small fraction of
residual erasures by simple BP decoding. The analysis of the
expected fraction of good pivots reveals a surprising connection
between graph theory and density evolution which can be used to
compute optimized degree distributions. Results over the 2-user
UBAC with additive white Gaussian noise are also provided, and
the implications of the presence of noise are discussed. Finally,
provide a simple multi-edge type LDPC code construction that
can provably achieve the 2-user UBAC limit for linear codes.

Index Terms—Unsourced Multiple Access, Internet of Things,
Low-Density-Parity Check Codes

I. INTRODUCTION

The number of compact battery-powered, wireless devices is
steadily increasing and their wide deployment enables novel
applications in, e.g., smart homes, infrastructure monitoring,
factory automation, or healthcare systems. The traffic gen-
erated in such applications differs from classical human-
generated data traffic in that it is characterized by small duty
cycles and small payloads. Establishing coordination between
a large number of such devices is time and energy consuming
and makes classical scheduling-based multiple-access solu-
tions inefficient. In this context, random access (RA) protocols
become an appealing solution [1]. Recently, an information-
theoretic perspective on RA was introduced, which relies on
the so-called unsourced multiple access (UMAC) framework.
UMAC exploits the idea of same codebook communication [2].
This approach allows separating the different messages based
purely on the structure of the codebook, i.e., the set of allowed
messages. It was shown that good unsourced code designs can
approach the capacity of the additive white Gaussian noise
(AWGN) adder channel without the need for coordination
[2], [3]. While many unsourced code constructions have been
proposed [3]–[9], most of them lack analytic understanding.
For this reason, we study the design of unsourced codebooks
on a simplified channel, the 2-user unsourced binary adder
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channel (UBAC). In particular, we focus on the design of low-
density parity check (LDPC) codes for the 2-user UBAC. In
the 2-user UBAC, the channel output Yi is the sum of two
channel inputs X1,i, X2,i, i.e.,

Yi = X1,i +X2,i i = 1, ..., n

where n is the blocklength and X1,i, X2,i ∈ {0, 1}. Note, that
the addition is over the reals. Note that a received symbol
Yi = 1 leaves ambiguity about the values of X1,i and X2,i.
From a decoding perspective, channel outputs equal to 1 can
be treated as erasures, and the decoding problem turns into
the problem of decoding over a binary erasure channel (BEC)
[10]. When a binary linear block code is used, if the code does
not possess idle coordinates, the average number of erasures
at the channel output is half of the blocklength. One may
expect that designing an LDPC code from an ensemble with
BP decoding threshold > 1/2 would be sufficient to achieve
reliable communication. However, the code design problem
turns to be more complex, since in the 2-user UBAC the
erasure patterns at the channel output match the support set
of codewords. This fact renders a density evolution (DE)
analysis of the BP decoder hard, hindering the use of BEC
threshold-based arguments for the code design. Moreover,
the BP decoder requires an initial bias (by guessing one
erased bit) to bootstrap iterative erasure decoding. Based on
this observation, a low-complexity extension of BP decoding,
called pivot decoding, was proposed in [10]. In this type of
decoding, a variable node (VN) associated with an erasure
(pivot) is chosen at random and its value is fixed to 0 or
1. A graph theoretic analysis was given in [10] that allows
calculating the expected fraction of “good pivots” for any
regular LDPC ensemble. A good pivot is a VN associated
with an erasure, for which revealing its value allows resolving
the erasure pattern via BP decoding (up to a vanishing-small
fraction of the erased bits). The work in [10] has shown that the
per-user rates for regular LDPC codes with a non-vanishing
fraction of good pivots are limited by R = 1/4, where R
denotes the per-user rate.

In the first part of this work, we extend the analysis of [10]
to unstructured irregular LDPC code ensembles. Furthermore,
we show that the fraction of erased messages can be tracked by
density evolution on the induced graph. We give a criterion that
guarantees the existence of good pivots resulting in a tool to
optimize the degree distributions. Our results show that the use
of irregular distributions allows for rates up to R = 1/2, which
for linear codes it the best achievable per-user-rate on the 2-
user UBAC [10]. In the second part of this work, we investigate
how the designed codes perform over a 2-user UBAC with
AWGN. We find that the noise actually helps the decoding
process. This leads to the counterintuitive conclusion that for



UBAC-type interference with a low natural noise level it is
beneficial to artificially add a controlled amount of noise to the
received signal before decoding. In the final part of the paper,
we propose a multi-edge type LDPC code construction that
provably achieves the R = 1/2 limit over the 2-user UBAC.

II. PIVOT DECODING

Maximum-likelihood decoding over the 2-user UBAC can
be formulated as an erasure decoding problem. Given the
observation y = (y1, y2, . . . , yn), we may construct a vector
ỹ by setting ỹi = 0 if yi = 0, ỹi = 1 if yi = 2, and ỹi =?
if yi = 1. Here, the symbol “?” represents an erasure. The
set of coordinates in which ỹ is set to “?” is E = {i|ỹi =?}
and it is referred to as the erasure set. Decoding proceeds by
creating a list L of all codewords that are compatible with the
modified observation Ỹ n, i.e., L = {c|ci = ỹi, ∀i /∈ E}. The
final step consists of searching all unordered codeword pairs
{v,w} ∈ L× L whose real sum yields y. We refer to a pair
{v,w} satisfying y = v+w as a valid (codeword) pair. If the
solution is unique, then the final list is {v,w} and decoding
succeeds. In case of multiple valid pairs, a pair is picked at
random. We refer to the event where decoding yields multiple
valid pairs as a decoding failure.

LDPC codes admit a simpler (yet, suboptimum) decoding
algorithm that relies on a simple modification of the BP
algorithm. Observe that for any binary linear block code the
erasure pattern at the output of a 2-user UBAC matches the
support set of a codeword. It follows that the subset of VNs
with indexed in E form a stopping set, and a plain application
BP decoding must result in a decoding failure [10]. To solve
the issue, one needs to pick a VN with index in E and
fix its value to either zero or one. We refer to the selected
VN as the pivot. Then the BP decoder is run. We name the
overall decoding algorithm as pivot decoding. A good pivot is
a VN with the property that fixing its value will allow the
BP decoder the recover all remaining VNs with exception
of a set that scales at most sublinearly with n. I.e., good
pivots allow for recovery with a vanishing induced bit erasure
probability. 1 Note that a residual, small fraction of erasures
can be recovered by concatenating an outer high-rate code with
the inner LDPC code. In particular, by properly choosing the
outer code, it is possible to construct ensemble sequences for
which a vanishing bit erasure probability after BP decoding
of the inner code results in a vanishing block error probability
after outer code decoding, as n grows large [11], with an outer
code rate that converges to 1.

III. LDPC CODE DESIGN FOR PIVOT DECODING

Let n and m denote the number of VNs and CNs respectively.
We analyze irregular LDPC ensembles defined by a pair (L,R)
of degree distributions, which can be written in polynomial

1This definition deviates from [10] where a good pivot was defined in the
stricter sense that it allowed to recover all codeword bits. We refer to those
as good pivots in the strong sense

form in a dummy variable x as

L(x) =

Lmax!

i=0

Lix
i and R(x) =

Rmax!

i=0

Rix
i.

Here Li and Ri denote the fractions of VNs and CNs with
degree i.The corresponding edge oriented degree distributions
are

λ(x) =

Lmax!

i=1

λix
i−1 and ρ(x) =

Rmax!

i=1

ρix
i−1

where λi and ρi are the fractions of edges that connect to
degree-i VNs and CNs. They satisfy λ(x) = L′(x)/L′(1) and
ρ(x) = R′(x)/R′(1). The design rate can be expressed as R =

1 − L′(1)/R′(1) = 1 −
" 1

0
ρ(x)dx/

" 1

0
λ(x)dx. The average

number of edges per VN and CN is given by L′(1) and R′(1).
For two given codewords c1, c2 and the corresponding channel
output y = c1 + c2 we use the notation Si = {j : yj = i}
to partition the channel output into distinct sets. For j ∈ S0

c1,j = c1,j = 0 while for j ∈ S2 c1,j = c1,j = 1. Only
the bits in S1 = E are ambiguous. Let the codebook C be a
random LDPC code from an (L,R) ensemble. (See [12] for
details on the ensemble.) For the analysis we assume, w.l.o.g.,
that c1 = 0. With this assumption S1 = supp(c2), and S2 = ∅.
In the following we compute the induced degree distribution
induced by S1, i.e., the left and right degree distributions of
the induced graph obtained after removing all VNs in S0 ∪S2

together with their connecting edges. Since S1 constitutes the
support of a codeword, all connected CNs must have even
degree. We have the following result:

Lemma 1. As n → ∞ the degree distribution of the induced
graph concentrates around (Lind, Rind) with Lind(x) = L(x)
and

Rind(x) = R

#
1 + x

2

$
+R

#
1− x

2

$
(1)

as n → ∞.

We omit the proof due to space constraints and give only
a sketch: The VN degrees in the induced graph depend only
on the distribution of the channel output and will concentrate
around L. Given the VN degree distribution L, we can then
enumerate all graph configurations such that the outgoing
edges from the VNs in the induced graph are connected to even
degree check nodes. This reveals that the number of graphs
that give rise to (1) is exponentially larger than any other
configuration. We call a graph from the ensemble (L,Rind)
a dominant induced graph. In [10] a method was developed to
compute the fraction of good pivots for regular LDPC codes.
The result of [10] can be extended to irregular ensembles. The
key to the analysis is to consider the subgraph of the induced
graph that contains only degree 2 CNs and the connected VNs.
The probability that a VN is connected to a degree 2 CN in
the dominant induced graph is exactly p := ρind,2, where ρind
is the edge oriented version of the dominant induced degree
distribution. Therefore, the number of edges that connect a
VN of degree l to a CN of degree 2 is binomially-distributed
with parameters (l, p). Averaging over L gives the VN degree



distribution L̃ of the subgraph with only degree 2 CNs:

L̃i =
!

l

Ll

#
l

i

$
pi(1− p)l−i (2)

We can also view this subgraph as a (unipartite) graph with
nodes given by the VNs and edges given by the degree 2 CNs.
Such a graph will have a degree distribution L̃. According to
the Molloy-Reed criterion [13], a random graph with given
degree distribution L̃ has a giant component, i.e., a connected
component of size εDn almost surely as n → ∞ if

!
i(i− 2)L̃i > 0 (3)

Moreover, εD > 0 can be calculated as εD = 1− L̃(u) where
u is the smallest positive solution of u = λ̃(u) where λ̃ is the
edge oriented version of L̃ [13], [14].
Theorem 1. As n → ∞ a code from an (L,R) ensemble has
at least a fraction εD of good pivots in the strong sense with
probability approaching 1 if

εD + δ∗ > 1

where δ∗ = inf{δ > 0 : lim infn→∞
1
n logE[Aδn] > 0} with

E[Aδn] being the average number of stopping sets of size δn
in the dominant induced graph.

Note that Theorem 1 is in general not tight since it does
not account for the reduced CN degrees in the induced graph,
after removing the giant component. Nonetheless, we can
obtain a stronger achievability result from the general density
evolution framework [12]. For a parameter ε ∈ [0, 1] the
density evolution (DE) recursion is defined as

xl = ελ(1− ρ(1− xl−1)) (4)

with x−1 = 1. xl describes the average fraction of erased
messages emitted from VNs at iteration l. An equivalent
recursion that describes the average fraction yl of erased
messages emitted from CNs at iteration l is [12]

1− yl = ρ(1− ελ(yl−1)) (5)

We are interested in the case where all VNs are erased, i.e.
ε = 1. The condition that the recursion (4) has no fixed points
except for x = 0 and x = 1 if and only if

x− λ(1− ρ(1− x)) < 0 ∀x ∈ (0, 1). (6)

Note, that x = 0 and x = 1 are always fixed points of (4). We
first show that (6) implies εD > 0:
Theorem 2. If

fλ(x) := x− λ(1− ρind(1− x)) < 0 ∀x ∈ (0, 1) (7)

then εD > 0.
Proof: A necessary criterion for (7) is that f ′

λ(1) < 0,
which can be shown to be equivalent to (3). We have that
f ′
λ(1) = 1 − λ′(1)ρ′ind(0). Furthermore, ρ′ind(0) = ρind,2 = p

and λ′(1) = L′′(1)/L′(1) =
%

l l(l − 1)Ll/(
%

l lLl). There-
fore,

f ′(1) < 0 ⇔ λ′(1) >
1

p

⇔
!

l

l[l − (1 + 1/p)]Ll > 0
(8)

By using (2) we get
!

i

i(i− 2)L̃i =
!

l

Ll

!

i

i(i− 2)

#
l

i

$
pi(1− p)l−i

=
!

l

Ll

!

i

(i2 − 2i)

#
l

i

$
pi(1− p)l−i

(a)
=

!

l

Ll(lp(1− p) + l2p2 − 2lp)

= p2
!

l

Ll(l
2 − l − l/p)

= p2
!

l

Ll[l(l − (1 + 1/p)]

(b)
> 0

where (a) follows by computing the first and second moments
of the binomial distributions with parameters (l, p) and (b)
follows by (8). This shows that f ′

λ(1) < 0 is equivalent to the
Molloy-Reed criterion in the subgraph of only degree 2 CNs
which implies εD > 0.

Theorem 2 shows that there are εDn VNs that form a cycle,
i.e., fixing one value in the giant component will determine the
values of all other VNs in the giant component. In other words,
there exist a subset of relative size εD that, if chosen as pivots,
will reveal a fraction εD of VNs. After this, the fraction of
erased messages emitted from VNs x1 will satisfy x1 < 1. We
make the following Ansatz: The density evolution recursion
describes the evolution of the fraction of erased messages in
the erased graph. This statement does not follow immediately
from standard arguments like [12] because the set of εDn
VNs that is revealed depends on the graph structure. With
this Ansatz and condition (7) the recursion (4) with ε = 1 will
converge to x∞ = 0 with enough iterations. The criterion
in Theorem 2 then can be used to optimize left and right
degree distributions such that x∞ = 0. For example, for a fixed
induced CN degree distribution, good VN degree distributions
that satisfy (7) can be found by a linear program. Good degree
distribution pairs can be obtained by alternating optimization
[12], as presented in the next Section.

IV. OPTIMIZATION

For fixed ρind, (7) is linear in the coefficients of λ. Recall that
the design rate is R = 1−

!
i ρi/i!
i λi/i

. Therefore, the search for λ
that maximizes the design rate can be formulated as the linear
program [12]

max
λ

&
'

(
!

i≥2

λi

i

))))λi ≥ 0;
!

i≥2

λi = 1; fλ(x) < 0 ∀x ∈ (0, 1)

*
+

,

A similar condition can be formulated by means of (5) as

gρ(y) := 1− y − ρ(1− λ(y)) < 0 ∀y ∈ (0, 1).

which leads to the linear program

max
ρ

&
'

(−
!

i≥1

ρi
i

))))|ρi ≥ 0;
!

i≥1

ρi = 1; gρ(y) < 0 ∀y ∈ (0, 1)

*
+

,



TABLE I
DEGREE DISTRIBUTIONS WITH RESTRICTED MAXIMAL VN AND CN

DEGREE FOUND WITH THE PROCEDURE IN SECTION IV.

Rmax = Lmax L2 L3 L7 R4 R5 R7 R

4 0.43 0.57 − 1 − − 0.36

5 0.36 0.64 − 0.44 0.56 − 0.42

7 0.33 0.57 0.1 − 0.73 0.27 0.44

We can find good degree distributions by alternating between
these two linear programs. Recall that the per-user rates
achievable by linear codes on the 2-user UBAC are limited
by R < 0.5 [10]. The presented approach allows to construct
LDPC code ensembles with design rates that closely approach
this limit. Examples are provided in Table I.

V. AWGN PERFORMANCE

On the AWGN adder MAC with binary phase-shift keying
(BPSK), the channel input-output relation is

Yi =
√
SNR(2X1,i−1)+

√
SNR(2X2,i−1)+Zi, i = 1, ..., n

where SNR denotes the channel signal-to-noise ratio (SNR),
and where Zi ∼ N (0, 1). Note that the symmetry of the
BAC is broken in the sense that the random Gaussian noise
will make one of the codewords being closer to the channel
output than the other. The result is that a BP decoder is
often able to recover one codeword correctly even without
pivoting. The found codeword can be subtracted from the
channel output (i.e., interference cancellation is performed)
possibly enabling the decoding of the second codeword. This
leads to the decoder architecture in Figure 1, where L denotes
the final list (initialized to L = ∅). The initial log-likelihood
ratios at the BP decoder input LLRi = log

p(yi|x1,i=0)
p(yi|x1,i=1) are

computed by accounting the interference term, resulting in

LLRi = log(1 + exp[−2
√
SNR(

√
SNR− yi)])

− log(1 + exp[−2
√
SNR(

√
SNR+ yi)])

As already mentioned, in principle, BP decoding does not
require pivoting. Yet, we found that adding a pivoting stage can
significantly improve the performance at the cost of a moderate
additional complexity. The pivoting decoder architecture is
depicted in Figure 2. Here, before BP decoding, an index
i (the pivot) with LLRi close to zero is chosen and set to
either +∞ or −∞. Then two versions of the BP decoder
with interference cancellation in Figure 1 are run to produce
two output lists. The list with the higher overall likelihood
is chosen as final output. In principle, this strategy can be
extended to run multiple times with different choices for the
pivot. The analysis of the previous section gives an estimate
of how many guesses are necessary on average to find a
good pivot: Since εD is the asymptotic expected fraction of
good pivots, the probability of not finding a good pivot in
K tries is pe = (1 − εD)K .The performance of the decoders
described in Figure 1 and and in Figure 2 are compared in
Figure 3 in terms of the per-user block error probability over
Eb/N0 = SNR/(2R). In additional, we plot the performance
of a single-user with random interference and noise, i.e., over

y

BP

L = L ∩ c

Output L

y = y − c

c

|L| = 2

|L| < 2

Fig. 1. BP decoder architecture with interference cancellation without
pivoting (AWGN adder MAC).

y

Set LLRi = ±∞ for some i with LLRi ≈ 0

BP

L2 = L2 ∩ c y = y − c

c
|L2| < 2

BP

L1 = L1 ∩ cy = y − c

c
|L1| < 2

Output L with higher likelihood

|L2| = 2|L1| = 2

Fig. 2. BP decoder architecture with interference cancellation and with
pivoting (AWGN adder MAC).

the channel Yi =
√
SNR(2Xi − 1) +

√
SNRIi + Zi where

P (Ii = ±1) = 1/2. As expected, for high SNR the error
probability converges to the error probability on the BAC. For
Eb/N0 is the range 10− 15 dB we can observe a lower error
probability than in the high SNR regime, with a minimum
achieved at around 12 dB. This can be explained qualitatively
by the two contradicting effects of the additive noise. On the
one hand, the AWGN helps with breaking the symmetry, while
on the other hand it deteriorates the channel output.

5 10 15 20
EbN0 [dB]
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10-3

10-2

10-1

100

BL
ER

Random Pivot - BO 10
Random Pivot
No Pivot
Single User Random noise

Fig. 3. Block error rate for the 2-user AWGN adder MAC with BPSK
modulation. The block length is n = 800 and the rate is R = 0.35. The code
is obtained from an LDPC code ensemble defined by the degree distributions
L(x) = 0.4x2 + 0.6x3 and R(x) = x5.



VI. MULTI-EDGE TYPE LDPC CODE CONSTRUCTION

In this section we describe a multi-edge type LDPC code [12,
Chapter 7] construction for the 2-user UBAC which relies on
two simple building blocks, i.e., an (n1, k1) LDPC code C1
designed for 2-user UBAC, and an (n2, k2) LDPC code C2
constructed from a capacity-achieving ensemble for the BEC
with erasure probability ε = 0.5. We denote by R1 = k1/n1

the rate of the UBAC code C1, while R2 = k2/n2 is the rate of
the code C2. We add the further constraint n2 − k2 = k1. The
reason for this will become clear in the following. We construct
the parity-check matrix H of a multi-edge type LDPC code C
with blocklength n = n1 + Sn2 and dimension k = k1 + Sk2
from the parity-check matrices H1 and H2 of C1 and C2 as

H =

-

.../

H1,u H1,p 0 0 0 · · ·
I 0 H2 0 0 · · ·
I 0 0 H2 0 · · ·
...

...
...

...
...

. . .

0

1112
(9)

where H1 = [H1,u|H1,p] with H1,u being an (n1 − k1)× k1
matrix whose columns correspond w.l.o.g. to an information
set of C1, and where the number of row blocks is S + 1. It
follows that the codewords of C can be partitioned in a first
block of n1 bits, followed by S blocks of n2 bits each. By
observing the structure of the parity-check matrix in (9), it is
clear that n2 − k2 must equal k1. The rate of the code C is

R =
k

n
=

k1 + Sk2
n1 + Sn2

and that R approaches R2 as the parameter S grows. We study
the performance of this scheme by resorting to a particular BP
decoding schedule. In particular, in a first phase (Phase 1), the
code C1 is used to decode the first n1 bits of the two codewords
transmitted by the users. If decoding succeeds, the first k1
bits of both vectors are extracted. Let us denote them by u

(1)
1

and u
(2)
1 . The two vectors are then used, in a second phase

(Phase 2) to decode the remaining S blocks composing each
codeword. To do so, consider the block of n2 bits following
the first block of n1 bits and denote such block as c(1)2 and c

(2)
2

for users 1 and 2, respectively. Following from (9), we have
that c(1)2 HT

2 = u
(1)
1 and c

(2)
2 HT

2 = u
(2)
1 , i.e., the vectors u

(1)
1

and u
(2)
1 define two cosets of the code C2. More specifically,

since u
(1)
1 and u

(2)
1 can take all possible values in Fk1

2 with
uniform probability, the interference generated by a user on
the other one over the second block results in erasure patterns
that are statistically identical to those generated by a BEC
with erasure probability ε = 0.5. The same observation holds
for all the following S − 1 blocks. Decoding of each of the
S blocks in Phase 2 proceeds by performing BP decoding
over the local graph defined by H2. Let us analyze the block
error probability under this decoding schedule. We define
the events E1, E2, . . . , ES+1 where Ei is the probability that
BP decoding fails for the ith block, while we decode the
complementary event as Ēi. The event where we are not able

to decode the n-bit codeword of a user is E. We have that

P (E) = P

3
S+14

i=1

Ei

5

= P

3
S+14

i=2

Ei

)))))Ē1

5
P
6
Ē1

7
+ P (E1)

≤ P

3
S+14

i=2

Ei

)))))Ē1

5
+ P (E1)

≤
S+1!

i=2

P
6
Ei|Ē1

7
+ P (E1)

= SP
6
E2|Ē1

7
+ P (E1) .

It follows that P (E) can be made arbitrarily small by choosing
an LDPC code C1 designed for the 2-user BAC with an
arbitrary rate (this allows to make P (E1) arbitrarily small),
and by choosing an LDPC code C2 with a BEC BP decoding
threshold larger than or equal to 1/2 (this allows to make
P
6
E2|Ē1

7
arbitrarily small). If C2 has rate close to 1/2,

i.e., if C2 is capacity-approaching over a BEC with erasure
probability ε = 0.5 [15], by choosing S large enough it is
possible to approach the linear code limit of the 2-user UBAC.

REFERENCES

[1] N. Abramson, “The ALOHA system - another alternative for com-
puter communications,” in Proc. 1970 Fall Joint Computer Conference.
AFIPS Press, 1970.

[2] Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE
Int. Symp. Inf. Theory ISIT, Jun. 2017, pp. 2523–2527.

[3] A. Fengler, P. Jung, and G. Caire, “SPARCs for Unsourced Random
Access,” IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894–6915, Oct.
2021.

[4] A. K. Pradhan, V. K. Amalladinne, K. R. Narayanan, and J. Cham-
berland, “Polar Coding and Random Spreading for Unsourced Multiple
Access,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.

[5] E. Marshakov, G. Balitskiy, K. Andreev, and A. Frolov, “A Polar Code
Based Unsourced Random Access for the Gaussian MAC,” in Proc IEEE
Vehicular Technology Conference, Sep. 2019, pp. 1–5.

[6] S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy, “Energy
efficient coded random access for the wireless uplink,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4694–4708, Aug. 2020.

[7] V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A Coded
Compressed Sensing Scheme for Unsourced Multiple Access,” IEEE
Trans. Inf. Theory, vol. 66, no. 10, pp. 6509–6533, Oct. 2020.

[8] D. Truhachev, M. Bashir, A. Karami, and E. Nassaji, “Low-Complexity
Coding and Spreading for Unsourced Random Access,” IEEE Commun.
Lett., vol. 25, no. 3, pp. 774–778, Mar. 2021.

[9] A. Fengler, O. Musa, P. Jung, and G. Caire, “Pilot-Based Unsourced
Random Access with a Massive MIMO Receiver, Interference Cancel-
lation, and Power Control,” IEEE J. Sel. Areas Commun., vol. 40, no. 5,
pp. 1522–1534, May 2022.

[10] G. Liva and Y. Polyanskiy, “On Coding Techniques for Unsourced
Multiple-Access,” in Proc. 55th Asilomar Conf. Signals Syst. Comput.,
Oct. 2021, pp. 1507–1514.

[11] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[12] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge ;
New York: Cambridge University Press, Mar. 2008.

[13] M. Molloy and B. Reed, “The Size of the Giant Component of a Random
Graph with a Given Degree Sequence,” Combinator. Probab. Comp.,
vol. 7, no. 3, pp. 295–305, Sep. 1998.

[14] R. Albert and A.-L. Barabasi, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97, Jan. 2002.

[15] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the
erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 364–373,
Dec. 2002.


