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Abstract—We establish the capacity of a class of communica-
tion channels introduced in [1]. The n-letter input from a finite
alphabet is passed through a discrete memoryless channel PZ|X
and then the output n-letter sequence is uniformly permuted. We
show that the maximal communication rate (normalized by logn)
equals 1

2
(rank(PZ|X) − 1) whenever PZ|X is strictly positive.

This is done by establishing a converse bound matching the
achievability of [1]. The two main ingredients of our proof are (1)
a sharp bound on the Kullback-Leibler divergence of a uniformly
sampled vector from a type class and observed through a DMC to
an iid vector; and (2) the covering ε-net of a probability simplex
with Kullback-Leibler divergence as a metric. In addition to
strictly positive DMC we also find the noisy permutation capacity
for q-ary erasure channels, the Z-channel and others.

Index Terms—Permutation channel, channel capacity, ε-net
covering

I. PROBLEM STATEMENT AND MAIN RESULTS

The noisy permutation channel, as formally introduced
in [1], is a communication model in which an n-letter input
undergoes a concatenation of a discrete memoryless channel
(DMC) and a uniform permutation of the n letters. Since
the receiver observes a uniformly permuted output, the order
of symbols conveys no information. See Section I-B for a
motivation of this model. More formally, the channel PY n|Xn

can be described by the following Markov chain:

Xn → Zn → Y n .

Here the channel input Xn is a length n sequence where each
position takes a value in X = [q] (where [q] = {1, 2, . . . , q}).
The sequence Xn goes through the DMC which operates
independently and identically on each symbol. This results in
a sequence Zn where each position takes a value in Y = [k].
The DMC transition probabilities can be represented as a q×k
matrix PZ|X . After the DMC, the sequence Zn goes through
the permutation part of the channel and results in sequence
Y n which is a uniformly random permutation of symbols on
Zn.

Let fn and gn be the channel encoder and decoder re-
spectively. For each message W ∈ [M ], the input to the
channel is Xn = fn(W ). The output is Y n, which the
decoder decodes as Ŵ = gn(Y n). (See Figure 1 for a diagram
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depicting the channel.) The probability of error is given by
P

(n)
error

4
= P[W 6= Ŵ ]. The rate1 for the encoder-decoder pair

(fn, gn) is defined as

R
4
=

logM

log n
. (1)

A rate R is achievable if there is a sequence of encoder-
decoder pairs (fn, gn) with rate R such that limn→∞ P

(n)
error =

0. The capacity for the noisy permutation channel with DMC
PZ|X is Cperm(PZ|X)

4
= sup{R ≥ 0 : R is achievable} .

In [1], the author determined that the noisy permutation
channel capacity2 for DMC PZ|X is bounded by

Cperm(PZ|X) ≥
rank(PZ|X)− 1

2
. (2)

For strictly positive matrices PZ|X (meaning all the transition
probabilities are greater than 0), the author shows a converse
bound

Cperm(PZ|X) ≤ |Y| − 1

2
.

The author also gives a second converse bound:
Cperm(PZ|X) ≤ (ext(PZ|X)− 1)/2, where ext(P ) is the
number of extreme points of the convex hull of the rows of P .
For the case of strictly positive DMC PZ|X , these upper and
lower bounds do not necessarily match if the rank of matrix
PZ|X does not equal to |Y| or ext(PZ|X).

A. Main Results

Our main result is establishing tightness of the lower
bound (2), resolving Conjecture 1 of [1].

Theorem 1 (Strictly Positive DMC). For strictly positive
PZ|X ,

Cperm(PZ|X) =
rank(PZ|X)− 1

2
.

Our proof uses the idea of covering the space of distributions
via an ε-net under the Kullback-Leibler (KL) divergence as

1Notice that rate R for the noisy permutation channel is not the commonly
used definition where R = logM

n
. The noisy permutation channel would

have rate 0 under this commonly used definition. Defining rate as in (1) is
appropriate given that we intend to find capacity. Let M∗(n, ε) = max{M :
∃(n,M, ε)−code} where n is the length (or channel uses), M is the message
size, and ε is the error probability for a given code (see [2] for more details).
Capacity is defined as the limit as ε → 0+ of the coefficient of the leading
term of logM∗(n, ε). In the case of the noisy permutation channel, the
leading term of logM∗(n, ε) scales as logn.

2While it might seem that the noisy permutation channel capacity should
be a continuous function of the values in PZ|X , note that this is not the case
due to how capacity is defined. Changing values in PZ|X by a small δ could
change the rank of PZ|X by 1, but no matter how small δ is, there exists an
n large enough so the effects of δ can make a difference.
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Fig. 1. Diagram of the noisy permutation channel communication system. The key components are a DMC followed by a uniformly random permutation.

a “distance”3, following upon our investigations of a similar
question in [3]. In order to reduce to the covering question, we
first need another result that is, perhaps, of separate interest
as well.

Let k be the alphabet size. We let Pn be the set of n-types
(probabilities which can be written as rational numbers with
denominator n), i.e.

Pn =

{
P ∈ ∆k−1 : P =

(a1

n
, . . . ,

ak
n

)
where a1, . . . , ak ∈ Z≥0

}
.

(We use ∆k−1 for the k− 1 dimensional probability simplex,
see Section I-C.) For P ∈ Pn, let Tn(P ) be the set of
sequences of length n in the type class4 of P , i.e.

Tn(P ) =

{
s1 . . . sn : st ∈ [k]

and
(∑n

t=1 I{st = 1}
n

, . . . ,

∑n
t=1 I{st = k}

n

)
= P

}

where I{·} is the indicator function. The notation QY means
a distribution on random variable Y . For any distribution
QY , we use QnY to mean the product distribution QnY (yn) =∏n
t=1QY (yt). For any distribution U on length n sequences,

the distribution PnY |X ◦U can be understood as the distribution
on random sequences derived by first randomly selecting a
sequence according to U , then passing each symbol in this
sequence through the transition probabilities PY |X indepen-
dently. (See Section I-C for more discussion.)

Our next result deals with the following scenario: Select
some P ∈ Pn and suppose we have two sequences, Xn and
X̂n. The sequence Xn is generated iid using the probability
P . On the other hand, X̂n has uniform probability over all
sequences in the type Tn(P ). Both sequences Xn and X̂n

undergo the transition PY |X applied independently on each
symbol and respectively results in Y n and Ŷ n. How different
are the distributions of Y n and Ŷ n under KL divergence?
(See Figure 2 for a diagram representing the relations of these
variables.) Another interpretation of this scenario is if there are
n balls of q colors in an urn. The sequence Xn are n draws
from the urn with replacement and X̂n are n draws without
replacement (in which case all the balls are drawn). These
observations then both go through the same noisy process to
produce Y n and Ŷ n.

3KL divergence is not technically a distance or metric (as it is not symmetric
and does not follow triangle inequality), but we choose to use the term
distance since we are using KL divergence to measure how far two probability
distributions are.

4See Section 11.1 of [4] for more background on types.

Fig. 2. This diagram illustrates the special case of Theorem 2 where QY =
PY . Variable Xn is distributed iid according to P whereas X̂n is a sequence
uniformly drawn from type class Tn(P ) (a distribution represented by U ).
Variables Y n and Ŷ n are noisy versions of Xn and X̂n respectively.

It turns out that if PY |X is strictly positive, then regardless
of the sequence length n,

D(PŶ n‖PY n) ≤ c

where c is a constant that only depends on PY |X . Our
next result will actually show something more general. The
sequence Xn can be generated iid with another distribution
Q, and the KL divergence can still be bounded by constant c
plus another term which is the KL divergence of the marginals
on Y generated by P and Q.

Theorem 2. Fix channel PY |X , where PY |X is strictly posi-
tive. Then there exists a constant c = c(PY |X) such that the
following holds: For any n-type P ∈ Pn, let U be uniform on
Tn(P ). For all QY we have

nD(PY ‖QY ) ≤ D(PnY |X ◦ U‖Q
n
Y ) ≤ nD(PY ‖QY ) + c

(3)

where PY is the marginal distribution of Y under (P×PY |X).

Remark 1. It can be shown that the constant c in Theorem 2
is

c ≤ q − 1

2
log

2πα2

c∗
+

q

12n
≤ q − 1

2
log

2πα2

c∗
+

q

12

where α is a universal constant defined in Theorem 5 (see
Section III-C) and if pbj denote the values in matrix PY |X ,

c∗ = min
b

minj pbj
maxj pbj

.

It is necessary in Theorem 2 that PY |X is strictly positive.
In fact, it is surprising that Theorem 2 can show that the KL
divergence of D(PnY |X ◦U‖Q

n
Y ) when QY = PY is constant,

considering that this is not the behavior we would expect for
transitions PY |X which are not strictly positive. For example,
using our simpler initial example with X, X̂, Y, Ŷ (which is
depicted by Figure 2), consider when X,Y ∈ [2] = {1, 2} and

PY |X =

{
1− δ if X = Y

δ if X 6= Y
(4)

This transition probability represents a binary symmetric
channel (BSC) with crossover probability δ. Suppose that
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Fig. 3. This plot demonstrates the consequences of Theorem 2. We numeri-
cally compute D(PŶ n‖PY n ) when P = (1/2, 1/2) and PY |X is given as
in (4) for different values of δ. When δ = 0, we see that the KL divergence is
trending towards infinity (specifically it grows as 1

2
logn). When any noise

is added (δ is positive), this growth to infinity completely disappears. The
quantity D(PŶ n‖PY n ) becomes constant in n, as Theorem 2 states.

X ∈ Tn((1/2, 1/2)). If δ = 0 (and thus PY |X is not strictly
positive), then we can compute that

D(PŶ n‖PY n) ≈ 1

2
log n . (5)

However, if we increase δ slightly (adding any amount of
crossover noise), this completely eliminates the growth of
D(PŶ n‖PY n) in n. For any positive δ, D(PŶ n‖PY n) is
constant as n increases, where the value of the constant
depends on δ. An illustration of this example is given in
Figure 3.

We note also that Theorem 2 implies that the divergence of
(a complicated distribution) PŶ n to any iid distribution QnY
can be approximated with nD(PY ‖QY ) and this approxima-
tion will only be off by an additive constant.

Remark 2. Note that D(PX̂m‖PmX ) describes the difference
between sampling m balls from an n-urn with and without re-
placement. This is a classical question studied in [5]. Our set-
ting studies this question for the particular case when n = m
and when the observations are noisy. Bounds for the noiseless
case D(PX̂m‖PmX ) can still be an upper bound for the noisy
case if we apply the data processing inequality. This shows that
D(PnY |X ◦ U‖P

n
Y ) ≤ D(PX̂n‖PnX) ≤ k−1

2 (log n + c), where
the second inequality is shown using Stirling’s approximation.
Our result removes the log n term in this bound, but only under
the assumption of a strictly positive PY |X . See Section A for
more details on comparing our bound to that of [5] when
m < n. We also note that results of [5] as shown in [6] imply
the finitary case of de Finetti’s theorem.

Other contributions of this work use similar techniques to
get converse results in other settings which do not have strictly
positive DMC matrices.

Theorem 3. Other channel results:

1) Suppose PZ|X can be written as a block diagonal matrix
with β blocks where each block is strictly positive. Then,

Cperm(PZ|X) =
rank(PZ|X) + β − 2

2
. (6)

2) For DMC PZ|X which is a q-ary erasure channel for
q ≥ 2 (assuming erasure probabilities are not 0 or 1),
then

Cperm(PZ|X) =
q − 1

2
.

3) For DMC PZ|X which is a Z-channel, then

Cperm(PZ|X) =
1

2
.

The first result in Theorem 3 applies to DMC PZ|X which
are block diagonal matrices where each block is strictly
positive. As (6) of Theorem 3 implies, we are able to show
both the achievability and converse results for block diagonal
DMC matrices. We prove both these results in Section C. This
result also immediately illustrates that Theorem 1 without the
strictly positive condition cannot be true, since block diagonal
matrices with 2 or more strictly positive blocks violate the
bound in Theorem 1 entirely.

The second result is for binary erasure channels and q-ary
erasure channels. The work in [1] determines the capacity
for when the DMC matrix is the binary symmetric channel
(BSC), but leaves the binary and q-ary erasure channels as
open problems. Item 2 of Theorem 3 resolves Conjecture
2 presented in [1] regarding the capacity of binary erasure
channels and the conjecture regarding q-ary erasure channels5.
This result uses (2) which is proved in [1] as the achievability.
Our contribution is the tight converse argument.

The third result in Theorem 3 deals with DMC which is
the Z-channel. While this is tight, if we generalize to a q-ary
Z-channel (or what we call in this work a “zigzag” channel),
we are not always able to find tight results with our current
covering technique. The erasure channels, Z-channels, and a
brief analysis on the zigzag channel are discussed in Section D.

All of these results also use the method of covering. A
covering is a set of points in a space (we call them centers)
for which all other points in the space are within a certain
distance ε to (see Definition 1). Using covering as a technique
to determine the capacity for the noisy permutation channel
is reasonable because the centers which are far apart can
intuitively be equated with messages that are distinguishable.
When the messages correspond to two distributions Q1 and
Q2 which are far in KL divergence, it is unlikely that noisy
versions of Q1 will be close to noisy versions of Q2. If
two distributions are close in KL divergence, their noisy
versions are likely to be confused. If the messages in our
communication are centers of a covering, then we know that
if we add another center (or message), it will be close to
one of the existing covering centers and thus cause error in

5Note that while binary erasure channels and q-ary erasure channels usually
have the same erasure probability for each symbol, Item 2 of Theorem 3 is
still true even if these erasure probabilities are different. The only requirement
is that none of the erasure probabilities are 0 or 1. The capacity when the
erasure probabilities are 0 or 1 is discussed in [1].
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determining which of the centers (or messages) was sent. This
gives us a limit on the total number of messages which can
be sent, creating a converse bound6.

In order to use this intuition mathematically, we need to
overcome the obstacle of computing the KL divergence over
the noisy output distributions of the messages. This is difficult
to do because these output distributions are not iid. This is
where Theorem 2 is useful, as it allows us to use KL diver-
gences over iid distributions in place of the KL divergence over
the more complicated output distribution (since we can replace
a hypergeometric distribution which undergoes noise with a
multinomial distribution). Other obstacles include determining
the covering number under KL divergence (see Section II-B).

a) Paper Organization: We continue this section with
the motivation and the notation. In Section II, we discuss
how covering is used to determine the capacity of the noisy
permutation channel along with some basics in covering. We
prove Theorem 2 and Theorem 1 in Section III. We prove all
the parts of Theorem 3 in the appendix.

B. Motivation

The motivation for studying the permutation channel is that
it captures a setting where codewords get reordered. This
occurs in applications such as communication networks and
biological storage systems. We briefly describe some of these
applications. More details on these applications and other
relevant work can be found in [1].

a) Communication Networks: Suppose we have a point-
to-point communication network where the information is
transmitted through a multipath routed network. Different
packets are transmitted through different routes in the network,
and each route has its own amount of latency, causing packets
traveling on different routes to arrive at different times. The
order in which the sender transmits packets is no longer
preserved at the receiver end. Such a scenario is studied in [7]
where the authors are primarily concerned with reducing delay
in their channel. Unlike our work, they do not consider noisy
symbols. Another line of work which involves the permutation
channel is on packet-switched networks. The errors explored
in this work include insertions, deletions, and substitutions
of symbols [8], [9]. Their work primarily focuses on building
minimum distance codes and perfect codes for the permutation
channel.

b) DNA Storage Systems: DNA-based storage systems
are an attractive option for data storage due to its ability
to withstand time and encode a very high-density of infor-
mation [10], [11]. The state-of-the-art technology for storing
information on DNA uses nucleotides with relatively small
lengths (few hundreds) [12]. Each of these DNA molecules
are stored in a pool without any regard to order. The different
molecule types can be treated as symbols in the setting of
the permutation channel. Noise in this channel models any
error that can occur, whether it is in synthesizing the DNA

6A similar notion to covering is packing, which is a set of centers in a space
where all the centers in the set are at least distance 2ε from another. Intuitively,
covering corresponds to a converse bound while packing corresponds to an
achievabaility bound.

molecules or in reading the molecules. DNA storage is also
the motivation for studying the permutation channel in [13],
[14].

As typical in information theory, a question of fundamental
interest is to determine the capacity of channels. We determine
the capacity of the noisy permutation channel in the strictly
positive case, settling the problem introduced in [1]. This
setting differs from some of the models studied in the works
described in the motivations, as it looks at the problem from a
purely information theoretic standpoint and does not include
assumptions which might be specific to the application.

Among the works relevant to the motivations described,
those that have some information theoretical flavors include
[13], which deals with asymptotic bounds on rate, but for a
fixed number of errors rather than probabilitistic errors. The
work in [12] finds the capacity when the symbols are sampled
randomly then read, something relevant to DNA models, but
not to general permutation channels. The results in [14] are
specifically for when the permuted objects are a string of
symbols and the noisy process is applied to symbols on a
string; the set of strings are permuted but symbols in each
string are not.

Our results for when the DMC is the erasure channel
are particularly interesting to DNA storage applications since
the erased symbol can model deletion errors. Permutation
channels with deletions are central to the work in [13], where
the authors base their code constructions on Sidon sets and
determine bounds on optimal codes for a given number of
errors. In our work, our errors are not fixed but probabilistic,
and hence we find the probabilistic analogue of their bounds.

Also on the topic of deletions, one of the motivations for
studying the noisy permutation channel in [1] is the relation
between permutation channels with erasures and the random
deletion channel [15], [16]. In [16], the author demonstrated
a decoding scheme for the random deletion channel based on
low density parity check (LDPC) codes. Their scheme can
tolerate a reordering of the symbols, allowing it be a viable
scheme for the permutation channel with erasures. However,
their scheme requires the alphabet size to grow with the
blocklength.

C. Notation

The set of all probability distributions on q symbols is
defined as the probability simplex

∆q−1
4
=

{
(π1, ..., πq) :

q∑
i=1

πi = 1, 0 ≤ πi ≤ 1

}
.

For a q×k DMC matrix PZ|X , we can express the individual
transitions as

PZ|X =


p11 p12 . . . p1k

p21 p22 . . . p2k

...
...

. . .
...

pq1 pq2 . . . pqk

 .
The values in each row of the matrix sums up to 1 (i.e, the
matrix is stochastic). Symbol b ∈ X = [q] has probability pbj
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of becoming symbol j ∈ Y = [k]. We can also write this
probability as PZ|X(j|b). We say that the DMC matrix (or a
submatrix) is strictly positive if pbj > 0 for all b and j in the
matrix (or submatrix).

For example, the DMC matrix for the BSC with crossover
probability δ, given in (4), is written as

PZ|X =

[
1− δ δ
δ 1− δ

]
.

If 0 < δ < 1, then this DMC matrix is strictly positive.
Because of the uniform permutation step, the order of the

symbols in Xn does not matter. Thus, it is natural to consider
the inputs to the channel as types classes rather than sequences.
In light of this, we can describe the Markov chain of the noisy
permutation channel as

π → Xn → Zn → Y n (7)

where each π = (π1, .., πq) ∈ ∆q−1 ∩ Pn describes a type
class. For communication, the sender has the freedom to
encode messages into any π, and given π, the sequence Xn

can be any sequence in Tn(π). The value of πb represents the
proportion of positions in sequence Xn which have symbol b.

On the decoding end, the only relevant statistic the receiver
would use from Y n is which type class Y n belongs to. Note
that it is entirely equivalent to perform the permutation on the
sequence Xn first and then apply the DMC. In this case, we
no longer need the random variable Zn. Because of this, we
also use PY |X to specify the transition matrix, where PY |X
and PZ|X are the same and interchangeable.

Next, we specify a way to parameterize the distributions on
Y . We use the notation QY |µ for µ = (µ1, ..., µk) ∈ ∆k−1

to mean a distribution on symbols Y where the probability of
symbol j ∈ Y is

QY |µ(j) = µj .

The distribution QnY |µ is the multinomial distribution with
parameters µ and number of independent trials n. These
distributions do not (directly) relate the permutation channel;
we define them since they are important for our analysis.

On the other hand, the distribution PY n|π refers the the
distribution on sequences Y n when π ∈ Pn is the input to
the noisy permutation channel on n letters as described in (7).
Note that in general PY n|π is not a multinomial distribution.
As seen in Theorem 2,

PY n|π = PnY |X ◦ U

where U is a uniform distribution on Tn(π). Both represent
the distribution on the output of the noisy permutation channel.
Permuting the input symbols gives a sequence in the support of
U , and then each permuted symbol goes through the transition
probabilities PY |X independently.

When it is clear what π is, we use PY to mean the marginal
distribution for each Yt in the sequence Y n ∼ PnY |X ◦U . This
distribution does not depend on the index t since U is uniform
on all permutations.

Throughout this work, we use log to mean the natural
logarithm.

II. COVERING CONVERSE

Our core method for finding our new results is to use KL
divergence covering of the probability simplex. We first show
how covering can be applied to the noisy permutation channel
and then give the necessary covering results.

A. Covering Basics

The main concept of our proof uses covering ideas similar
to [17, Theorem 1] in order to upper bound the mutual
information I(π;Y n). In summary, we need to find a set
of covering centers which are close in Kullback-Leibler (KL)
divergence to all the possible distributions on Y n that can
occur as outputs of the noisy permutation channel. Our set of
centers need not be a possible distribution over Y n generated
by the channel. We choose to use multinomial distributions as
our set of covering centers.

Let Nn be a discrete set in ∆k−1 which we specify
(later) for each n (this will be the covering centers). Mutual
information has the property that

I(π;Y n) ≤ max
π

D(PY n|π‖Q̃Y n) . (8)

The above holds for any Q̃Y n , thus we can choose

Q̃Y n(yn) =
1

|Nn|
∑
µ∈Nn

QnY |µ(yn)

=
1

|Nn|
∑
µ∈Nn

n∏
t=1

QY |µ(yt) .

The following proposition is the main tool of all our
converse results.

Proposition 1 (Covering for Noisy Permutation Channels).
Suppose that for the noisy permutation channel with DMC
PY |X , we have that for any π ∈ Pn,

D(PnY |X ◦ U‖Q
n
Y ) ≤ nD(PY ‖QY ) + f(n) (9)

where U is uniform on the type Tn(π), PY is the marginal
distribution of PnY |X ◦ U and f is only a function of n and
PY |X . Then

Cperm(PY |X) ≤
rank(PY |X)− 1

2
+ lim
n→∞

f(n)

log n
.

In Proposition 1, when the DMC is strictly positive, the
f(n) term is constant in n (which is shown via Theorem 2
and gives the proof for Theorem 1). However, when the DMC
is not strictly positive, f(n) is not necessarily constant in n.
Non-constant values of f(n) are used in deriving some of the
results in Theorem 3.

For the proof, we need to define for any π ∈ ∆q−1

µM (π)
4
=

(∑
i

πipi1, ...,
∑
i

πipik

)
.

The vector µM (π) is the mean (we use ‘M’ as short for mean)
of the distribution PY n|π = PnY |X ◦ U . Note that PY (j) =∑
i πipij . Also if µ = µM (π), we can write PY = QY |µ.



6

Proof. Following techniques used in the proof of [17, Theorem
1], we can upper bound the mutual information given in (8)
by

I(π;Y n) ≤ log |Nn|+ max
π∈Pn

min
µ̄∈Nn

D(PY n|π‖QnY |µ̄) . (10)

To specify Nn, first define

L(PY |X) =
⋃

π∈∆k−1

µM (π) .

This is the space of all possible marginals PY .
LetNn be a covering of L(PY |X) under KL divergence with

covering radius 1/n. In other words, Nn = {µ̄(1), ..., µ̄(m)}
so that

max
µ∈L(PY |X)

min
µ̄∈Nn

D(QY |µ‖QY |µ̄) ≤ 1

n
.

Let ` be the dimension of L(PZ|X). Using divergence
covering results and the result specifically about covering an
`-dimensional subspace (see next part Section II-B),

|Nn| ≤ C(q, `)

(
`

1/n

) `
2

(11)

where C(q, `) depends on q and ` but not on n.
Starting with (10) and substituting in assumption (9) gives

I(π;Y n) ≤ log

(
C(q, `)

(
`

1/n

) `
2

)
+ f(n) + max

π∈Pn

min
µ̄∈Nn

nD(PY ‖QY |µ̄)

≤ `

2
log n+ logC(q, `) +

`

2
log `+ f(n) + n

1

n

≤ `

2
log n+ c′ + f(n)

where c′ is a constant which does not depend on n.
For the noisy permutation channel, recall that the rate is

defined as (1). Since asymptotically logM ≤ I(π, Y n) ≤
`
2 log n+ c′ + f(n), we have

R ≤ `

2
+

c′

log n
+
f(n)

log n
→ `

2
+ lim
n→∞

f(n)

log n
. (12)

It remains to compute `. Let r = rank(PZ|X). When the
domain is any vector in Rq , the image space of this (left)
vector multiplied by PZ|X is r dimensional. But since we
are restricting the domain and image to probability vectors,
this adds an additional constraint to the image space and
reduces the dimension by 1, giving that ` = rank(PZ|X)− 1.
Substituting this into (12) gives an upper bound for the
capacity of the noisy permutation channel.

B. Covering Definition and Results

In order to show (11), we have the following definition and
results. A KL divergence covering is a set of centers in ∆k−1

so that every point in ∆k−1 is within some KL distance of one
of the centers. Let ε be this distance. Since KL divergence is
not symmetric, we specify that KL distance is computed where
the covering center is placed in the second argument of the KL

divergence. This is made explicit in the following definition
of a covering number.

Definition 1 (Divergence Covering Number).

M(k, ε) = inf{m : ∃{Q1, ..., Qm}
s.t max

P∈∆k−1

min
Qi

D(P ||Qi) ≤ ε} .

Let M(k, ε,B) be defined like M(k, ε) except that P ∈ B
for a subset B ⊂ ∆k−1.

We need upper bounds on the KL divergence covering
number in order to get converse results for the permutation
channel. One such upper bound is the following:

Theorem 4 (Upper Bound on Divergence Covering). For 0 <
ε ≤ 1,

M(k, ε) ≤ ck−1

(
k − 1

ε

) k−1
2

for some constant c.

The above result is sufficient for showing our theorems.
However, tighter bounds do exist (see [18]). In addition to an
upper bound on the KL divergence covering, we also need
an additional result which allows us to use covering numbers
over the whole simplex to get covering numbers over certain
subsets of the simplex.

Proposition 2. For B ⊂ ∆k−1, suppose there is a stochastic
matrix F which maps ∆q−1 onto B. Suppose that B is a space
of dimension `− 1 (or likewise, F has rank `). Then,

M(k, ε,B) ≤
(
q

`

)
M(`, ε) .

The proofs are in Section B. More discussion on KL
divergence covering can be found in [18].

III. DIVERGENCE UNDER FIXED TYPES

For computing our converse bounds, we need to determine
the expression (9) for our DMC matrices. This is where we
need Theorem 2 which gives the divergence between noisy
observations of a fixed type compared to an iid distribution.

We prove Theorem 2 by first showing some relevant inter-
mediate results. The techniques in these intermediate results
are also useful for when PZ|X is not strictly positive and there-
fore relevant for showing some of the results in Theorem 3.
Before doing so, we briefly discuss the constant of Theorem 2
and how it is tight.

A. Constant of Theorem 2

Here we show that the constant c in Theorem 2 is sharp
(cannot be improved to o(1)). One tool we need is the
following theorem by Marton [19]:
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Lemma 1 (Marton’s Transportation Inequality). Let Xn ∼∏n
t=1 PXt

and X̂n ∼ PX̂n . Then there exists a joint proba-
bility measure PXn,X̂n with these given marginals such that

1

n
E[d(Xn, X̂n)] =

1

n

n∑
t=1

P[Xt 6= X̂t]

≤

(
1

n
D

(
PX̂n

∥∥∥∥ n∏
t=1

PXt

))1/2

where d(X,Y ) is the Hamming distance.

Suppose that we are only working with 2 symbols, {1, 2},
for the space of X and Y . Using the notation in Theorem 2,
let Y n ∼ PnY |X ◦ U and Ŷ n ∼ QnY , where we set QY =
PY . Choose P = (1/2, 1/2) and PY |X to be that of a BSC
with crossover probability δ. This gives that distribution PY
is uniform on the two symbols.

We choose δ = 1/n, which is non-zero but small enough
so that in expectation, Xn and Y n, as well as X̂n and Ŷ n,
will differ by 1. Define function #1(·) to be mean the number
of 1’s in a sequence. Then

E|#1(Y n)− n/2| = E|#1(Y n)−#1(Xn)|
≤ E[d(Y n, Xn)]

= 1

E|#1(Ŷ n)−#1(X̂n)| ≤ E[d(Ŷ n, X̂n)]

= 1

The number of 1’s in X̂n will differ from its mean by
roughly the standard deviation. To be precise, applying a result
from [20], we have that

E|#1(X̂n)− n/2| ≥ 1

2
√

2

√
n .

Using the above and multiple applications of the triangle
inequality, we can compute that no matter the coupling chosen

E[d(Y n, Ŷ n)] ≥ E|#1(Ŷ n)−#1(Y n)|
≥ E|#1(Ŷ n)− n/2| − E|#1(Y n)− n/2|
≥ E|#1(X̂n)− n/2| − E|#1(Ŷ n)−#1(X̂n)|
− E|#1(Y n)− n/2|

=
1

2
√

2

√
n− 2

We can assume that n is large, so that the Hamming distance
can be more simply lower bounded by

E[d(Y n, Ŷ n)] ≥ 1

4

√
n .

Combining this Hamming distance with Lemma 1 gets a
lower bound

1

4
√
n
≤ 1

n
E[d(Y n, Ŷ n)]

≤
(

1

n
D(PnY |X ◦ U‖Q

n
Y )

)1/2

≤
(

1

n
(nD(PY ‖PY ) + c)

)1/2

=

√
c√
n
.

Improving c to be o(1) in n would violate this lower bound.
Intuitively, consider what happens when we let PY |X be the

identity matrix where Y = X . In such a case, Theorem 2 is
not true (in order to get a true statement, the constant c should
be replaced with a value that grows logarithmically with n, see
Section III-B1). This is the same setting as the example given
above but with δ = 0. It is clear here that Ŷ n likely has√
n deviations in the number of 1’s from the mean whereas

any sequence Y n has exactly n/2 number of 1’s. This creates
an expected Hamming distance of

√
n. Slightly increasing δ

above zero will not change the Hamming distance by much
but will make PZ|X strictly positive.

B. Expression for Divergence Under Fixed Types

In order to show Theorem 2, we need some intermediary
results about how to work with the quantity D(PnY |X ◦U‖Q

n
Y ).

The next proposition does this and can be used for any PY |X ,
not just those which are strictly positive.

Proposition 3. Let U be uniform on the type Tn(P ) and
(X,Y )n be iid from (P × PY |X). Let PY be the marginal
distribution of Y under (P × PY |X). Then for all QY ,

D(PnY |X ◦ U‖Q
n
Y ) = nD(PY ‖QY )

+
∑

yn∈Yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]
(13)

where A = I{Xn ∈ Tn(P )} and under P the sequence
(X,Y )n is iid from (P × PY |X).

The second term on the right-hand side of (13) can be
written as an expected value:∑
yn∈Yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]

= E(X,Y )n∼(P×PY |X)[
log

P(X̃,Ỹ )n∼(P×PY |X)[X̃
n ∈ T (P )|Ỹ n = Y n]

P(X̃,Ỹ )n∼(P×PY |X)[X̃
n ∈ T (P )]∣∣∣∣(X,Y )n where Xn ∈ T (P )

]
For ease of notation, we choose to express the term above

as

E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]
(14)
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where the ·̃ notation emphasizes that the variables are as-
sociated with an independent copy (X̃, Ỹ )n drawn from
the same distribution (P × PY |X) as (X,Y )n and where
Ã = I{X̃n ∈ Tn(P )}.

Proof. Note that (PnY |X ◦ U)(yn) = P[Y n = yn|A = 1].

D(PnY |X ◦ U‖Q
n
Y ) =

∑
yn

P[Y n = yn|A = 1]

log
P[Y n = yn|A = 1]

QnY (yn)

=
∑
yn

P[Y n = yn|A = 1]

log
P[A = 1|Y n = yn]P[Y n = yn]

P[A = 1]QnY (yn)

= E
[
log

PnY (Y n)

QnY (Y n)

∣∣∣∣A = 1

]
+
∑
yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]

= E
[
log

PnY (Y n)

QnY (Y n)

∣∣∣∣A = 1

]
+ E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]
.

The marginal distribution PY (a) is also the probability that
any position t in sequence Y n takes the value a, i.e. PY (a) =
P[Yt = a|A = 1]. This occurs since U is uniform on all
permutations of type Tn(P ). We get for the first term in the
sum,

E
[
log

PnY (Y n)

QnY (Y n)

∣∣∣∣A = 1

]
=
∑
yn

P[Y n = yn|A = 1] log
PnY (yn)

QnY (yn)

=
∑
yn

P[Y n = yn|A = 1]
∑
a

n
|{t : yt = a}|

n
log

PY (a)

QY (a)

= n
∑
a

PY (a) log
PY (a)

QY (a)

= nD(PY ‖QY ) .

This gives the result (13).

We can separate (14) into two additive terms due to the
logarithm. The next lemma can be used to compute one of
these terms.

Lemma 2. Let P = (p1, ..., pq) ∈ Pn and let A = I{Xn ∈
Tn(P )}. If (X,Y )n is drawn iid from (P × PY |X), then

log
1

P[A = 1]
≤ −1

2
log n+

∑
i:pi>0

1

2
log pin

+
q − 1

2
log 2π +

1

12n
.

For this proof, we use a Stirling approximation type bound
from [21]: For positive integers n,

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n . (15)

Proof. We assume that all pi > 0 since we can always reduce
P to a shorter vector and decrease q.

The probability that a specific type occurs is given by the
multinomial distribution.

− logP[A = 1]

= − log

(
n!∏q

i=1(pin)!

q∏
i=1

ppini

)

= − log

(
n!

nn

)
− log

(
q∏
i=1

(pin)pin

(pin)!

)
≤ n− 1

2
log n− 1

2
log 2π

+

q∑
i=1

(
−pin+

1

2
log pin+

1

2
log 2π +

q

12n

)
.

We used (15) in the last inequality (we can do this since each
pin is an integer greater than 0). Combining terms gives the
result.

1) Theorem 2 Without the Strictly Positive Requirement: To
illustrate how to use Proposition 3 and Lemma 2, we compute
an upper bound with the same form as the upper bound given
in (3) of Theorem 2 for all PY |X . We briefly mentioned above
that if we remove the strictly positive requirement for PY |X
in Theorem 2, in the worst case, the constant c would need
to be replaced with a logarithmic term. To be exact, if PY |X
is not strictly positive, c needs to be replaced with a poly-
logarithmic term in n. Using Proposition 3 and Lemma 2, we
can get an upper bound on c with

c = E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]

≤ q − 1

2
log n+ c′ + E

[
logP[Ã = 1|Ỹ n = Y n]

∣∣∣∣A = 1

]
≤ q − 1

2
log n+ c′ .

We used the fact that the largest value P[Ã = 1|Ỹ n = Y n] can
take is 1 since it is a probability. The inequality is tight when
PY |X is the identity matrix (when Y = X). One example
when Y = X is the BSC with no noise (δ = 0) example we
stated earlier, where (5) holds.

C. Concentration of Sums of Independent Variables

To show Theorem 2, we need to compute (14). We need to
determine the probability of Ã = 1, which is the event that
X̃n has a particular type, under certain conditions. Showing
that X̃n has a particular type can be equated to the problem
of randomly throwing balls into some set of bins and looking
at the number of balls which fall into each bin. To help us
bound the probability a certain number of balls falls into a
particular bin, we make use of the following:
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The concentration function Q(Z;λ) of random variable Z
is defined by

Q(Z;λ) = sup
z

P[z ≤ Z ≤ z + λ]

for every λ ≥ 0 [22]. Let Sn =
∑n
i=1Wi where Wi are

independent random variables.

Theorem 5 (Petrov [22]). Let the numbers ai and bi be such
that

P
[
Wi − ai ≤ −

λi
2

]
≥ bi

P
[
Wi − ai ≥

λi
2

]
≥ bi

for i = 1, ..., n. Then there exists a universal constant α so
that

Q(Sn;λ) ≤ αλ

(
n∑
i=1

λ2
i bi

)−1/2

for every positive λ1, ..., λn none of which exceeds λ.

To apply Theorem 5 to our problem, each Wi is a Bernoulli
random variable where the probability that Wi = 1 is pi. Let
bi = min{pi, 1 − pi}. We can fix ai = 1/2. We can also
fix λi = 1/2 and λ = 1/2, though this exact value does not
matter so long as λ < 1− ε for a small ε > 0.

This gives that for any integer z

P[Sn = z] ≤ Q(Sn; 1/2)

≤ α(1/2)√∑n
i=1(1/2)2 min{pi, 1− pi}

≤ α√∑n
i=1 min{pi, 1− pi}

. (16)

We use this in the next lemma which is the key to computing
the second term in (13).

Lemma 3. Suppose there are n balls which are thrown into
one of q bins. Each ball is thrown independently, and for the
i-th ball, the probability of landing in bin b is pi,b.

Let Nb be the ball count of the b-th bin. Then if πb > 0 for
all b and

∑
b πb = 1, we have

P[N1 = nπ1, . . . , Nq = nπq] ≤
αq−1

n(q−1)/2
√
B

where

B = cq−1
∗

∏
b πb

πmax

c∗ = min
i

c−(i)

c+(i)

c−(i) = min
b

pi,b
πb

c+(i) = max
b

pi,b
πb

πmax = max
b
πb

and α is the universal constant used in Theorem 5.

Proof. For notation, let Wi,b be the indicator variable of
whether ball i was thrown into bin b. We can express Nb =∑n
i=1Wi,b. Arrange the indices so that π1 ≤ π2 · · · ≤ πq .
First observe that

P[N1 = nπ1, . . . , Nq = nπq]

=

q∏
b=1

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] . (17)

For b = q,

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] = 1 .

For b < q, we can compute for any i that

min

{
pi,b∑q
a=b pi,a

, 1− pi,b∑q
a=b pi,a

}
= min

{
pi,b∑q
a=b pi,a

,

∑q
a>b pi,a∑q
a=b pi,a

}
= min

{
πb

pi,b
πb∑q

a=b πa
pi,a
πa

,

∑q
a>b πa

pi,a
πa∑q

a=b πa
pi,a
πa

}

≥
mina

pi,a
πa

maxa
pi,a
πa

min

{
πb∑q
a=b πa

,

∑q
a>b πa∑q
a=b πa

}
≥ min

i

c−(i)

c+(i)

1∑q
a=b πa

min

{
πb,

q∑
a>b

πa

}
= c∗

πb∑q
a=b πa

.

We get the last equality because we have arranged πb in
increasing order. Hence by (16)

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1]

≤ α√(
n−

∑b−1
a=1 nπa

)
c∗

πb∑q
a=b πa

=
α√

n−
∑b−1

a=1 nπa

n nc∗
πb∑q

a=b πa

=
α

n1/2
√
c∗πb

where we used that n −
∑b−1
a=1 nπa = n

∑q
a=b πa to get the

last inequality. Taking a product of all terms in (17), gives

P[N1 = nπ1, . . . , Nq = nπq]

≤
q−1∏
b=1

α

n1/2
√
c∗πb

=
αq−1

n(q−1)/2

√
cq−1
∗

∏q−1
b=1 πb

=
αq−1

n(q−1)/2

√
cq−1
∗

∏
b πb

πq

=
αq−1

n(q−1)/2
√
B
.
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D. Completing Proof of Theorem 2 and Determining Capacity.

We can now use Lemma 3 to prove Theorem 2.

Proof of Theorem 2. We show the lower bound first, which is
easier to show. Using Proposition 3, we need only to show
that

E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]
≥ 0 .

We do this by

E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]

=
∑
yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]

=
∑
yn

P[Y n = yn|A = 1]

log
P[Y n = yn|A = 1]P[A = 1]

P[Y n = yn]P[A = 1]

=
∑
yn

P[Y n = yn|A = 1] log
P[Y n = yn|A = 1]

P[Y n = yn]

= D(P[Y n|A = 1]‖P[Y n])

≥ 0

since divergences are always non-negative.
To get the upper bound, we use

E

[
log

P[Ã = 1|Ỹ n = Y n]

P[A = 1]

∣∣∣∣A = 1

]

= E
[
logP[Ã = 1|Ỹ n = Y n]

∣∣∣∣Ã = 1

]
− logP[A = 1]

(18)

and use Lemma 3 for the first term in the sum and Lemma 2
for the second term in the sum.

Lemma 3 applies to the first term because, given some Y n,
finding the probability that the type of Xn is in Tn(P ) is
equivalent to finding the number of balls which are randomly
thrown into each bin. We want to determine the probability
that Xn is in Tn(P ) when (X,Y )n ∼ (PY |X × P ).

Let P of Tn(P ) be expressed as P = (π1, ..., πq) ∈ Pn.
This implies that πb = P[X = b]. Let the balls described in
Lemma 3 be each of the elements of Y n. If Yi = yi, then let
pi,b = P[Xi = b|Yi = yi] = P[X = b|Y = yi] (because the
symbols are iid). This way pi,b is appropriately the probability
that the ith symbol lands in bin b. As in Lemma 3, Nb is the
number of balls in bin b. Then the probability that Xn ∈
Tn(P ) is equivalent to P[N1 = nπ1, . . . , Nq = nπq]. This
is computed for a specific value of Y n, but notice that the
expression we derived for P[N1 = nπ1, . . . , Nq = nπq] in
Lemma 3 does not depend on Y n.

Before computing the rest of the expression, we need to
pay particular attention to the case when there exists a b such
that πb = 0. If πb = 0, then P[X = b] = 0, which would
also imply that pi,b = 0 for all i. In this case, we can remove
the symbol b (or bin b in the interpretation of Lemma 3) from
consideration and apply Lemma 3 to just the symbols with

non-zero probability. We can always reorder the symbols, so
that the first q′ of the q symbols all have πb > 0 and the
remaining b > q′ are such that πb = 0. Like in Lemma 3, we
can define

B = cq
′−1
∗

∏q′

b=1 πb
πmax

c∗ = min
i

c−(i)

c+(i)

c−(i) = min
b:b≤q′

pi,b
πb

c+(i) = max
b:b≤q′

pi,b
πb

.

E
[
logP[Ã = 1|Ỹ n = Y n]

∣∣∣∣A = 1

]
= logP[N1 = nπ1, . . . , Nq′ = nπq′ ]

= log
αq
′−1

n(q′−1)/2
√
B

= log

(
αq
′−1

n(q′−1)/2c
q′−1

2
∗

(
πmax∏
b πb

)1/2
)

= log

αq′−1

c
q′−1

2
∗

(
nπmax∏q′

b=1 nπb

)1/2


=
1

2
log nπmax −

∑
b:πb>0

1

2
log nπb + (q′ − 1) log

(
α
√
c∗

)
≤ 1

2
log n−

∑
b:πb>0

1

2
log nπb + c′ . (19)

where c′ is constant that does not depend on n. Importantly,
the value of c′ also does not depend on πb for any b. The
quantity c′ depends on c∗, which we can compute with:

pi,b
πb

=
P[X = b|Y = yi]

πb

=
P[Y = yi|X = b]P[X = b]

πbP[Y = yi]
=

P[Y = yi|X = b]

P[Y = yi]

=
PY |X(yi|b)
P[Y = yi]

and

c∗ = min
i

minb
pi,b
πb

maxb
pi,b
πb

= min
i

minb
PY |X(yi|b)
P[Y=yi]

maxb
PY |X(yi|b)
P[Y=yi]

= min
y

minb PY |X(y|b)
maxb PY |X(y|b)

So c∗ only depends on PY |X .
Combining these terms with those from Lemma 2 gives

that the expression in (18) is a constant when PY |X is strictly
positive. This constant depends on q and PY |X but not on n
or πb for any b.
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Proof of Theorem 1. Using Theorem 2 with Proposition 1
completes the proof for strictly positive DMC.

IV. CONCLUSION

In summary, our work determines the capacity of the noisy
permutation channel for the case of a strictly positive DMC
matrix. Our main method is to use KL divergence covering
on the probability simplex. A key ingredient necessary to
complete this proof is our theorem which computes the KL
divergence between noisy observations of a sequence sampled
from a fixed type class versus noisy observations of an iid
sequence. We expect this key theorem, which is interesting in
its own right, to be applicable to other problems as well. We
also determine the capacity of the noisy permutation channel
for block diagonal DMC matrices with strictly positive blocks,
the q-ary erasure channel, and the Z-channel.

Finally, we provide some directions for future research.
1) While we can determine the capacity of the noisy per-

mutation channel for strictly positive DMC matrices and
a certain subset of non-strictly positive DMC matrices,
we do not know how to compute the capacity for general
(non-strictly positive) DMC matrices. We know that the
achievability bound (2) will apply in the general case,
however strategically placed 0’s in the DMC matrix
could possibly increase the capacity above the rate
specified in (2).

2) Since our converse bound to the capacity is computed
using mutual information, this is only a weak converse
bound. This leaves open the question of whether we can
find strong converse bounds [2, Section 22.1].

3) Capacity gives the (asymptotic) leading coefficient of the
log n term in the expansion of logM∗(n, ε) as n→∞.
Finding the next-order terms and their dependence on ε
would be very interesting.

APPENDIX A
COMPARING THEOREM 2 TO STAM

Here we give some details on how our result compares to
that of [5], which we will refer to as Stam’s setting or Stam’s
result. Though similar, our setting is not exactly the same as
Stam’s setting. The differences are:

1) Stam’s result generalizes to m observations, where m
can be less than n. Our result Theorem 2 only applies
to exactly n observations.

2) Stam’s setting has noiseless observations whereas our
setting has noisy observations.

In order for our result and Stam’s result to be comparable,
we apply additional theorems to both our result and Stam’s
result so that we are in a setting where both results are for all
m ≤ n and for noisy observations.

Regarding difference 1), we can use a version of Han’s
inequality for divergence [23, Proposition 5.5] (applies when
the second probability argument is independent over the entries
of the vector Y n) on our result Theorem 2, to get the following
corollary:

Corollary 1. Let Y n ∼ PnY |X ◦ U , so that PY n is the
distribution as in Theorem 2. Then for every m ≤ n we have:

D(PYm‖QmY ) ≤ mD(PY ‖QY ) +
m

n
c

or when QY = PY ,

D(PYm‖PmY ) ≤ m

n
c . (20)

where Y m are the first m entries of vector Y n and c is the
same constant as in Theorem 2.

Regarding difference 2), using data processing inequality,
we can use Stam’s result as an upper bound for the case with
noisy observations. Stam’s result with data processing gives

D(PYm‖PmY ) ≤ D(PXm‖PmX )

≤ (q − 1)

2

m(m− 1)

(n− 1)(n−m+ 1)
. (21)

The above equation, which is presented as the final result
in [5], is actually not the tightest when m is close to n.
For instance, when m = n, (21) gives q−1

2 n which is far
from q−1

2 (log n + c′), the actual divergence when computed
directly. An improvement on Stam’s bound when m is close
to n is given in [24]. We show an easier improvement, using
an intermediate result in the proof of (21). We can derive for
larger m that

D(PYm‖PmY ) (22)
≤ D(PXm‖PmX )

≤ q − 1

n− 1

m−1∑
t=1

t

n− t

=
q − 1

n− 1

n−1∑
j=n−m+1

n− j
j

=
q − 1

n− 1

n
 n−1∑
j=n−m+1

1

j

− (m− 1)


=
q − 1

n− 1
(n (log(n− 1)− log(n−m) + c′′)− (m− 1))

=
q − 1

n− 1

(
n log

n− 1

n−m
+ nc′′ − (m− 1)

)
= (q − 1) log

n− 1

n−m
+O(q) (23)

for m < n and c′′ is a constant leftover from approximating
the harmonic sum by a logarithm.

We now can compare our result (20) with Stam’s result,
either (21) and (23), in the setting of m ≤ n and noisy
observations:

• When m << n, (21) is a better bound than (20).
• When m is very close to n, such as when n−m = o(n),

(20) is a tighter bound than both (21) and (23).
• When m is linear in n, then it becomes important to

compare the constant factors. Let γ = m/n. To get an
estimate on when our bound is tighter, we first assume
n is large and ignore the lower order constants which
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appear in the bounds. Using Remark 1, (20) is tighter
than (21) and (23) for large n if

1

2
log

2πα2

c∗
≤ min

{
γ

1− γ
,

1

γ
log

1

1− γ

}
.

This can occur for certain values of γ depending on the
size of c∗, which is a function of PY |X .

The observations indicate that whether our result is tighter or
Stam’s result is tighter depends on the value of m and n. This
also verifies that our Theorem 2 result cannot be proven as
just a corollary of Stam’s result and indeed we are offering
something new. Our result can have consequences in Stam’s
setting for noisy observations when n and m are large.

APPENDIX B
COVERING RESULTS

In this section we give the covering results necessary for
proving Proposition 1, which include the proofs of Theorem 4
and Proposition 2. Again, the bound in Theorem 4 is sufficient
but not the best possible covering bound. Other bounds are
explored in [18].

A. Divergence Covering Upper Bound (Proof of Theorem 4)

We need some preliminaries before proving Theorem 4. To
define our covering centers for the simplex, we start with a
set of scalars. Let

Λ (ε)
4
=

{
εi2 : for i ∈ Z>0, εi

2 <
1

2

}
∪
{

1− εi2 : for i ∈ Z>0, εi
2 <

1

2

}
∪
{

1

2

}
Define

Λ2 (ε) = {(λ, 1− λ) : λ ∈ Λ (ε)}

For each k, let uk ∈ ∆k−1 be uk = (0, . . . , 0, 1). For each
q ∈ ∆k−2, let q̂ be the corresponding q̂ ∈ ∆k−1 where q̂ =
(q1, . . . , qk−1, 0).

For each q ∈ ∆k−2, define q(λ) such that

q(λ) = λuk + (1− λ)q̂ .

For k > 2, recursively define

Λk (ε)
4
=

⋃
λ∈Λ( ε

k )

{
q(λ) : q ∈ Λk−1

(
k − 1

k
ε

)}

Lemma 4. For any p ∈ ∆k−1,

min
q∈Λk(ε)

D(p‖q) ≤ γε

where γ is a constant.

Proof. We show this by using induction. First, for any p ∈ ∆1,
we want to show that

min
q∈Λ2(ε)

D(p‖q) ≤ γε .

We use the following fact7 from [25]. For probabilities P1 and
P2 on k symbols, we have

D(P1||P2) ≤
k∑
a=1

(P1(a)− P2(a))2

P2(a)
.

This implies that for any p, q ∈ ∆1, where p = (p1, 1− p1)
and q = (q1, 1− q1)

D(p||q) ≤ (p1 − q1)2

q1
+

(1− p1 − 1 + q1)2

1− q1
=

(p1 − q1)2

q1(1− q1)
.

Suppose that p ∈ ∆1 and p1 < 1/2. Then ε(i − 1)2 <
p1 ≤ εi2 for some positive integer i. Assume for now that
εi2 < 1/2. Choose q = (εi2, 1 − εi2) ∈ Λ2(ε). Note that we
must have 1− εi2 > 1/2.

D(p‖q) ≤ (p1 − q1)2

q1(1− q1)

=
(p1 − εi2)2

(εi2)(1− εi2)

≤ (ε(i− 1)2 − εi2)2

(εi2)(1− εi2)

≤ ε (−2i+ 1)2

i2(1/2)

≤ ε4i2 − 4i+ 1

i2/2

≤ 8ε

If εi2 > 1/2, we can choose q = (1/2, 1/2). For this case,
we can also assume i > 1, otherwise one center point, q =
(1/2, 1/2) is sufficient for covering the whole simplex. Then

D(p‖q) ≤ (p1 − 1/2)2

(1/2)(1/2)

≤ (ε(i− 1)2 − εi2)2

1/4

≤ 4ε2(−2i+ 1)2

≤ 4

2
ε

4i2 − 4i+ 1

(i− 1)2

≤ 18ε

where we used that ε < 1/(2(i−1)2). This shows that we can
set γ = 18. By symmetry, minq∈Λ2(ε)D(p‖q) ≤ γε holds for
p1 > 1/2 as well.

Suppose in dimension k−1, that we have for any p ∈ ∆k−2,

min
q∈Λk−1(ε)

D(p‖q) ≤ γε

For each p = (p1, ..., pk) ∈ ∆k−1, we specify a scalar quantity
λp ∈ [0, 1]. If pk < 1/2, like above, we can find a positive
integer i where

ε

k
(i− 1)2 ≤ pk ≤

ε

k
i2

and set

λp = min

{
ε

k
i2,

1

2

}
∈ Λ

( ε
k

)
.

7This fact is that KL divergence is upper-bounded by χ2-divergence.
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If pk > 1/2, find i such that

1− ε

k
i2 < pk ≤ 1− ε

k
(i− 1)2

and set

λp = max

{
1− ε

k
i2,

1

2

}
∈ Λ

( ε
k

)
.

Define p′k = (pk, 1− pk) and λ′p = (λp, 1− λp), then similar
to above

D(p′k‖λ′p) ≤ γ
ε

k
.

min
q∈Λk(ε)

D(p‖q)

≤ min
q∈Λk(ε):qk=λp

pk log
pk
qk

+

k−1∑
i=1

pi log
pi
qi

≤ pk log
pk
λp

+ min
q∈Λk(ε):qk=λp

k−1∑
i=1

pi log
pi
qi

≤ pk log
pk
λp

+ min
q∈Λk(ε):qk=λp

(1− pk) log
1− pk
1− λp

+ (1− pk)

k−1∑
i=1

pi
1− pk

log
pi/(1− pk)

qi/(1− λp)

≤ D(p′k‖λ′p) + (1− pk)

min
q′∈Λk−1( k−1

k ε)

k−1∑
i=1

pi
1− pk

log
pi/(1− pk)

q′i

≤ γ ε
k

+ (1− pk)γ
k − 1

k
ε

≤ γε .

Proof of Theorem 4. We use Qk(ε) to denote the set of cen-
ters we need to cover ∆k−1 with radius ε.

Let

Qk(ε) = Λk

(
ε

γ

)
where γ is the constant in Lemma 4. Then using Lemma 4,
for p ∈ ∆k−1,

min
q∈Qk(ε)

D(p||q) ≤ ε .

Since, M(k, ε) ≤ |Qk(ε)|, it remains to count the size of each
Qk(ε). We show its size by induction. First, we have that∣∣∣∣Λ( εγ

)∣∣∣∣ ≤ 2

√
γ

2ε
+ 1 =

√
2γ

ε
+ 1 ≤

√
2γ + 1√
ε

where the last inequality holds if ε ≤ 1. Therefore we have
for some constant c (we can show c ≤ 7),

|Q2(ε)| ≤ c 1√
ε
.

For the inductive case, given alphabet size k and any ε ≤ 1,
we have |Λk

(
ε
γ

)
| ≤ ck−1

(
k−1
ε

) k−1
2 .

Now consider the case of alphabet size k + 1. The set
Λk+1

(
ε
γ

)
is defined as a set of points which is a product

of sets Λ
(

1
k
ε
γ

)
and Λk+1

(
k−1
k

ε
γ

)
. This gives

|Qk+1(ε)| =
∣∣∣∣Λk+1

(
ε

γ

)∣∣∣∣
=

∣∣∣∣Λ(1

k

ε

γ

)∣∣∣∣ ∣∣∣∣Λk (k − 1

k

ε

γ

)∣∣∣∣
≤

(
c

1√
ε
k

)ck−1

(
k − 1

εk−1
k

) k−1
2


= c

√
k√
ε
ck−1

(
k

ε

) k−1
2

= ck
(
k

ε

) k
2

as the number of centers.

B. Subspace Covering (Proof of Proposition 2)

To use our covering result for noisy permutation channels,
we actually need to cover a lower dimensional subspace of a
(k − 1)-dimensional simplex.

Lemma 5. For B ⊂ ∆k−1, suppose there is a stochastic
matrix F which maps ∆`−1 onto B. Then,

M(k, ε,B) ≤M(`, ε) .

Proof. Let Nc(`, ε) be the set of points which are centers for a
divergence covering of ∆`−1 with covering radius ε. For each
b ∈ B, there exists a p ∈ ∆`−1 such that pF = b. For this p,
let r ∈ Nc(`, ε) be such that D(p||r) ≤ ε. Let b∗ = rF . By
data processing inequality [2, Theorem 2.2],

D(b||b∗) ≤ D(p||r) ≤ ε .

Hence the image of the set of centers in Nc(`, ε) mapped
using F , becomes the set of centers for a divergence covering
on B with radius ε.

Proof of Proposition 2. The key to this proof is to divide the
space B into simplices of dimension `− 1.

We can upper bound the number of simplices needed for a
partition of B. The image of F is a convex hull of at most
q points (recall q is the size of the input symbols). We call
these corner points. Consider all possible choices of ` of these
q corner points. Let this set of all combinations be S, where

|S| =
(
q

`

)
.

For each s ∈ S, let Bs be the simplex which is the convex
hull of the ` corner points in set s.

For each point x in the image of F , since F has rank `,
there exists some linear combination of ` corner points which
results in x. If s is this set of ` points, then x ∈ Bs. Thus for
all x ∈ B, there exists some s ∈ S, so that x ∈ Bs.

Label each of these simplices as B1, ...,B|S|. There exists
a stochastic matrix Fi which maps from space ∆`−1 onto the
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space Bi. In particular, we can find this map Fi by mapping
each of the ` corners of ∆`−1 into one of the ` corner points
of Bi. This map covers all of Bi by linearity.

Hence using Lemma 5, we can find a divergence covering
of size M(`, ε) for each Bi. Combining these covering centers
together for all i, we get a covering of size(

q

`

)
M(`, ε) .

We are most assuredly over counting the number of sim-
plices B has to be divided up into. However, this number does
not depend on ε, which is sufficient for our application to
noisy permutation channels.

APPENDIX C
BLOCK DIAGONAL CASE

With a small modification to the proof of Theorem 1, we can
show a converse bound for block diagonal matrices where each
block is strictly positive. The key idea is that since each block
is independent from all the other blocks, so we can apply the
bound for strictly positive matrices separately to each block.
We need to show a separate achievability result to match this
converse bound.

As a sanity check, the block diagonal case captures the
situation where PZ|X is the identity matrix. In which case,
it is possible to use all possible permutations of symbols
as messages. No errors are allowed so decoding is straight-
forward. Using an identity matrix of size q× q for the DMC,
for each n,

R =
logM

log n

=
log
(
n
q−1

)
log n

≈ log(cq−1nq−1/(q − 1)q−1)

log n

= q − 1 +
log(cq−1/(q − 1)q−1)

log n

which goes to q−1 asymptotically as n increases. This matches
our block diagonal converse result.

A. Converse

Proposition 4 (Block Diagonal Converse). Suppose PZ|X can
be written as a block diagonal matrix with β blocks, so that
each block is strictly positive. Then,

Cperm(PZ|X) ≤
rank(PZ|X) + β − 2

2
.

Proof. We want to use Proposition 1 but we need to show a
version of the upper bound in Theorem 2 which applies to
block diagonal matrices instead of strictly positive matrices.

Fix π ∈ Pn. Arrange the matrix PZ|X in block diagonal
form and let Xb be the set of symbols in X which are in the

bth block. Let (X,Y )n be generated iid from (π×PY |X). Let
Wi be the number of X which equals i, i.e.

Wi = |{t : Xt = i}| .

Define

Ab =

{ ⋂
i∈Xb

Wi = πin

}
.

This is the event that all symbols i associated with block b
occur with the count πin. Each block has its own separate set
of output symbols in Y . The probability of Wi is independent
of what happens in other blocks. Let Y n(b) (and yn(b)) be
notation for the symbol counts restricted to just the output
symbols associated with the bth block.

Using the definition in Proposition 3, notice that I[A = 1] =

I
[⋂β

b=1Ab

]
. (Recall the notation Ã = {X̃n ∈ T (P )} where

(X̃, Ỹ )n is independent copy under the same distribution (P×
PY |X) as (X,Y )n). Then using (13) with Lemma 2,

D(PnY |X ◦ U‖Q
n
Y )

= nD(PY ‖QY ) + E

[
log

P[Ã = 1|Ỹ n = Y n]

P[Ã = 1]

∣∣∣∣A = 1

]
≤ nD(PY ‖QY )− 1

2
log n+

∑
i:πi>0

1

2
log πin

+ c+ E
[
logP[Ã = 1|Ỹ n = Y n]

∣∣∣∣A = 1

]
.

For any Y n,

P[A = 1|Y n] =

β∏
b=1

P[Ab = 1|Y n(b) = yn(b)] .

Each block is a strictly positive matrix. From Lemma 3 and
following the same calculations that results in (19), we know
that

logP[Ab = 1|Y n(b) = yn(b)]

≤ 1

2
log n−

∑
i∈Xb:πi>0

1

2
log nπi + c′

and thus

logP[A = 1|Y n]

≤
β∑
b=1

(
1

2
log n−

∑
i∈Xb:πi>0

1

2
log nπi + c′

)

=
β

2
log n−

∑
i:πi>0

1

2
log nπi + βc′ .

This holds for all Y n so it automatically gives the expected
value. Putting all these terms together, for any π, we get

D(PnY |X ◦ U‖Q
n
Y ) = nD(PY ||QY ) +

β − 1

2
log n+ c′′
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where c′′ combines all the constants. Using Proposition 1,
gives

Cperm(PZ|X) ≤
rank(PZ|X)− 1

2
+ lim
n→∞

β−1
2 log n+ c′′

log n

=
rank(PZ|X)− 1

2
+
β − 1

2

=
rank(PZ|X) + β − 2

2
.

B. Achievability

Proposition 5 (Block Diagonal Achievability). Suppose PZ|X
can be written as a block diagonal matrix with β blocks, so
that each block is strictly positive. Then,

Cperm(PZ|X) ≥
rank(PZ|X) + β − 2

2
.

Proof. The achievability proof encodes using two steps. The
first step is a zero-error code based on which block in the
block diagonal matrix the symbols are associated with. Let M1

denote the total possible messages (or rather message stems)
for the first step. The second step operates only on each block
independently, and uses the achievability given by (2). Let M2

denote the total messages (or message tails) possible here.
Label the β blocks in PZ|X as B1, ..., Bβ . Define the sets

of input symbols X1, ..,Xβ and output symbols Y1, ...,Yβ , so
that Xb and Yb are the input and output symbols respectively
associated with block Bb. (In other words, if pij > 0 and
pij falls into block Bb, then i ∈ Xb and j ∈ Yb.) These sets
X1, ..,Xβ and Y1, ...,Yβ are both disjoint.

Let L = rank(PZ|X) and let Lb = rank(Bb). Because of
the block diagonal structure, L =

∑β
b=1 Lb.

For fixed n, set aside the first n/2 input symbol positions
so that exactly n/(2β) are from set Xb for each b. These are
not used for the first step of the two-step code and are used
to make the analysis of the second step easier. The remaining
n/2 positions can be encoded using symbols from any set and
this is used to make the first step of the code. There are(

n/2

β − 1

)
≥
(
n/2

β − 1

)β−1

(24)

possible combinations of symbols chosen from β blocks,
disregarding order. The DMC maps the symbols in set Xb
to symbols in set Yb without any error. Hence, (24) is the
number of messages M1 the first step can encode without any
error.

Once it is determined how many symbols of each set will
be used, we can determine which symbol in the set will be
used for the second step. Suppose there are nb positions which
are designated for symbols in set Xb. This includes the n/(2β)
we set aside in the beginning and how ever many were chosen
to make the first step of the code. Using (2), we know there
exists a encoder-decoder pair (fnb

, gnb
) so that the decoding

error is vanishingly small as nb →∞. Just by choosing which

symbol in Xb to send, for some εnb
> 0 where εnb

→ 0, we
can encode a set of messages with size Mb satisfying

logMb ≥
(
Lb − 1

2
− εnb

)
log nb .

The set of messages possible for all the β different sets is

logM2 = log

β∏
b=1

Mb

≥
β∑
b=1

(
Lb − 1

2
− εnb

)
log nb

≥
β∑
b=1

(
Lb − 1

2
− εnb

)
log

n

2β

=

(
L− β

2
−

β∑
b=1

εnb

)
log

n

2β
.

The total number of messages is the product of those
available at the first and second steps.

logM = logM1 + logM2

≥ log

(
n/2

β − 1

)β−1

+

(
L− β

2
−

β∑
b=1

εnb

)
log

n

2β

= (β − 1) log
n

2β − 2
+

(
L− β

2
−

β∑
b=1

εnb

)
log

n

2β

≥

(
2β − 2

2
+
L− β

2
−

β∑
b=1

εnb

)
log

n

2β

=

(
L+ β − 2

2
−

β∑
b=1

εnb

)
log

n

2β
.

Since each nb ≥ n
2β → ∞ as n → ∞, asymptotically the

term
∑β
b=1 εnb

disappears.
The achievable rate is given by

R =
logM

log n

≥

(
L− β − 2

2
+

β∑
b=1

εnb

)
log n− log 2β

log n
→ L− β − 2

2
.

Combining Proposition 4 and Proposition 5 gives the first
result in Theorem 3.

APPENDIX D
ERASURE AND Z-CHANNELS

A. Concentration Lemma

The following lemma is useful for computing the probability
of A = 1 (see Proposition 3) when the DMC matrix is not
strictly positive. It is a straight-forward concentration bound
which is a direct application of Bernstein’s inequality. We
choose to write the proof anyways for completeness.

Lemma 6. Suppose that Z is a sum of n independent Bernoulli
random variables. Let E[Z] be the expected value of Z.
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Fix constant γ. If E[Z] > 2γ log n, then with probability at
least 1− 2/nγ/4, we have that

E[Z] > E[Z]−
√
E[Z]γ log n ≥ 1

5
E[Z] .

Proof. Let Z =
∑n
i=1Wi where Wi is the ith Bernoulli

random variable. Let 0 < pi < 1 be the probability of Wi = 1.
n∑
i=1

E[(Wi − E[Wi])
2] =

n∑
i=1

pi(1− pi) ≤
n∑
i=1

pi = E[Z] .

Next, we use Bernstein’s inequality for bounded variables [26,
Theorem 2.8.4].

P
[
Z − E[Z] ≤ −

√
E[Z]γ log n

]
≤ 2 exp

(
− 1

2E[Z]γ log n∑n
i=1 E[(Wi − E[Wi])2] + 1

31
√

E[Z]γ log n

)

≤ 2 exp

(
− 1

2E[Z]γ log n

E[Z] + 1
3

√
E[Z]γ log n

)

≤ 2 exp

 − 1
2γ log n

1 + 1
3

√
γ logn√
EZ

 .

Using that E[Z] > 2γ log n, we have 1 + 1
3

√
γ logn√
E[Z]

≤ 1 +

1
3

√
γ logn√
2γ logn

≤ 2.

P
[
Z − E[Z] ≤ −

√
E[Z]γ log n

]
≤ 2 exp

(
−1

4
γ log n

)
≤ 2

nγ/4
.

Hence, with probability 1− 2/nγ/4,

E[Z] ≥ E[Z]−
√
EZγ log n

≥ E[Z]−
√
E[Z]

1

2
E[Z]

≥
(

1− 1√
2

)
E[Z]

≥ 1

5
E[Z] .

B. The q-ary Erasure Channel

We now can prove the converse bound for q-ary erasure
channels, where q is the number of input symbols. Let k =
q + 1 represent the erased symbol.

The matrix PZ|X for a q-ary erasure channel has the
following structure:

PZ|X =


p11 0 · · · 0 p1k

0 p22 · · · 0 p2k

...
...

. . .
...

...
0 0 · · · pqq pqk

 .

We assume that pik > 0 for each i.

Proof of Item 2 of Theorem 3. Fix π = (π1, ..., πq) where
π ∈ Pn. (We assume each πi > 0, otherwise we can remove
it.) Reorder the symbols in {1, ..., q} so that π1 ≤ π2 ≤ ... ≤
πq . (Note that PY |X = PZ|X .)

Following Proposition 3, let (X,Y )n be generated iid
according to (π × PY |X). To use Proposition 3 we need to
determine P[logP[Ã = 1|Ỹ n = Y n]|A = 1].

Unlike the case of strictly positive PY |X , the value of P[A =
1|Y n] depends on Y n. For instance, it is easy to see that when
the erasure symbol k does not appear, then P[A = 1|Y n] = 1.
While Y n like this can occur under the event A = 1, we want
to show that these events are rare, this way the expected value
of P[A = 1|Y n] given that A = 1 is much smaller than 1 and
close to the value which will give our result. We first show a
concentration result on Y n given that A = 1.

Let Ub be the random variable which gives the count of the
number of times the symbol b is erased, i.e

Ub =

n∑
i=1

I{(Xi, Yi) = (b, k)} .

Let vb(yn) = {Ub|A = 1, Y n = yn}. Note that vb(yn) is
deterministic. If A = 1 and Y n is known, we can determine
exactly what Ub is.

Define Sb =
∑
a≥b Ua. Given Y n, S1 is deterministic.

Given Y n and U1, .., Ub−1, Sb is deterministic.
Using Lemma 6, since E[Sb] = n

∑
a≥b πapak ≥ nπqpqk >

2γ log n for some γ (chosen later) and all b for large enough
n, we have

P

Sb > 1

5
n
∑
a≥b

πapak

 ≥ 1− 2/nγ/4 .

Using the union bound,

P

 q⋂
b=1

Sb > 1

5
n
∑
a≥b

πapak


 ≥ 1− 2q/nγ/4 . (25)

Next, for any yn which has positive probability given A = 1,

P[A = 1|Y n = yn]

= P

[
q⋂
b=1

Ub = vb(y
n)

∣∣∣∣Y n = yn

]

=

q−1∏
b=1

P

[
Ub = vb(y

n)

∣∣∣∣ b−1⋂
a=1

Ua = va(yn), Y n = yn

]
.

We compute the following which is like the proof Lemma 3
of but with appropriate adjustments. Using (16),

P

[
Ub = vb(y

n)

∣∣∣∣ b−1⋂
a=1

Ua = va(yn), Y n = yn

]
≤ α√∑Sb

i=1 min
{

πbpbk∑
a≥b πapak

,
∑

a>b πapak∑
a≥b πapak

} .
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Like in Lemma 3, define c− = mini pik.

min

{
πbpbk∑
a≥b πapak

,

∑
a>b πapak∑
a≥b πapak

}

= (min
i
pik) min

{
πb∑

a≥b πapak
,

∑
a>b πa∑

a≥b πapak

}
=

c−πb∑
a≥b πapak

.

We get the last equality since πi is in increasing order. Hence

P

[
Ub = vb(y

n)

∣∣∣∣ b−1⋂
a=1

Ua = va(yn), Y n = yn

]
≤ α√

Sb
c−πb∑

a≥b πapak

.

We can now compute

E[logP[A = 1|Y n]|A = 1]

=
∑
yn

P[Y n = yn|A = 1] logP[A = 1|Y n = yn]

≤ log
∑
yn

P[Y n = yn|A = 1]P[A = 1|Y n = yn]

≤ log
∑
yn

P[Y n = yn|A = 1]

q−1∏
b=1

α√
Sb

c−πb∑
a≥b πapak

≤ log

(
(2q/nγ/4) + (1− 2q/nγ/4)

q−1∏
b=1

α√(
1
5n
∑
a≥b πapak

)
c−πb∑

a≥b πapak

)
(26)

≤ log

(2q/nγ/4) +
αq( c−

5

) q−1
2 n

q−1
2

√∏q
b=1 πb

πmax


where in (26) we used (25). We can pick γ large enough8 so
that the first term in the logarithm is negligible compared to
the second term for large n.

This gives

P[logP[Ã = 1|Ỹ n = Y n]|A = 1]

≤ log

 2αq( c−
5

) q−1
2 n

q−1
2

√∏q
b=1 πb

πmax


≤ 1

2
log n−

q∑
b=1

1

2
log πbn+ c′ .

The value c′ collects all the constants. Combining with
Lemma 2, we get that for the q-ary erasure channel and
sufficiently large n that

D(PY |X ◦ U‖QnY ) ≤ nD(PY ‖QY ) + c

8For instance, we can pick γ = 40q. For large enough n, we still get that
E[Sb] = n

∑
a≥b πapak > 2γ logn is true for all b.

where c does not depend on n or π. Using Proposition 1
completes the converse bound for the proof.

The matching achievability bound needed to get the final
capacity result is given in [1].

C. Z-Channel

The matrix for the Z-channel [4, p 225] is

[
1 0
p21 p22

]
where we require that pij > 0. (Typically, p21 = p22 = 1/2,
but we consider a more general case here.)

We can actually get the capacity of the noisy permutation
channel with the Z-channel without altering the proof for the
q-ary erasure channels. The transition matrix for the Z-channel
can be written as [

p11 0 p13

p21 p22 0

]
setting p13 = 0. This does not change the rank of the matrix
or the analysis in the proof.

Corollary 2. Let PZ|X be a stochastic matrix for the Z-
channel, then

Cperm(PZ|X) =
1

2
.

This is Item 3 of Theorem 3.

D. “Zigzag” Channel

In this section, we explore the limits of our approach. We
have a particular DMC matrix which is similar to the q-ary
erasure channel, but our method is not known to give a tight
converse. We use a matrix which could be considered a q-ary
Z-channel and call it a “zigzag” channel since its edges in a
transition diagram form a zigzag.

The matrix has the form:



p11 p12 0 · · · 0 0
0 p22 p23 · · · 0 0
0 0 p33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · pq−1,q−1 pq−1,q

0 0 0 · · · 0 pqq


where each pij > 0. This matrix has rank q.

Suppose that q is odd and that π is such that πi is 0 for
all even values of i. Following the notation and method in
Proposition 3, P[A = 1|Y n] = 1, since any output symbol
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can be decoded to exactly one input symbol. For any π of this
choice,

D(PY |X ||QnY )

= −nD(PY ||QY )− 1

2
log n+

∑
i:πi>0

1

2
log πin

+ c+ E[logP[A = 1|Y n]|A = 1]

= −nD(PY ||QY )− 1

2
log n+

∑
i:πi>0

1

2
log πin+ c

≤ −nD(PY ||QY )− 1

2
log n+

q + 1

2

1

2
log n+ c

≤ −nD(PY ||QY ) +
q − 1

4
log n+ c .

If π of this form is the worst case π to use, meaning it gives
the largest possible value of D(PY |X ◦U‖QY n) for any QY ,
then we get that

Cperm(PZ|X) ≤ q − 1

2
+
q − 1

4
=

3(q − 1)

4
. (27)

If there is another π which is the worst, then our upper bound
on the capacity is larger than the value on the right-hand side
of (27). In either case, there is a gap between our upper bound
for the capacity and the lower bound of (q − 1)/2 given by
(2). Exploring this gap is an opportunity for future work.
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