
On Coding Techniques for Unsourced Multiple-Access

Gianluigi Liva
German Aerospace Center (DLR)

gianluigi.liva@dlr.de

Yury Polyanskiy
Massachusetts Institute of Technology (MIT)

yp@mit.edu

Abstract—In this paper, we attempt to gain insights on de-
signing codes for unsourced multiple access by investigating an
important special case of a two-user unsourced binary adder
channel (2-UBAC). In 2-UBAC the receiver observes a noiseless
real sum of two binary vectors. We show several results. First, for
a linear code the per-user probability of error (PUPE) equals the
fraction of nonminimal codewords, implying that such codes can
at most achieve rate-1/2 while capacity of 2-UBAC is 3/4. Second,
for sparse-graph codes to jump start an iterative peeling decoder
we need to reveal (“pivot”) one of the ambiguous symbols. If
the pivot is selected randomly then any irregular LDPC code
ensemble has a non-vanishing error probability. If the pivot is
selected optimally then we show that three regular LDPC code
ensembles attain vanishing PUPE: (3, 4), (4, 5) and (5, 6). Our
proof does not apply to any other regular LDPC code ensembles,
but we believe that they should all have a non-vanishing error
probability. Finally, we discuss ideas about (nonlinear) coding to
break through the rate-1/2 bottleneck.

I. INTRODUCTION

The rising importance of large-scale Internet of Things
(IoT) networks and massive machine-type communication
(mMTC) systems has recently produced an intense research
effort in the domain of multiple access (MAC) protocols (see,
e.g., [1]–[10]). While it appears evident that random access
protocols are the most suitable choice to handle the sporadic
and unpredictable transmissions of large populations of IoT
terminals, many implemented systems [11], [12] still employ
simple modifications of the basic ALOHA protocol [13]. To
overcome the limitations that are inherent to (slotted) ALOHA,
many advanced random access schemes were proposed during
the past two decades. Some of them stem from the introduction
of advanced signal processing capabilities at the receiver end,
such as the use of successive interference cancellation (SIC),
applied to judiciously-designed ALOHA-like protocols [2]–
[6]. More recently, another class of random access schemes
was suggested in [1], where the salient features of the random
multiple access problem have been cast in an information
theoretic setup. In a nutshell, [1] regards the random access
problem as a MAC coding problem where all transmitters
employ the same code, and where the receiver is only in-
terested in obtaining the list of transmitted codewords. Since
the use of a unique code does not allow to distinguish the
transmitters identity, the setting of [1] is usually referred to
as unsourced multiple access (UMAC). The definition of the
UMAC coding problem lead to the introduction of schemes
inspired by compressive sensing techniques [1], [7]–[10].

This material is based upon work supported by the NSF grants CCF-
1717842 and CCF-2131115.

−10 −8 −6 −4 −2 0 2 4 6
10−3

10−2

10−1

100

G2 =

(
1 0 1 0
0 1 0 1

)

dashed line: single-userG1 =

(
1 0 1
0 1 1

)

dashed line: single-user

SNR [dB]

P
U
P
E

Fig. 1. Per-user probability of error vs. per-user signal-to-noise ratio (in dB)
for two binary linear block codes over a binary adder Gaussian noise channel.
Denoting by A,B ∈ {±1} the symbols transmitted by the two users, the
channel output is Y = A+B+N where N is Gaussian with zero mean and
variance σ2 = 1/SNR. The decoder outputs the unordered part of codewords
{v̂n, ŵn} maximizing p(yn|vn + wn). The block error probability of the
codes in absence of interference (i.e., single-user transmission) is depicted
as reference with dashed lines. The estimates of the error probabilities are
obtained through Monte Carlo simulations by collecting at 105 errors.

To gain insights on the coding problem underpinned by the
UMAC setup, in this paper we address one of the simplest
UMAC channels, namely the two-user unsourced binary adder
channel (2-UBAC). In the 2-UBAC, two users transmit over
the binary adder channel (BAC) with the constraint of using
the same binary block code. Despite of its simplicity, this
setting turns to be particularly rich from a coding theory
viewpoint. Furthermore, the setting bears some relation with
more realistic MAC channel modes. To support this statement,
an example is provided in Figure 1, where the per-user
probability of error (PUPE) is provided for the case of a
real-valued Gaussian MAC channel where two users attempt
a transmission under the constraint of using the same binary
linear block code. The performance is measured as a function
the per-user signal-to-noise ratio (SNR), defined as ratio
between the power of the user signal and the noise variance.
On the same plot, the block error rate is given as reference for
the single-user case (i.e., in absence of interference). Two short
codes are used for the simulation: a (3, 2) single-parity-check
(SPC) code and a (4, 2) binary linear code. Both codes have
minimum distance equal to two, and the (4, 2) code slightly
outperforms the (3, 2) code in the single-user setting. However,

when transmission takes place over the two-user Gaussian
MAC channel, the (3, 2) code yields a dramatically better
performance, with the (4, 2) code suffering for a high error
floor. The reason of this behavior can be found by analyzing
the two codes in the 2-UBAC setting. As we will see in Section
III, the (3, 2) code delivers a zero PUPE, whereas the (4, 2)
code is limited to a PUPE of 1/8 – which is the value at which
the code performance floors over the Gaussian MAC.

In this paper, we are going to discuss the performance of
binary linear block codes over the 2-UBAC, with emphasis on
low-density parity-check (LDPC) code ensembles. The anal-
ysis addresses both maximum likelihood (ML) and iterative
(peeling) erasure decoding. We are going to see how the
performance of binary linear block codes is tightly related to a
number of minimal codewords in the code, yielding rates that
are remarkably lower than the capacity of the 2-UBAC channel
with nonlinear coding. In particular, for binary linear codes
the maximum symmetric rate is shown to be 1/2, whereas
the use of nonlinear codes allows achieving a symmetric rate
equal to 3/4. For the case of LDPC codes, the performance
under peeling decoding will be put in relation with structure of
the stopping sets that are present in certain sub-graphs of the
code Tanner graph. Finally, we discuss ideas about (nonlinear)
coding to break through the rate-1/2 bottleneck.

II. PRELIMINARIES

We denote length-n vectors as xn = (x1, x2, . . . , xn). The
vectors 0n and 1n are the length-n all-zero and all-one vectors,
respectively. We use capital letters for random variables, e.g.,
X , and lower case letters for their realizations, e.g., x. We use
the shorthand notation [n] = {1, 2, . . . , n}. The support set of
a vector is defined as supp(xn) = {i ∈ [n] : i 6= 0}. The
Hamming weight of a vector xn is wH(xn) = |supp(xn)|.
We use + and − to denote integer addition and subtraction,
whereas ⊕ is used for addition/subtraction in F2 (the order-2
finite field). For (n, k) binary linear block code C the rate
is R = k/n, with k being the code dimension and n its
blocklength. Finally, we use the shorthand [x]+ = max(0, x)
and we denote by Hb the binary entropy function.

A. Two-User Multiple-Access Channels

In this paper we consider the following two channels. First,
a two-user BAC: the channel output is obtained by adding in
N the binary symbols A,B ∈ {0, 1} transmitted by two users.
The input-output relation at time i is hence

Yi = Ai +Bi.

A generalization of this channel model is the A-channel of
Chang and Wolf [14]. This channel has q-ary input alphabet
A,B ∈ [q] and the channel output Y belongs to

{(
[q]
1

)}
∪{(

[q]
2

)}
with

Yi = {Ai, Bi}.
That is, the receiver noiselessly observes the set of transmitted
symbols (but not who transmitted them and also not the
multiplicity, although for 2 users, the multiplicity can be

inferred from the cardinality of Y). For q = 2 the A-channel
is just the BAC.

The setting we are interested in is the one where the two
users transmit over the BAC using the same (n,M) binary
block code C. Here, n is the blocklength, and M = |C| and
the per-user rate is R = n−1 log2M . Upon observing the
channel output Y n = (Y1, Y2, . . . , Yn), the decoder produced
a list L of two codewords. The PUPE is the probability that
the codeword transmitted by a user does not appear in the
decoded list, i.e.,

PUPE =
1

2
P(An /∈ L) +

1

2
P(Bn /∈ L) .

We define also the decoding failure probability (DFP) as
the probability that there exists multiple distinct unordered
codeword pairs, where the sum of the two codewords forming
each pair yields Y n. It is trivial to see that the DFP provides
an upper bound on the PUPE.

B. Minimal Codewords
Consider two length-n binary vectors vn and wn. We say

that vn covers wn if the support of wn is a strict subset of
the support of vn. A codeword xn of a binary linear code
C(n, k) is said to be minimal if it does not cover any non-zero
codeword [15], [16]. A code whose codewords are all minimal
is referred to as a minimal code. We denote in the following
M(C) the subset of minimal codewords of the binary linear
block code C. Properties of minimal codewords have been
analyzed in [17]. One property, in particular, will turn to be
useful in Section IV. We recall it next.

Lemma 1. In a binary linear block code C(n, k), any
codeword with Hamming weight larger than n − k + 1 is
nonminimal.

C. LDPC Code Ensembles
We consider unstructured LDPC code ensembles. We denote

the code bipartite graph (Tanner graph) as G. For regular LDPC
codes, the variable node (VN) degree (left degree) is l and
the check node (CN) degree (right degree) is r. A (l, r)-
regular LDPC code ensemble is denoted as Cnl,r where n is
the blocklength of the codes in the ensemble. For irregular
LDPC code ensembles, the node oriented degree distributions
are denoted as Λ and P, where Λd is the fraction of VNs
with degree d and Pd is the fraction of CNs with degree
d. An irregular LDPC code ensemble is denoted as CnΛ,P
where n is the blocklength of the codes in the ensemble.
The code bipartite graph contains n VNs v1, v2 . . . , vn and
m CNs c1, c2, . . . , cm. The rate of a code C is R(C), while
the ensemble design rate is R0 = 1−m/n, where in general
R0 ≤ R(C). We denote the neighborhood of a VN v (CN c)
as N (v) (N (c)). The definition extends to set of nodes, e.g.,
the set of neighbors of a subset V of VNs is denoted as N (V).
A stopping set S is a subset of VNs such that every CN in
N (S) is connected through at least two VNs in S.

The bipartite graph induced by a (non-zero) codeword xn

is denoted as G(xn) and it is the subgraph of G formed by the
VNs with indexes in supp(xn), their adjacent edges and their

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

c1

c2

c3

c4

c5

c6

c7

c8

c9

v2

v4

v5

v6

v8

v9

v10

v12

c1

c2

c3

c4

c5

c6

c7

c8

c9

v2

v4

v5

v6

v8

v9 v10

v12

c1

c2

c4

c5

c6

c8

Tanner graph G Induced graph G(xn)

Residual graph
R(xn)

Fig. 2. Tanner graph of a length-12 (3, 4) regular LDPC code (top-left).
The graph induced by the codeword xn = (0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1) is
provided in the top-right. Below, the residual graph, with edge labels showing
the associated degree-2 check nodes in the induced graph.

neighboring CNs. We refer to G(xn) as the induced graph.
Note that the degrees of the CNs in G(xn) must be even.
We denote the CN degree distribution of G(xn) as R, where
Rd is the fraction of CNs with degree d, and the VN degree
distribution of G(xn) as L, where Ld is the fraction of VNs
with degree d. Note that for (l, r) regular LDPC codes the
degree of the VNs in G(xn) is still l.

We further introduce the notion of residual graph R(xn) of
an induced graph G(xn), that is a graph consisting of wH(xn)
vertexes labeled as the corresponding wH(xn) VNs in G(xn),
where vertexes vi and vj are connected by an edge if and only
if vi and vj in G(xn) are connected to the same degree-2 CN.
The degree distribution of the vertexes of R(xn) is λ, with λd
being the fraction of degree-d vertexes. An example of Tanner
graph for a regular LDPC code, an induced graph G(xn) and
the corresponding residual graph is given in Figure 2.

The weight (stopping set) enumerator of a code is ACW
w

(ASS
w), while the average weight (stopping set) enumerator

of a random code from an ensemble is ĀCW
w (ĀSS

w). Given
an ensemble sequence Cn, we denote the growth rate of the
codeword weight distribution and of the stopping set weight
distribution as

GCW(ω)= lim
n→∞

1

n
log2 Ā

CW

ωn and GSS(ω)= lim
n→∞

1

n
log2 Ā

SS

ωn.

Finally, for a given LDPC code Tanner graph, we introduce
AIG

w,L,R as the number of graphs with VN degree distribution
L and CN degree distribution R, induced by weight-w code-
words. We refer to the (w,L,R) triplet as the induced graph

type. The ensemble average is ĀIG

w,L,R, whereas the growth
rate of the type-(ωn,L,R) induced graph multiplicity is

GIG(ω,L,R) = lim
n→∞

1

n
log2 Ā

IG

ωn,L,R.

III. MAXIMUM-LIKELIHOOD DECODING OVER THE
BINARY ADDER CHANNEL: LINEAR CODES

ML decoding over the BAC can be formulated as an
erasure decoding problem. Given the observation yn, we may
construct a vector ỹn by setting ỹi = 0 if yi = 0, ỹi = 1 if
yi = 2, and ỹi =? if yi = 1. Here, the symbol “?” represents
an erasure. The set of coordinates in which ỹn is set to “?” is

E = {i|ỹi =?}

and its complementary set is Ē = [n] \ E . Decoding proceeds
by creating a list L̃ of all codewords that are compatible with
the modified observation ỹn, i.e.

L̃ =
{
xn|xi = ỹi, ∀i ∈ Ē

}
.

The final step consists of searching all unordered codeword
pairs {vn, wn} ∈ L̃ × L̃ whose (integer) sum yields yn.
We refer to a pair {vn, wn} satisfying yn = vn + wn as
a valid (codeword) pair. If the solution is unique, then the
final list is L = {vn, wn} and decoding succeeds. In case of
multiple valid pairs, a pair is picked at random. We refer to the
event where decoding yields multiple valid pairs as a decoding
failure. According to the definition provided in Section II-A
the probability of such event is the DFP.

The construction of the list of compatible codewords is
largely simplified in the case of an (n, k) binary linear block
code C. Denote by H the (n−k)×n code parity-check matrix,
by xE (xĒ) the sub-vector of xn with coordinates in E (Ē).
Similarly, we denote by HE (HĒ) the matrix formed by the
columns of H with coordinates in E (Ē). The list of compatible
codewords is formed by all vectors xn where xĒ = ỹĒ and
where xE is a solution of

HEx
T
E = HĒx

T
Ē . (1)

Observe that (1) must admit at least two solutions, i.e.,
rankHE < |E|. The solutions can be found by (i) picking
any element of xE and (ii) setting it to an arbitrary value in
{0, 1}, and solving the residual system of equations. Consider
a generic solution vn: a valid codeword pair {vn, wn} is then
obtained by setting wn = yn − vn. We refer to the codeword
bit selected in step (i) as pivot, to the action of selecting a
pivot as pivoting, and to step (ii) as guessing. If the solution
is unique, i.e., if rankHE = |E| − 1, then decoding stops.
In this case, the solution of (1) is attained with a complexity
O(n3). If rankHE = |E| − s with s > 1, then there are 2s−1

valid codeword pairs. Some observations follow.

1) Any solution of (1) participates in exactly one valid pair.
2) We have that An /∈ L if and only if Bn /∈ L.

3) The PUPE is given by

PUPE = 1−
|E|∑
s=1

2−(s−1)P(|E| − rankHE = s)

≥ 1

2
DFP.

4) The number of valid codeword pairs computed by the
decoder depends on the transmitted pair {an, bn} only
through the support set of their difference.

Observation 1 follows by noting that if vE is a solution of
(1), then also wE = vE⊕1|E| is a valid solution, and {vn, wn}
is a valid codeword pair. From this, observation 2 follows
directly. The expression of the PUPE provided at point 3 stems
from the fact that there are 2s−1 valid codeword pairs, and
from observation 2. It also true that where there exist multiple
valid codeword pairs, we have a probability ≥ 1/2 to pick an
erroneous pair. The last observation is a direct consequence of
s being the dimension of the linear subspace spanned by the
columns of HE , noting that E = supp(an ⊕ bn).

The last observation yields a simplification in the analysis
of the PUPE and of the DFP for linear codes.

Lemma 2 (All-zero codeword). Consider two users trans-
mitting over the BAC with a (n, k) binary linear block code
C, and denote as An, Bn the transmitted codewords. Then,
the PUPE and the DFP under ML decoding are conditionally
independent on An.

Proof. We provide first a sketch of the proof for the PUPE.
Denote by E the event {An /∈ L}. Due to observation 2,
PUPE = P(E). We have that

P(E|An=an) =
∑
bn∈C

P(E|An=an, Bn=bn)P(Bn=bn)

(a)
=
∑
bn∈C

P(E|An=an⊕an, Bn=bn⊕an)P(Bn=bn⊕an)

=
∑
cn∈C

P(E|An=0n, Bn=cn)P(Bn=cn)

= P(E|An=0n)

where (a) follows by observation 4. The proof for the DFP,
upon re-defining E as the event {|E| − rankHE > 1}, is
obtained by going through the same steps.

Note that the statement holds is we exchange An and Bn.
Lemma 2 implies that PUPE = P(E|An=0n), i.e., we can
evaluate the PUPE of a binary linear block code under ML
decoding by restricting to the case where one of the two users
transmits the all-zero codeword. The same applies to the DFP.
The principle can be extended to binary linear block codes
under any decoding algorithm whose outcome depends on
the transmitted codewords only through the support of their
difference. An example is given by erasure peeling decoding
of LDPC codes applied to the BAC.

Consider now the case where An = 0n. In this case, E =
supp(Bn) and (1) yields only two solutions if and only if Bn

is minimal. Owing to this fact and to Lemma 2, we have that
the DFP is given by

DFP = P(Bn /∈M(C)) .

As a result, minimal codes achieve a zero DFP (and, hence,
a zero PUPE) over a two-user BAC with same-codebook
constraint.

Example 1. Consider the two binary linear block codes C1

and C2 with generator matrices

G1 =

(
1 0 1
0 1 1

)
and G2 =

(
1 0 1 0
0 1 0 1

)
.

The first code is a (3, 2) SPC code, and the second code is
a (4, 2) code. The minimum distance of both is 2. By listing
all codewords, we see that C1 is a minimal code, whereas C2

possesses one nonminimal codeword (the all-one vector). It
results that C1 yields a zero DFP (zero PUPE), while for C2

we have DFP = 1/4 and PUPE = 1/8.

It is important to stress the nature of the erasure channel
that stems from the transmission of two codewords of a linear
code, over the BAC: By restricting An to be the all-zero vector,
we see that the erasure pattern at the decoder input erases the
support of Bn. We are hence facing the problem of decoding
a linear code over an erasure channel that produces erasure
patterns that match codewords.

IV. LINEAR CODES: MAXIMUM SYMMETRIC RATE

The following results show that transmission over the
2-UBAC with linear block codes is fundamentally limited to
a symmetric rate not larger than CLIN = 1/2, in contrast to the
maximum symmetric rate C = 3/4 of the 2-UBAC achievable
by nonlinear block codes (to be discussed in Section VI).

Theorem 1 (Converse). Consider transmission over the the
2-UBAC with a (n, k) binary linear block code. We have that

PUPE ≥ 1

2

(
1− n

2k − 2

)
.

Thus, the maximal achievable symmetric rate is R ≤ 1/2.

Proof. We fix An = 0. We have that

PUPE
(a)

≥ 1

2
P(Bn /∈M(C))

(b)

≥ 1

2
P(wH(Bn) > n− k + 1)

(c)
=

1

2
[1− P(n− wH(Bn) ≥ k − 1)]

(d)

≥ 1

2

(
1− n

2k − 2

)
where (a) follows by observation 3) in Section III and by the
definition of minimal codewords, (b) is due to Lemma 1, (c) is
the result of a simple manipulation, and (d) is due to Markov’s
inequality and to the fact that the average codeword weight is
n/2 for any binary linear block code without idle coordinates.
By taking the limit n → ∞ of the RHS of (e), we see that
the PUPE is bounded away from zero for any R > 1/2.

Note that the result stated in Theorem 1 extends to codes
that are F2-affine. This can be checked by observing that any
fixed offset added to the codewords of an (n, k) binary linear
block code C does not modify the set of coordinates at which
An and Bn differ, and the offset can be removed from the
sum An +Bn at the decoder input.

The following result shows that random linear codes allow
operating arbitrarily close to the 1/2 symmetric rate limit.

Theorem 2 (Achievability). Consider the random linear code
ensemble C(n,R0) defined by all parity-check matrices with
n columns and m = n(1−R0) rows, where R0 = 1−m/n is
the nominal ensemble rate, containing all binary linear block
codes with blocklength n and rate R ≥ R0. The average
PUPE of a random code from C(n,R0) satisfies

E [PUPE(C)] <

n∑
d=1

(
n

d

)
2−n−[n(1−R0)−d+1]+ . (2)

Moreover, the by denoting δ = d/n, a lower bound on the
error exponent of rate-R random linear block codes is given
by

E(R) = inf
0<δ≤1

(
1− Hb(δ) + [(1−R)− δ]+

)
(3)

which is strictly positive for any R < 1/2.

The proof of Theorem 2 requires first to prove (2).
The result is achieved by applying standard results on the
rank properties of random matrices with independent coef-
ficients that are uniformly distributed in F2. By analyzing the
limn→∞ 1

n log2 E [PUPE(C)], the error exponent can be lower
bounded through (3). An additional result on the properties of
the random linear code ensemble C(n,R0) is given in [17,
Corr. 2.5], which we recall next.

Theorem 3 (Growth rate of the number of minimal codewords,
[17]). Consider the random linear code ensemble C(n,R0)
defined by all parity-check matrices with n columns and m =
n(1−R0) rows, where R0 = 1−m/n is the nominal ensemble
rate, containing all binary linear block codes with blocklength
n and rate R ≥ R0. We have that the growth rate of the
expected number of minimal codewords is

lim
n→∞

1

n
log2 E [|M(C)|]=

{
Hb(1−R0)−(1−R0), R0 >

1
2

R0, R0 ≤ 1
2 .

In particular for R0 > 1/2 the growth rate of the expected
number of minimal codewords is lower than R0, meaning that
PUPE→ 1, strengthening Theorem 2.

V. ASYMPTOTIC ANALYSIS OF LDPC CODE ENSEMBLES

For the analysis of LDPC codes over the 2-UBAC, we
analyze two decoding strategies, namely ML decoding and
peeling decoding. The former has O(n3) complexity, although
efficient decoders that exploit the sparse nature of the system
of equations in (1) do exist (see e.g. [18]). As we will see,
while under ML decoding the choice of the pivot is irrelevant
with respect to a successful outcome of the decoding process,
under peeling decoding the choice of the pivot plays a crucial

role, i.e., the decoding may succeed or fail depending on the
selected pivot. In the following, we will provide only the
statement of the main theorems with a brief outlook to the
proofing technique.

A. Maximum-likelihood Decoding: A Negative Result

We discuss next a negative result that holds for any unstruc-
tured LDPC code ensemble, under ML decoding. Specifically,
the following theorem shows that certain LDPC code ensem-
bles are not suitable for communication over the 2-UBAC.

Theorem 4. Consider an LDPC code ensemble CnΛ,P. If CNs
admit only degrees 2 and 3, then the ensemble average ML
decoding PUPE cannot be made arbitrarily small as n→∞.

The result stated in Theorem 4 can be proved by focusing
on codewords with weight linear in n. The associated induced
graph possesses only CNs of degree zero or two. We have
that (1) admits two solutions if and only if the residual graph
is a cycle touching all vertexes (VNs). This implies that
all VNs must have degree two. It can be shown that the
probability that a random 2-regular graph is unicyclic goes
to zero polynomially fast in the order of the graph.

B. Peeling Decoding and Pivoting

We assume in the following that the reader is familiar with
erasure peeling decoding [19] [20, Chapter 3] of LDPC codes.
We distinguish two pivoting strategies:

1) Random pivoting. A pivot is picked uniformly at random
within E . In this case, the decoding complexity is O(n);

2) Optimum pivoting. The decoder attempts decoding by
trying one-by-one all pivots in E . Pivoting stops when
a pivot that yields a solution of all erasures is found,
or all pivots have been tried. In this case, the decoding
complexity is O(n2).

We refer to pivots whose guessing allows the recovery of
all erasures as good pivots, whereas pivots that do not yield a
success are called bad pivots. Among bad pivots, there might
exist pivots whose guessing does not allow solving any of the
remaining erasures. We refer to such pivots as locked pivots.
The existence of good and bad pivots is illustrated through the
following example.

Example 2. Figure 3 depicts a Tanner graph representing the
constraints imposed on the transmitted codewords by a (5, 2)
LDPC code. Additional nodes are included, which represent
the channel observations. Figure 4 illustrates the case where
yn = (2, 1, 1, 1, 1). Decoding proceeds by operating over a
single-user graph. After observing the channel output, four
erasures remain to be solved. The first step consists in selecting
a pivot. Note that the peeling decoder is doomed to fail if we
choose x2 as pivot. On the contrary, by selecting any pivot
among x3, x4 and x5 allows recovering all the erasures.

The following lemma allows simplifying the analysis of
peeling decoding.

Lemma 3 (All-zero codeword). Consider two users transmit-
ting over the BAC with a (n, k) LDPC code C, and denote as

c1 c1

c2 c2

c3 c3

v1 v1y1

v2 v2y2

v3 v3y3

v4 v4y4

v5 v5y5

Fig. 3. Example of transmission over the 2-UBAC with a length-5 LDPC
code.

c1 c1

c2 c2

c3 c3

v1 v1y1

v2 v2y2

v3 v3y3

v4 v4y4

v5 v5y5

2

1

1

1

1

1

?

?

?

?

1

?

?

?

?

c1

c2

c3

v1x1

v2x2

v3x3

v4x4

v5x5

1

?

?

?

?

Fig. 4. Decoding by turning the problem into an erasure decoding problem.

An, Bn the transmitted codewords. Then, the PUPE and the
DFP under peeling decoding are conditionally independent on
An.

Lemma 3 extends the Lemma 2 to peeling decoding of
LDPC codes under random and optimal pivoting. We omit the
proof, since it follows directly by the fact that under either
pivoting approach, the outcome of decoding depends only on
the erasure set E . Lemma 3 allows assuming the transmission
of the all-zero codeword by one of the two users. Assume next
xi, i ∈ E , to be the chosen pivot. Peeling decoding succeeds
if and only if the set of VNs with indexes in E \ {i} does not
contain stopping sets. If an = 0n, this is equivalent to require
that supp(bn) \ {i} does not contain stopping sets.

We discuss first a negative result holding for any (regular
or irregular) unstructured LDPC code ensemble, under peeling
decoding.

Theorem 5. Consider transmission with a random code C
from an LDPC code ensemble CnΛ,P. Assume furthermore
An = 0n. Denote by σn the expected fraction of locked pivots,
where the expectation is over the code C and the choice of
the codeword Bn. If the maximum check node degree is larger
than 3, then

lim
n→∞

σn = σ > 0.

The proof of Theorem 5 requires the introduction of the
notion of dominant graph type for a (Λ,P) LDPC code en-
semble. The dominant graph type (ω?,L?,R?) is the triplet for
which GIG(ω,L,R) attains its global maximum. Qualitatively
speaking, by picking a random code C in CnΛ,P and by selecting
a random codeword Bn in C, we have that G(Bn) will possess
a number of VNs close to w? = ω?n and a degree distributions
close to (L?,R?), with high probability, as n grows large.
Assume now that R? admits a positive fraction of CNs with
degree larger than two. It is then sufficient to prove that there
is a constant expected fraction of VNs in G(Bn) which are
connected only to CNs with degree larger than two in G(Bn).
In fact, by selecting a VN at random in G(Bn), and denoting
its degree as d, there is a positive probability of having all d

50 100 150 200 250 300 350 400
10−3

10−2

10−1

100

1− εD

n

D
F
P

Random pivoting

Optimum pivoting

Fig. 5. DFP vs. blocklength n for (3, 4) regular LDPC codes under random
and optimum pivoting.

edges connected to the subset of CNs with degree larger than
two. An obvious consequence of Theorem 4 and of Theorem
5 is provided by the following lemma.

Corollary 1. Under peeling decoding and random pivoting,
the average of the DFP of any LDPC code ensemble is non-
vanishing as n→∞.

In fact, the result stated by Theorem 4 is inherited by any
decoder, including peeling decoding under random pivoting.
Moreover, Theorem 5 implies that there is fixed probability of
selecting as pivot a locked pivot. Figure 5 provides empirical
evidence of the result stated by Corollary 1. In particular,
the DFP under random pivoting and under optimum pivoting
is provided for codes from the (3, 4) regular ensemble, and
various values of the blocklength n. The result are obtained
by Monte Carlo simulations, where for each blocklength a
code has been drawn randomly from the ensemble. The DFP
appears to approach a floor at ≈ 3.7× 10−2 as n grows.

Theorem 6. Consider transmission with a random code C
from an LDPC code ensemble CnΛ,P. Assume furthermore An =
0n. Denote by γn(l, r) the expected fraction of good pivots,
where the expectation is over the code C and the choice of
the codeword Bn, and by

γ(l, r) = lim
n→∞

γn(l, r).

As n→∞ the expected fractions of good pivots for the (3, 4),
(4, 5) and (5, 6) regular LDPC code ensembles are lower
bounded respectively by γ(3, 4) ≥ 0.963, γ(4, 5) ≥ 0.770
and γ(5, 6) ≥ 0.618.

The proof of Theorem 6 involves several steps. First, given
an (l, r) regular LDPC code ensemble, one should determine
the dominant induced graph type (ω?,L?,R?). We know that
for n large the graph induced by a random codeword Bn in
a random code C ∈ Cnl,r will possess about w? = ω?n VNs,
where for the ensembles under analysis ω? = 1/2. Moreover,
L?d = 1 for d = l and L?d = 0 for d 6= l (since the code is
regular). It is possible to show that if ω? = 1/2, then R?

d = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

•

δ? = 0.911

GSS(δ)

GCW(δ)

δ

G
C
W
(δ
),

G
S
S
(δ
)

Fig. 6. Growth rate of the codeword weight distribution and growth rate of
the stopping set weight distribution for the ensemble defined by the degree
distribution pair (L?,R?), being (L?,R?) the degree distribution of the
dominant induced graph type of the (3, 4) regular LDPC code ensemble. The
fact that GCW < 0 simply means that for this ensemble the typical codeword
is minimal with high probability.

for d odd while for d even we have R?
d = K

(
r
d

)
where K

is a normalization constant. It follows that the residual graph
R(Bn) will have about w? = ω?n vertexes and R?

2m edges,
with m = nl/r. Furthermore, the degree distribution of the
residual graph will be close to a binomial distribution with
parameters (l, p) where p = 4R?

2/r. By analyzing the degree
distribution of the residual graph, it is possible to verify that
the condition for the emergence of a giant component [21]
is met by the (3, 4), (4, 5) and (5, 6) regular LDPC code
ensembles (these are the only regular LDPC code ensembles
satisfying the condition). Moreover, the size of the giant
component can be determined via [22, Theorem 1]. Following
[22], let us denote by εD the fraction of the residual graph
vertexes belonging to the giant component (i.e., the fraction
of VNs in the induced graph connected with degree-2 CNs).
We refer to εD as the normalized giant component size. It is
evident that by guessing the value of a codeword bit associated
to a VN (i.e., a vertex) belonging to the giant component,
we expect to resolve at least w?εD erasures. What is left to
be addressed, is what happens to the remaining w?(1 − εD)
erasures. To do so, we consider an irregular LDPC code
ensemble with blocklength w? and degree distribution pair
(L?,R?). For such ensemble, we derive the growth rate of the
stopping set weight distribution

GSS(δ) = lim
w?→∞

1

w?
log2 Ā

SS

δw? .

Denote by δ? critical exponent stopping ratio, i.e., the first
positive zero crossing of GSS(δ). Owing to l > 2, we have
that the probability of having stopping sets of size ≤ δ?w?

goes to zero polynomially fast in n [23]. (This can also be
shown by noticing tha the full Tanner graph is an expander,
so that stopping sets ≤ δw? do not exist, cf. [20, Section 8.4].)
It follows that, if

1− εD < δ? (4)

decoding will proceed by solving all erasures with high
probability. We have that for the (3, 4) regular ensemble
εD = 0.963 and δ? = 0.911, for the (4, 5) regular ensemble
εD = 0.854 and δ? = 0.770, and for the (5, 6) regular
ensemble εD = 0.549 and δ? = 0.618. In all three cases
the condition (4) is met. For illustration, the growth rate of
the stopping set weight distribution (as well as the growth
rate of the codeword weight distribution) for the ensemble
with degree distribution pair (L?,R?), being (L?,R?) the
degree distribution of the dominant induced graph type of
the (3, 4) regular LDPC code ensemble, is provided in Figure
6. Remarkably, by inspection of Figure 5, we see that under
random pivoting the DFP floors approaching for large n the
upper bound 1 − εD on the fraction of bad pivots. A similar
behavior have been observed for the (4, 5) and (5, 6) regular
LDPC code ensembles. This fact is striking, since it seems
to suggest that the analysis of the residual graph degree
distribution yields a tight estimate of the true expected fraction
of bad pivots (at least for regular LDPC code ensembles).

We remark that, although our method fails to give non-
zero lower bound for any other regular ensemble, many open
problems remain. First, it could be that the fraction of good
pivots converges to zero, but their number stays positive
nevertheless. Second, our method (that essentially only tracks
the number of degree-2 check nodes in the residual graph but
does not account for the possibility of creating new degree-2
check nodes as the peeling progresses) may give a sub-optimal
bound. Finally, we have not attempted to extend our method
to irregular ensembles.

VI. REMARKS ON NONLINEAR CODES

First, we recall that a standard observation dating back to
Lindström shows that using a nonlinear code (with codewords
taken to be columns of the parity check matrix of a 2-error
correcting BCH code) achieves rate 1/2 and exactly zero
PUPE over 2-UBAC, cf. [24, Section II.A], which also shows
that decoder complexity is O(n3) or smaller (depending on the
way F2k -multiplication is implemented). It is widely believed
that under zero-error PUPE, this rate bound is not improvable,
with the currently best upper bound equal to 0.5753 in [25].

We have seen in Theorems 1 and 2 that the random linear
code has vanishing (but non-zero) PUPE up to the critical rate
of CLIN = 1/2. Next, we observe yet another way rate-1/2 is
special.

Theorem 7 (TIN capacity). Consider a code C and the
following simple TIN decoder (for treat interference as noise).
It prepares a list of all codewords cn ∈ C which are
compatible with the received vector (cn is compatible with
yn if for all i with yi 6= 1 we have ci = yi/2). If the list is of
size greater than two then error is declared, otherwise the list
becomes a decoded output. If C is a random nonlinear code
of rate R with codewords uniform on {0, 1}n, then

lim
n→∞

E [PUPE(C)] =

{
0, R < 1/2,

1, R > 1/2
.

We mention that the coincidence of CLIN = CTIN < C
remains true for a general 2-user A-channel, namely we have:

CLIN = CTIN = log2 q −
q − 1

q
< C = log2 q −

q − 1

2q
. (5)

Next, we ask whether there exist any polynomial time/space
coding scheme for attaining the capacity (C = 3/4) of the 2-
UBAC. The answer is positive. First, a simple random coding
argument shows that for any R < 3/4 and for any integer L
there exists a collection C1, . . . , CL of linear codebooks such
that any pair of them Ci, Cj (i 6= j) has a vanishing error
when used on a (sourced!) BAC. Furthermore, the decoder
has O(n3) complexity by running the Gaussian elimination.

Next, we use this collection of codebooks to build a 2-
UBAC code by considering a two-phase scheme. In the
first phase each of the users selects a random integer from
{1, . . . , L}. These two messages are encoded via a zero-error
2-UBAC code in O(log2 L) channel uses. Next, each user
transmits its data via a respective codebook Ci. Note that
asymptotically we have

lim
n→∞

E [PUPE(C)] =
1

L
,

since errors happen only when both users select the same
codebook. Thus by taking L large we can achieve arbitrary
low error and rate R→ 3/4. The disadvantage of this scheme
is that even if Ci’s are linear codes1 this requires about
n2

PUPE space. So while technically it is polynomial time/space
algorithm, the dependence on PUPE is prohibitive.

Open question: Does there exist a coding scheme for
2-UBAC achieving R > 1/2 with time-space complexity
poly(n, logPUPE)?

We mention one possible idea for achieving this. Notice that
a simple search shows that there exists an [5]→ {0, 1}3 code
for 2-UBAC with zero PUPE. Thus, using this code as an
inner code we can convert every 3 uses of BAC into a single
channel use of A-channel with q = 5. Then together with (5)
we notice that concatenating our inner code with either TIN
code or a random F5-linear code results in rate ≈ 0.507 and
vanishing PUPE. This may appear to have solved the open
question because (one guesses) the linear code can be decoded
by some version of the Gaussian elimination. Unfortunately,
this latter statement is wrong. In fact over the A-channel with
q > 2 decoding a linear code is NP hard2.

We conclude by mentioning two other interesting open
directions. First, it is not clear how to implement LDPC codes
for the 2-user A-channel with q > 2 since the peeling is no
longer possible. Second, it is interesting whether it is possible
to achieve R = 1/2 via iterative decoding. We conjecture
that except for the three examples we have found all other
regular LDPC code ensembles do not yield vanishing PUPE.
However, it is possible that there exist irregular LDPC code
ensembles (or other sparse-graph codes) attaining R → 1/2
and PUPE→ 0 as n→∞.

1Interestingly, it can be shown that taking Ci’s to be random cosets of a
fixed linear code C0 does not work: the rate bottlenecks at 1/2 again.

2Yuzhou Gu has communicated to us a reduction from q-NAE-SAT.

REFERENCES

[1] Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE
International Symposium on Information Theory (ISIT), Jun. 2017.

[2] E. Casini, R. De Gaudenzi, and O. Del Rio Herrero, “Contention
Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random
Access Schemefor Satellite Access Packet Networks,” IEEE Trans.
Wireless Commun., vol. 6, no. 4, pp. 1408–1419, Apr. 2007.

[3] C. Stefanovic, P. Popovski, and D. Vukobratovic, “Frameless ALOHA
protocol for wireless networks,” IEEE Commun. Lett., vol. 16, no. 12,
pp. 2087–2090, Dec. 2012.

[4] E. Paolini, G. Liva, and M. Chiani, “Coded Slotted ALOHA: A Graph-
Based Method for Uncoordinated Multiple Access,” IEEE Trans. Inf.
Theory, vol. 61, no. 12, pp. 6815–6832, Dec. 2015.

[5] E. Sandgren, A. Graell i Amat, and F. Brännström, “On Frame Asyn-
chronous Coded Slotted ALOHA: Asymptotic, Finite Length, and Delay
Analysis,” IEEE Trans. Commun., vol. 65, no. 2, pp. 691–704, Feb. 2017.

[6] F. Clazzer, C. Kissling, and M. Marchese, “Enhancing Contention Res-
olution ALOHA Using Combining Techniques,” IEEE Trans. Commun.,
vol. 66, no. 6, pp. 2576–2587, Jun. 2018.

[7] R. Calderbank and A. Thompson, “CHIRRUP: a practical algorithm for
unsourced multiple access,” Information and Inference: A Journal of the
IMA, vol. 9, no. 4, pp. 875–897, 12 2019.

[8] S. S. Kowshik, K. Andreev, A. Frolov, and Y. Polyanskiy, “Energy
efficient coded random access for the wireless uplink,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4694–4708, Aug. 2020.

[9] V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A coded
compressed sensing scheme for unsourced multiple access,” IEEE Trans.
Inf. Theory, vol. 66, no. 10, pp. 6509–6533, Oct. 2020.

[10] A. Fengler, P. Jung, and G. Caire, “Sparcs for unsourced random access,”
IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894–6915, Oct. 2021.

[11] Sigfox, “SIGFOX: The Global Communications Service Provider for the
Internet of Things,” www.sigfox.com.

[12] LoRa Alliance, “The LoRa Alliance Wide Area Networks for Internet
of Things,” www.lora-alliance.org.

[13] N. Abramson, “The ALOHA System - Another Alternative for Computer
Communications,” in Proc. 1970 Fall Joint Computer Conference.
AFIPS Press, Nov. 1970.

[14] S.-C. Chang and J. Wolf, “On the t-user m-frequency noiseless multiple-
access channel with and without intensity information,” IEEE Trans. Inf.
Theory, vol. 27, no. 1, pp. 41–48, Jan. 1981.

[15] T.-Y. Hwang, “Decoding linear block codes for minimizing word error
rate,” IEEE Trans. Inf. Theory, vol. 25, no. 6, pp. 733–737, Nov. 1979.

[16] J. L. Massey, “Minimal codewords and secret sharing,” in Proc. 6th joint
Swedish-Russian International Workshop on Information Theory, 1993,
pp. 276–279.

[17] A. Ashikhmin and A. Barg, “Minimal vectors in linear codes,” IEEE
Trans. Inf. Theory, vol. 44, no. 5, pp. 2010–2017, May 1998.

[18] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, Feb.
2001.

[19] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
569–584, Feb. 2001.

[20] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

[21] M. Molloy and B. Reed, “A critical point for random graphs with a
given degree sequence,” Random Structures and Algorithms, vol. 6, pp.
161 – 180, 1995.

[22] ——, “The size of the giant component of a random graph with a given
degree sequence,” Combinatorics, Probability and Computing, vol. 7,
pp. 295–305, 1998.

[23] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution
of LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp.
929–953, Mar. 2005.

[24] O. Ordentlich and Y. Polyanskiy, “Low complexity schemes for the
random access gaussian channel,” in IEEE International Symposium on
Information Theory (ISIT), Jun. 2017.

[25] G. Cohen, S. Litsyn, and G. Zémor, “Binary b2-sequences: a new upper
bound,” Journal of Combinatorial Theory, Series A, vol. 94, no. 1, pp.
152–155, 2001.

