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Abstract

We consider the classical problems of estimating the mean of an n-dimensional normally
(with identity covariance matrix) or Poisson distributed vector under the squared loss. In a
Bayesian setting the optimal estimator is given by the (prior-dependent) conditional mean.
In a frequentist setting various shrinkage methods were developed over the last century. The
framework of empirical Bayes, put forth by Robbins [Rob56], combines Bayesian and frequentist
mindsets by postulating that the parameters are independent but with an unknown prior and
aims to use a fully data-driven estimator to compete with the Bayesian oracle that knows the
true prior. The central figure of merit is the regret, namely, the total excess risk over the
Bayes risk in the worst case (over the priors). Although this paradigm was introduced more
than 60 years ago, little is known about the asymptotic scaling of the optimal regret in the
nonparametric setting.

We show that for the Poisson model with compactly supported and subexponential priors,
the optimal regret scales as Θ(( logn

log logn )2) and Θ(log3 n), respectively, both attained by the
original estimator of Robbins. For the normal mean model, the regret is shown to be at least
Ω(( logn

log logn )2) and Ω(log2 n) for compactly supported and subgaussian priors, respectively, the

former of which resolves the conjecture of Singh [Sin79] on the impossibility of achieving bounded
regret; before this work, the best regret lower bound was Ω(1). In addition to the empirical
Bayes setting, these results are shown to hold in the compound setting where the parameters
are deterministic. As a side application, the construction in this paper also leads to improved
or new lower bounds for density estimation of Gaussian and Poisson mixtures.
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1 Introduction

Consider estimating an unknown parameter θ ∈ R10 from a single measurement Y ∼ N (θ, I10).
Suppose that the observed data is

Y = [1.08, −2.43, 1.52, −1.17, 1.39, 8.3, 10.02, 10.61, 9.3, 10.14] .

Although the worst-case reasoning suggests simply using the maximum likelihood estimator (MLE)
θ̂ = Y , it is well-known by now that it is often advantageous to use shrinkage estimators, such as
James-Stein. However, in the example shown,1 it should also be clear that applying the James-Stein
estimator on the first 5 coordinates and the rest separately would be even more advantageous since
shrinking to a common mean of all 10 coordinates (in this bimodal situation) appears unnatural.
How can one formalize derivation of such clever procedures and how can one study their funda-
mental limits? Both of these questions were addressed in a decision-theoretic framework proposed
by Robbins [Rob51, Rob56] under the name of empirical Bayes. Since then a lot has been writ-
ten about this paradigm and empirical Bayes methodology has been widely used in practice for
large-scale data analysis, with notable applications in computational biology especially microarrays
[ETST01], sports prediction [Bro08], etc. We refer to the survey articles [Cas85,Zha03,Efr21] and
the monograph [Efr12] for theory and methodology for empirical Bayes.

The basic tenet and the major surprise of the empirical Bayes theory is that, when the number
of independent observations is large, it is possible to “borrow strength” from these independent
(and seemingly unrelated) observations so as to achieve the optimal Bayes risk per coordinate
asymptotically. In this work we study the principal performance metric (regret) and its asymptotic
scaling as the number of observations grows, thereby characterizing the optimal speed to approach
the Bayes risk. We proceed to formal definitions.

1For a bigger example in the same spirit, see Efron’s “two towers” example [Efr19, Figure 1].

2



1.1 Definitions and main results

Throughout the paper, we use the vector notation θn , (θ1, . . . , θn). Let {Pθ : θ ∈ Θ ⊂ R} be
a parametric family of distributions with a bi-measurable density fθ(y) with respect to a com-
mon dominating measure ν. Conditioned on the parameters θn, the observations Y1, . . . , Yn are
independently distributed according to Pθi , i = 1, . . . , n.

Following the terminology in [Rob51, Rob56, Zha97, Zha03], we consider both the empirical
Bayes (EB) and compound settings, in which θi’s are iid (with an unknown prior) or deterministic,
respectively. In both settings, the goal is to estimate the parameters θ1, . . . , θn under the quadratic
loss and compete with the oracle that has extra distributional information (e.g. the prior or the
empirical distribution of the parameters).

We start with the empirical Bayes setting. Let θn = (θ1, . . . , θn)
i.i.d.∼ G. Then Yi

i.i.d.∼ PG, where
PG =

∫
PθG(dθ) is the mixture under the prior (mixing distribution) G with density fG(y) =∫

fθ(y)G(dθ). Denote by EG the expectation taken over the joint distribution of (θn, Y n). The
Bayes risk under the prior G is the minimum mean squared error (MMSE) of estimating θ ∼ G
based on a single observation Y ∼ fθ:

mmse(G) , inf
θ̂
EG[(θ̂(Y )− θ)2] = EG[(θ̂G(Y )− θ)2], (1)

where

θ̂G(y) , EG[θ|Y = y] =

∫
Θ θfθ(y)G(dθ)∫
Θ fθ(y)G(dθ)

(2)

is the Bayes estimator (conditional mean) associated with the prior G. In this paper we will be
concerned with the following basic models:

• Normal mean model: Pθ = N (θ, 1), θ ∈ R, with density fθ(y) = ϕ(y − θ) and ϕ(y) ,
1√
2π
e−y

2/2. For any prior G, the corresponding Bayes estimator can be expressed using the

mixture density fG and its derivative as (Tweedie’s formula [Efr11]):

θ̂G(y) = y +
f ′G(y)

fG(y)
, (3)

with the second term known as the Bayes correction.

• Poisson model: Pθ = Poi(θ), θ ∈ R+, with probability mass function fθ(y) = e−θθy

y! and

y ∈ Z+ , {0, 1, . . .}. The Bayes estimator takes the form:

θ̂G(y) = (y + 1)
fG(y + 1)

fG(y)
. (4)

Both models are well studied and widely applied in practice. In addition to denoising, the nor-
mal mean model has also found usefulness in other high-dimensional problems such as principle
component analysis.

The main objective of empirical Bayes is to compete with the oracle that knows the true prior
and minimize the excess risk, known as the regret [JZ09,Efr11,Efr19], by mimicking the true Bayes
estimator. This strategy is either carried out explicitly (by learning a prior from data then executing
the learned Bayes estimator) or implicitly (by constructing an approximate Bayes estimator using
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the marginal distribution of the observation directly).2 Robbins’ famous estimator for the Poisson
model [Rob56] belongs to the latter category. Namely, we estimate θj by

θ̃j , (Yj + 1)
N(Yj + 1)

N(Yj)
, N(y) , |{i ∈ [n] : Yi = y}|. (5)

which can be viewed as a plugin version of the Bayes estimator (3) replacing the marginal fG by
the empirical version. Despite the broad application of the Robbins estimator in practice, little is
known about its optimality.

To study the fundamental limit of empirical Bayes estimation, let us define the optimal regret.
Given a collection of priors G, the total regret is defined as

TotRegretn(G) , inf
θ̂n

sup
G∈G

{
EG
[
‖θ̂n(Y1, . . . , Yn)− θn‖2

]
− n ·mmse(G)

}
. (6)

where ‖ · ‖ denotes the Euclidean norm and the infimum is taken over all estimator θ̂n with respect
to Y1, . . . , Yn. In this paper we focus on nonparametric settings; for example, the class G consists
of all priors over a compact parameter space.

Under appropriate assumptions, Robbins demonstrated it is possible to achieve a sublinear
total regret o(n), so that the excess risk per observation is amortized as the sample size n tends
to infinity. A natural question is to determine the order of the optimal regret. Singh conjectured
[Sin79, p. 891] that for any exponential family, bounded total regret is not possible even if the
priors are compactly supported. In this work we resolve this conjecture in the positive for both
normal and Poisson model. Before this work the best lower bound is Ω(1) [LGL05], which can be
shown by considering a parametric family of priors.

Our main results are as follows:

Theorem 1 (Normal means problem). Consider the normal mean model: Pθ = N (θ, 1), θ ∈ R.

• Let P([−h, h]) be the set of all distributions supported on [−h, h]. There exist constants
c0 = c0(h) > 0 and n0, such that for all n ≥ n0,

TotRegretn(P([−h, h]) ≥ c0

(
log n

log logn

)2

. (7)

• Denote by SubG(s) the set of all s-subgaussian distributions, namely SubG(s) = {G : G([−t, t]c) ≤
2e−t

2/(2s), ∀t > 0}. Then for some constant c1 = c1(s) > 0 and all n ≥ n0

TotRegretn(SubG(s)) ≥ c1 log2 n . (8)

Theorem 2 (Poisson problem). Consider the Poisson model Pθ = Poi(θ), θ ∈ R+.

• For h > 0, there exist constants c1 = c1(h), c2 = c2(h) such that for all n ≥ n0,

c1

(
log n

log logn

)2

≤ TotRegretn(P([0, h]) ≤ c2

(
log n

log log n

)2

. (9)

• Denote by SubE(s) the set of all s-subexponential distributions on R+, namely SubE(s) = {G :
G([t,∞)) ≤ 2e−t/s,∀t > 0}. Then for some constants c3 = c3(s), c4 = c4(s) and all n ≥ n0,

c3 log3 n ≤ TotRegretn(SubE(s)) ≤ c4 log3 n . (10)
2These two approaches are referred to as g-modeling and f -modeling in [Efr14], respectively.
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Furthermore, in both (9) and (10), the upper bound is achieved by the estimator (5) of Robbins.

A few remarks are in order:

1. It is known that tail assumptions (e.g. compact support or moment conditions such as sub-
gaussianity) are necessary for achieving non-trivial regret. In fact, in the normal means
problem, if we allow all priors on R, [Zha09, Example 1] showed that TotRegretn = n+ o(n),
which is almost as large as possible.

2. The upper bound in (9) for compactly supported priors is essentially contained in [BGR13],
who analyzed the risk of the Robbins estimator with sample size n replaced by Poi(n), which
renders the empirical counts N(y)’s in (5) independent for technical convenience. In Ap-
pendix C we bound the regret of the Robbins estimator without Poissonization following
essentially the same strategy as in [BGR13] and fix a misstep therein.

3. The notion of conditional regret is defined in [Efr11, Sec. 4], which refers to the excess predic-
tion risk of a given EB estimator over the oracle (Bayes) risk conditioned on the value y of the
observation. For several parametric classes of priors and parametric EB estimators, such as
Gaussian priors and the James-Stein estimator (see [Efr11, Eq. (4.10)]), the conditional regret

is shown to be c(y)
n for some explicit constant c(y). Our results show that for nonparametric

classes of priors, this constant c(y) is not uniformly bounded and the conditional regret in
the worst case is of higher order than 1

n by logarithmic factors.

4. In addition to Robbins estimator, which does not take a Bayes form, the optimal regret
in (9) and (10) in the Poisson model can also achieved by a more principled approach of
first estimating the prior then using the corresponding Bayes estimator. As suggested by
Robbins [Rob56, Section 6], one could use Wolfowitz’s minimum-distance estimator [Wol57].
This strategy indeed succeeds for a class of minimum-distance estimators, including the
nonparametric MLE (NPMLE) [KW56, Lin83] which minimizes the Kullback-Leibler diver-
gence [JPW21]. In contrast, for the Gaussian model, the current best regret upper bound is
O(log5 n) for the subgaussian (hence also compactly supported) class [JZ09] – see Section 1.2
for a more detailed discussion.

5. An interesting open question for the Poisson model is to obtain a constant-factor characteri-
zation of regret uniformly over h (or s) in (0,∞). At this point it is not clear how magnitude
of h (or s) affects the regret and such characterization would clarify this.

Compound setting. In the compound estimation problem, the unknown parameter θn is no
longer assumed to be random. Again, we are interested in estimating this deterministic vector θn

by competing with an oracle possessing some side information about θn. There are two natural
choices of the oracle resulting in the two definitions of the regret, that we define below. For a given
θn let us denote its empirical distribution by

Gθn ,
1

n

n∑
i=1

δθi . (11)

A simple observation is that

inf
f1

n∑
i=1

Eθi [(θi − f1(Yi))
2] = n ·mmse(Gθn) ,
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achieved by the Bayes estimator under the prior being the empirical distribution, namely, Eθ∼Gθn [θ|Y ].
This leads us to defining the (most commonly used) version of the regret in the compound setting:

TotRegretCompn(Θ) , inf
θ̂n

sup
θn∈Θ⊗n

{
E[‖θ̂n − θn‖2]− n ·mmse(Gθn)

}
, (12)

which, by the observation above, corresponds to competing with an oracle who can adapt to θn

but is restricted to use a separable estimator, namely, applying a common univariate rule f1 to all
coordinates.

An alternative notion of regret was introduced in [GR09], which can be formalized by defining

Roracle(Gθn) = inf
f

sup
σ∈Sn

Eσθn [‖σθn − f(Y n)‖2] ,

where Sn is the group of permutations on [n] and σθn , (θσ(1), . . . , θσ(n)). One can show that
the value of Roracle is unchanged if one (a) replaces supσ with average over a random uniform σ;
or (b) if one removes supσ and instead restricts the infimum to permutation-invariant functions
f : Rn → Rn. (As [GR09] shows, the optimal f is given by the conditional expectation E[θn|Y n]
under the uniform prior on the Sn orbit of the support of Gθn .) The corresponding notion of regret
is then defined as3

TotRegretComp′n(Θ) , inf
θ̂n

sup
θn∈Θ⊗n

{
E[‖θ̂n − θn‖2]−Roracle(Gθn)

}
, (13)

which can be understood either as (a) competing with the oracle that has information about Gθn

(but not θn), or (b) can adapt to θn but is restricted to use permutation-invariant estimators θ̂n.
It turns out that our lower bounds for the EB regret also apply to both versions of the compound

regret. Indeed, denote by P(Θ) the collection of all priors on the parameter space Θ. The following
general lemma relates the regret in the compound setting to that of the EB setting (see Appendix D
for a proof). As a result, for bounded parameter space, the Ω(( logn

log logn)2) regret lower bound in
Theorem 1 and Theorem 2 also hold in the compound setting.

Proposition 3.

TotRegretComp′n(Θ) ≥ TotRegretCompn(Θ) ≥ TotRegretn(P(Θ)) . (14)

Extending the definitions in (12) and (13), one can define the corresponding total regret in the
constrained setting, denoted by TotRegretCompn(G) and TotRegretComp′n(G) respectively, where
the supremum is taken over θn ∈ Rn whose empirical distribution belongs to a prescribed class
G. Similar to Proposition 3, one can relate the regret in the compound setting to that of the EB
setting. The following result (also proved in Appendix D) provides such a reduction for the normal
means problem with subgaussian priors, which shows the Ω(log2 n) lower bound in Theorem 1
continues to hold in the compound setting.

Proposition 4. Consider the normal means problem. There exists a universal constant c0 such
that for any s > 0,

TotRegretComp(SubG(s)) ≥ TotRegret(SubG(c0s))−
s

c0n
,

where SubG(s) denotes the collection of s-subgaussian distributions in Theorem 1.
3Conditions under which TotRegretComp′n = TotRegretCompn+O(1) are given in [GR09, Theorem 5.1], which are

satisfied by bounded normal mean model [GR09, Corollary 5.2].
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1.2 Related work

The field of empirical Bayes and compound decision is exceedingly rich in terms of both theoretical
and methodological development. In this paper we have focused on the specific problem of esti-
mation under the squared error in both the normal and Poisson model, with the main objective
of determining the optimal regret for various nonparametric classes of priors. Next we review the
existing literature that are directly related to our main results. Later in Section 4 we discuss a few
different formulations and perspectives in empirical Bayes in connection with the present paper.

As mentioned earlier, the best regret lower bound before this work is Ω(1) [LGL05, Theorem
2.2], which is shown by a two-point argument (Le Cam’s method), namely, choosing two priors
which differ by 1√

n
in mean and whose corresponding mixture distributions has statistical distance

(e.g. KL divergence) O(1/n). As well-known in the high-dimensional statistics literature, two-point
method often fails to capture the correct dependency on the model complexity. Indeed, in order
to show superconstant regret, it is necessary to consider many hypotheses and Assouad’s lemma
provides a principled way to do so; see Section 2.3 for a general program of proving regret lower
bound.

For regret upper bound in the Poisson model, the only quantitative result appears to be [BGR13]
analyzing the original Robbins estimator with Poissonized sample size, which turns out to be
optimal in view of Theorem 2. For the normal mean model, a lot more is known but none meets
the lower bound in Theorem 1. The state of the art is achieved by the Generalized Maximum
Likelihood Empirical Bayes (GMLEB) method in [JZ09]. The idea of GMLEB is to first estimate a
prior using the NPMLE, then using the (regularized) Bayes rule with this estimated prior. Various
regret bounds are obtained under moment or subgaussian assumptions on the prior by a reduction
from the Hellinger risk of density estimation to regret [JZ09, Theorem 3 (ii)], and leveraging density
estimation results for Gaussian mixtures [GvdV01,Zha09]. In particular, for the subgaussian class,
it is shown that TotRegret(SubG(C)) = O(log5 n) for constant C. (In comparison, Theorem 1 shows
TotRegret(SubG(C)) = Ω(log2 n).) Furthermore, these upper bounds on the regret (additive error)
are extended to the compound setting [JZ09, Theorems 1 and 5] leading to attaining the Bayes risk
(under the empirical distribution as the prior) up to multiplicative factor of 1 + o(1), referred to as

adaptive ratio optimality, provided that the Bayes risk is at least Ω( log5 n
n ).

In addition to GMLEB, kernel-based EB estimator is also commonly used. Note that unlike
the discrete Poisson model, there exists no unbiased estimator for the mixture density, so there
is no counterpart of Robbins estimator (5) for the Gaussian model. Nevertheless, the form of the
Bayes estimator (3) motivates using kernel-based estimators in place of the mixture density and its
derivative. Using polynomial kernels, Singh [Sin79] obtained upper bound for general exponential
families, which, for the bounded normal means problem, leads to no(1) upper bound for the total
regret, which is subsequently improved to O((log n)8) in [LGL05, Example 1] by using polynomials
of degree that scales logarithmically in n. On the other hand, in view of the analyticity of the
Gaussian mixture, [Zha09] uses sinc kernel to achieve adaptive ratio optimality and a total regret
that scales as

√
n. Similar result is also obtained in [BG09] using Gaussian kernel under stronger

assumptions.
Another line of research aims to obtain regret bound under regularity assumptions on the prior,

e.g., by imposing conditions on the Fourier transform g̃(ω) of the prior density g. Pensky [Pen99]
constructed a wavelet-based EB estimator θ̃(·) = θ̃(·;Y1, . . . , Yn), which, under the assumption that∫
|g̃(ω)|2(ω2 +1)α <∞ for some α > 0, satisfies E[(θ̃(y)−θG(y))2] = O( (logn)3/2

n ) uniformly for y in
any compact interval. For the related testing problem, Liang [Lia04] showed that if g̃ has bounded
support then the parametric rate O( 1

n) is achievable by a kernel-based EB estimator. In this paper,
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we only impose tail conditions on the prior rather than smoothness of the prior density.

1.3 Notations

Given a measurable space (X ,F), let P(X ) denote the collection of all probability measures on
(X ,F). Throughout this paper, X will be taken to be a subset of R and F the Borel σ-algebra.
The Lebesgue measure on R is denoted by Leb. Given a measure µ on X , let L2(µ) denote the
collection of all square-integrable functions f : X → R with ‖f‖L2(µ) , (

∫
X f(x)2µ(dx))1/2 and

inner product (f, g)L2(µ) ,
∫
X f(x)g(x)µ(dx).

Throughout the paper we adopt the vector notation yn , (y1, . . . , yn) which applies to both
deterministic and random vectors. We use standard asymptotic notations: For any sequences {an}
and {bn} of positive numbers, we write an & bn if an ≥ cbn holds for all n and some absolute
constant c > 0, an . bn if an & bn, and an � bn if both an & bn and an . bn hold; the notations
O(·), Ω(·), and Θ(·) are similarly defined. We write an = o(bn) or bn = ω(bn) or an � bn or bn � an
if an/bn → 0 as n→∞.

1.4 Organization

The rest of the paper is organized as follows. Section 2 discusses the basic reduction for EB regret
and introduces a general program for proving regret lower bounds. In Section 3 we apply this
program to show the lower bounds in Theorems 1 and 2 for both the Gaussian and Poisson model,
making use of the analytical tools developed in Appendices A.1 and B. Section 4 concludes the
paper with a discussion of related problems and open questions. Regret upper bound for Robbins
estimator is shown in Appendix C. With most of the paper confusing on the EB setting, proofs
for the compound setting is deferred to Appendix D. As a side application, the construction in the
present paper can be used to obtain improved or new lower bounds for mixture density estimation;
Appendix E collects these results.

2 Preliminaries

2.1 Reduction to estimating regression functions

In this subsection we describe the basic reduction relating the total regret (6) in the empirical Bayes
setting to the problem of estimating a regression function, the latter of which is closely related to
the “density estimation” problem in the Gaussian or Poisson mixture model. In turn, the rest of
our paper proceeds in the spirit of proving the lower bounds on the density estimation, namely by
building up a large collection of densities and applying the Assouad’s lemma to show estimation
lower bound; cf. Section 2.3 for details.

First, in addition to the total regret (6) we define the individual regret.

Regretn(G) , inf
θ̂

sup
G∈G

{
EG
[
(θ̂(Y1, . . . , Yn)− θn)2

]
−mmse(G)

}
. (15)

Here Y1, . . . , Yn−1 can be viewed as training data from which we learn an estimator and apply it
on a fresh (unseen) data point Yn in order to predict θn. For example, for the Robbins estimator
{θ̃j} in (5), the learned estimator θ̂Robbins(·) = θ̂Robbins(·;Y1, . . . , Yn−1) is given by

θ̂Robbins(y) = (y + 1)
Nn−1(y + 1)

Nn−1(y) + 1

8



where Nn−1(y) =
∑n−1

i=1 1 {Yi = y} is the number of occurrences of y in the first n− 1 observations,

so that θ̃n = θ̂Robbins(Yn;Y1, . . . , Yn−1). Note that the extra “add one” in the denominator is remi-
niscent of the Laplace estimator (cf. [CT06, Sec. 13.2]); this additional smoothing ensures a nonzero
denominator which is clearly needed for achieving a non-trivial regret. Similar regularization has
also been applied in the Gaussian model to the maximum likelihood method [JZ09].

There is a simple relation between TotRegret and Regret:

Lemma 5.

Regretn(G) =
1

n
TotRegretn(G).

Proof. Given any θ̂ for (15), define θ̃n = (θ̃1, . . . , θ̃n) for (6) by θ̃i = θ̂(Y\i, Yi). By symmetry,

E[(θ̃i − θi)2] = E[(θ̂ − θn)2] for all i. This shows that TotRegretn(G) ≤ n · Regretn(G).
The other direction is less obvious. Given any θ̂n = (θ̂1, . . . , θ̂n) for (6), define a randomized

estimator θ̃ for (15) as follows by setting θ̃ = θ̂i(Y1, . . . , Yi−1, Yn, Yi+1, . . . , Yn−1, Yi) with probability
1
n for each i ∈ [n]. In other words, we randomly select i uniformly at random from [n], then swap

Yi and Yn in the sample and apply the strategy θ̂i. Then by exchangeability,

E[(θ̃−θn)2] =
1

n

n∑
i=1

E[(θ̂i(Y1, . . . , Yn, . . . , Yi)−Yn)2] =
1

n

n∑
i=1

E[(θ̂i(Y1, . . . , Yn)−Yi)2] =
1

n
E[‖θ̂n−θn‖2].

This shows that Regretn(G) ≤ 1
nTotRegretn(G).

By the orthogonality principle, the average quadratic risk of a given estimator θ̂ can be decom-
posed as

EG[(θ̂ − θ)2] = mmse(G) + EG[(θ̂ − θ̂G)2] .

Thus the regret can be viewed the quadratic loss of estimating the Bayes rule as a function, with
the extra twist that the error is averaged with respect to the mixture distribution PG that depends
on the underlying G. In other words,

Regretn(G) = inf
θ̂

sup
G∈G

EG
[(
θ̂(Y1, . . . , Yn)− θ̂G(Yn)

)2
]

(16)

= inf
θ̂

sup
G∈G

EG
[
‖θ̂ − θ̂G‖2L2(fG)

]
(17)

where in (17) θ̂(·) is understood as θ̂(Y1, . . . , Yn−1, ·). Note a conceptual shift: with these reductions
we can think of 1

nTotRegretn as a measure of the quality of estimation of the regression function
after receiving n− 1 training samples.

2.2 Truncation of priors

Frequently we are interested in priors with compact support, which can be unwieldy to use in the
lower bound construction. Next we provide a general truncation lemma that translates regret lower
bound for priors with uniform tail bound (e.g. subgaussian or subexponential) to that for compactly
supported priors:

Lemma 6. Given a > 0, let G = P([−a, a]) denote all probability measures supported on the
interval [−a, a]. Let G′ be a collection of priors on R, such that supG∈G′ G([−a, a]c) ≤ ε ≤ 1

2 for
some ε = ε(a), and supG∈G′ EG[θ4] ≤M . Then

Regretn(G) ≥ Regretn(G′)− 6
√

(M + a4)nε. (18)

9



Proof. Define E , {|θi| ≤ a, i = 1, . . . , n} and notice that for any estimator θ̂ taking values in
[−a, a] and any prior G ∈ G′ we have

EG[(θ̂ − θn)2] = EG[(θ̂ − θn)21E ] + EG[(θ̂ − θn)21Ec ]

≤ EG[(θ̂ − θn)2 | E] +

√
EG[(θ̂ − θn)4] · PG[Ec]

≤ EG[(θ̂ − θn)2 | E] +
√

8(M + a4) · nε. (19)

For any G, let Ga denote its restriction on [−a, a], i.e., Ga(A) = G(A∩[−a,a])
G([−a,a]) . Then, we get the

following chain of inequalities:

Regretn(G) = inf
|θ̂|≤a

sup
G∈G

EG
[
(θ̂(Y1, . . . , Yn)− θn)2

]
−mmse(G)

≥ inf
|θ̂|≤a

sup
G∈G′

EGa
[
(θ̂(Y1, . . . , Yn)− θn)2

]
−mmse(Ga)

= inf
|θ̂|≤a

sup
G∈G′

EG
[
(θ̂(Y1, . . . , Yn)− θn)2

∣∣∣E]−mmse(Ga)

(a)

≥ inf
|θ̂|≤a

sup
G∈G′

EG
[
(θ̂(Y1, . . . , Yn)− θn)2

∣∣∣E]− 1

1− ε
mmse(G)

(b)

≥ inf
|θ̂|≤a

sup
G∈G′

EG
[
(θ̂(Y1, . . . , Yn)− θn)2

]
−
√

8(M + a4)(1− (1− ε)n)− 1

1− ε
mmse(G)

(c)

≥ Regretn(G′)−
√

8(M + a4)nε− 2ε
√
M,

where (a) follows from the simple fact (cf. e.g. [WV12, Lemma 2])

mmse(Ga) ≤
1

G([−a, a])
mmse(G); (20)

(b) is from (19); (c) follows from mmse(G) ≤ EG[θ2] ≤
√
M and 1

1−ε ≤ 1 + 2ε due to ε ≤ 1/2.

2.3 General program for regret lower bound

We describe our general method for proving regret lower bounds next. Select a prior G0 and
let f0 ≡ fG0 =

∫
fθG0(dθ) denote the induced mixture density. We aim to prove regret bound

by restricting to priors whose likelihood ratio relative to G0 is bounded from above and below.
Specifically, we will construct a collection of perturbations around G0 whose induced perturbations
on the regression function satisfy an approximate orthogonality property as required by Assouad’s
lemma. To describe this program, let us first introduce the necessary notations.

Define an operator K that maps a bounded measurable function r to Kr given by

Kr(y) , EG0 [r(θ)|Y = y] =

∫
r(θ)fθ(y)G0(dθ)

f0(y)
. (21)

In other words, K is an integral operator with kernel function given by the posterior density. Notice
that for the prior G defined by dG = r(θ)dG0, the corresponding mixture density is given by

fG(y) = f0(y) ·Kr(y) . (22)

10



Next, fix an arbitrary bounded function r and for sufficiently small δ, define the distribution
Gδ by

dGδ ,
1

1 + δ
∫
rdG0

(1 + δr)dG0 .

Denote by
Kθ(y) = EG0 [θ|Y = y] (23)

to be the result of applying K to the identity function θ 7→ θ. By the Bayes rule and using (22),
the regression function corresponding to Gδ satisfies:

θ̂Gδ(y) ≡ EGδ [θ|Y = y] = EG0

[
θ

1 + δr(θ)

1 + δKr(y)

∣∣∣∣Y = y

]
=
Kθ + δK(θr)

1 + δKr
(y)

= Kθ(y) + δ
K(θr)− (Kθ)(Kr)

1 + δKr
(y)

= Kθ(y) + δK1r(y) + δ2 1

1 + δKr(y)
(Kr)(y) · (K1r)(y) , (24)

where we introduced an operator

K1r , K(θr)− (Kθ)(Kr) . (25)

Note that the mapping from r to the regression function θ̂Gδ is nonlinear, but can be expressed in
terms of the linear operators K and K1; these two operators play crucial roles in the lower bound
construction. In applications below it will often be that K is a convolution-like operator, while K1

will be a differentiation operator (followed by convolution). The emergence of differentiation may
appear surprising at first, so it may be satisfying to notice from (24) an alternative definition of
K1 emphasizing the differentiation explicitly:

K1r(y) =
d

dδ

∣∣∣∣
δ=0

EGδ [θ|Y = y] .

The main method for proving our lower bounds is contained in the following proposition. We
note that similar strategy based on Assouad’s lemma has been used before in [Kim14,KG20] to show
lower bound for estimating Gaussian mixture density. Here the construction is more challenging
in view of the non-linear relationship between the regression function and the mixture density (see
(3) and (4) for example) which requires working with the kernel K and K1 defined above. The
dependency of the regression function on “high-order” information of the mixture density (such
as its derivatives) suggests the rate for individual regret may be strictly slower than the density
estimation rate. This turns out to be the case for the Poisson model [JPW21].

Proposition 7. Fix a prior distribution G0, constants a, τ, τ1, τ2, γ ≥ 0 and m real-valued functions
r1, . . . , rm on Θ with the following properties.

1. For each i, ‖ri‖∞ ≤ a;

2. For each i, ‖Kri‖L2(f0) ≤
√
γ;

3. For any v ∈ {0,±1}m, ∥∥∥∥∥
m∑
i=1

viK1ri

∥∥∥∥∥
2

L2(f0)

≥ τ‖v‖22 − τ2 (26)
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4. For any v ∈ {0, 1}m, ‖
∑m

i=1 viK1ri‖2L2(f0) ≤ τ
2
1m;

Then the regret over the class of priors G = {G : |dG/dG0 − 1| ≤ 1
2} satisfies

Regretn(G) ≥ Cδ2(m(4τ − τ2
1 )− τ2) , δ ,

1

max(
√
nγ,ma)

, (27)

where C > 0 is an absolute constant.

Remark 1. Note that the lower bound in (27) is invariant to rescaling all ri’s by a common factor.
Thus in applications, it is convenient to fix one of the parameters. For example, we will always
choose τ = 1. In fact, we will select ri’s so that they are orthonormal after the action of the kernel
K1, i.e.

(K1ri,K1rj)L2(f0) = 1{i 6= j},

so that τ1 = 1 and τ2 = 0. In this case, the regret lower bound reads

Regretn & min

{
m

nγ
,

1

ma2

}
, (28)

which, in later applications, further simplifies to Regretn & m
nγ .

Proof. Throughout the proof, C0, C1, . . . denote absolute constants. Let µi ,
∫
ridG0, which

satisfies |µi| ≤ a by the first assumption. For each binary string u = (u1, . . . , um) ∈ {0, 1}m, denote

ru ,
m∑
i=1

uiri, hu , Kru, µu ,
m∑
i=1

uiµi. (29)

We define 2m distributions indexed by u ∈ {0, 1}m as

dGu ,
1 + δru
1 + δµu

dG0, (30)

where δ > 0 is chosen so that

δma ≤ 1

16
. (31)

Then

fu ,
(1 + δhu)f0

1 + δµu
.

is the mixture density induced by the prior Gu. Let G̃ = {Gu : u ∈ {0, 1}m}. By (31), each Gu
satisfies 1

2 ≤
dGu
dG0
≤ 3

2 and hence G̃ ⊂ G. Abbreviate Tu(y) , EGu [θ|Y = y]. Then we have:

Regretn(G) ≥ Regretn(G̃)
(a)
= inf

T̂
sup

u∈{0,1}m
EGu

[
‖T̂ − Tu‖2L2(fu)

]
(b)

≥ 1

2
inf
T̂

sup
u∈{0,1}m

EGu
[
‖T̂ − Tu‖2L2(f0)

]
(c)

≥ 1

8
inf

û∈{0,1}m
sup

u∈{0,1}m
EGu

[
‖Tû − Tu‖2L2(f0)

]
(32)

where (a) follows from the representation (17) for individual regret; in (b) we used the fact that
fu
f0
≥ 1

2 to change from L2(fu) to L2(f0); (c) follows from the usual argument for restricting to
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proper estimators, namely, for any T̂ , û = argminv∈{0,1}m ‖T̂ − Tv‖L2(f0) satisfies that, for any u,

‖T̂ − Tu‖L2(f0) ≤ 2‖Tû − Tu‖L2(f0). In the remainder of this proof all ‖ · ‖2 norms are with respect
to L2(f0).

In order to apply Assouad’s lemma, we next show that we have approximate orthogonality, i.e.
for some ε and ε1 (to be specified) and all u, v ∈ {0, 1}m we have

‖Tu − Tv‖22 ≥ εdH(u, v)− ε1, (33)

where dH(u, v) ,
∑
|ui − vi| stands for the Hamming distance. Indeed, by (24), the regression

function Tu is given by

Tu = Kθ + δK1r + δ2 hu
1 + δhu

K1r. (34)

(Recall that Kθ is understood as in the sense of (23).) Since K is a conditional expectation
operator, we have ‖hu‖∞ ≤ ‖ru‖∞ ≤ ma. Thus together with the condition (31), which implies
1 + δhu ≥ 1/2, we have the following estimate on the last term in (34):∥∥∥∥δ2 hu

1 + δhu
K1ru

∥∥∥∥
2

≤ 2δ2ma‖K1ru‖2
(a)

≤ 2δ2m3/2aτ1

(b)

≤ 1

8
δ
√
mτ1 ,

where (a) follows from the fourth assumption of the lemma, and in (b) we also used (31). Then
from (34) and the triangle inequality we have

‖Tu − Tv‖2 ≥ δ‖K1(ru − rv)‖2 −
δ
√
mτ1

4
.

Squaring this, applying (a− b)2 ≥ 1
2a

2 − b2 we obtain ‖Tu − Tv‖22 ≥ 1
2δ

2‖K1(ru − rv)‖22 − 1
16δ

2mτ2
1 .

Finally, applying the assumption (26) we obtain (33) with

ε =
1

2
τδ2, ε1 = δ2

(
1

16
mτ2

1 +
1

2
τ2

)
Next, consider the following identity

fu
f0
− fv
f0

=
1 + δhu
1 + δµu

− 1 + δhv
1 + δµv

= δ
hu − hv
1 + δµu

+ (1 + δhv)
δ(µv − µu)

(1 + δµu)(1 + δµv)
.

Because of (31) we have 1 + δhv, 1 + δµu, 1 + δµv ∈ [1
2 ,

3
2 ]. Thus the χ2-divergence from fu to fv is

given by

χ2(fu‖fv) ,
∫
dµf0

(fu/f0 − fv/f0)2

fv/f0

= δ2

∫
dµf0

1 + δµv
1 + δhv

(
hu − hv
1 + δµu

+
µv − µu

(1 + δµu)(1 + δµv)

)2

≤ C0δ
2‖hu − hv‖22 + δ2(µv − µu)2

≤ C1δ
2‖hu − hv‖22 .

where the last step follows from, by Cauchy-Schwarz,

µu − µv =

∫
dG0(ru − rv) =

∫
dµf0(hu − hv) ≤ ‖hu − hv‖2.
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For any u and v such that dH(u, v) = 1, ‖hu−hv‖22 ≤ γ by the second assumption. Recall that the
χ2-divergence between n-fold product distributions is given by χ2(f⊗nu ‖f⊗nv ) = (1+χ2(fu‖fv))n−1.
We have

χ2(f⊗nu ‖f⊗nv ) ≤ C2 ∀u, v : dH(u, v) = 1 , (35)

provided that
nδ2γ ≤ 1 (36)

Applying Assouad’s lemma (see, e.g., [Tsy09, Theorem 2.12(iv)]), we have

inf
û∈{0,1}m

sup
u∈{0,1}m

EGu [dH(û, u)] ≥ C3m.

Selecting the largest δ subject to (31) and (36), the proof is completed in view of (32) and (33).

In proving our main results in both the Gaussian and Poisson model, we follow essentially the
same high-level strategy: To apply Proposition 7, we need to find many functions r1, . . . , rm which
are mapped by the operator K into orthogonal ones. Thus, it is natural to take rk to be the singular
functions of K, i.e. those that diagonalize the self-adjoint operator K∗K. Because of the general
relation between K1 and K in (25), it will turn out that rk’s indexed by sufficiently separated k’s
are also mapped to orthogonal functions by the operator K1, thus yielding a large subcollection
of functions for Proposition 7 with τ = τ1 = 1 and τ2 = 0. For the Gaussian model, we exactly
follow this strategy by identifying K∗K as a Mehler kernel and working with its eigenfunctions
(Hermite functions). For the Poisson model, it may be difficult to compute the eigenfunctions of
the resulting kernel; instead, we directly construct functions that satisfy the desired orthogonality.
We proceed to details.

3 Proofs of the main results

3.1 Normal mean model

In this section we prove Theorem 1. Choose the prior G0 = N (0, s) for s > 0 to be specified
later. Let ϕ(x) = 1√

2π
e−x

2/2 be the standard normal density. Then PG0 = N (0, 1 + s) with density

f0(y) = 1√
1+s

ϕ
(

y√
1+s

)
. Furthermore, the operators K and K1 in (21) and (25) are given explicitly

as follows:

Proposition 8.

Kr(y) = (r(η·) ∗ ϕ)(ηy), η ,

√
s

s+ 1
(37)

K1r(y) = η2K(r′)(y) , (38)

where in (37) ∗ denotes convolution and (38) holds for all r with bounded derivative.

Proof. To show (37), by definition we have

Kr(y) =
1

η

∫
R
dx
ϕ(y − x)ϕ( x√

s
)

ϕ( y√
1+s

)
r(x) .

14



Changing the integration variable to x1 = x/η and noticing that
ϕ(y−x)ϕ( x√

s
)

ϕ( y√
1+s

)
= ϕ(x1−ηy) completes

the proof of (37). We note that trivially then

(Kx)(y) = η2y , (39)

which also follows from the expression of the condition mean with a Gaussian prior. To prove (38),
we first notice that it is sufficient to show that for an arbitrary (possibly non-differentiable) bounded
r we have

K1r(y) =
d

dy
Kr(y) . (40)

Indeed, from here for differentiable r we can simply apply derivative to the first term in the
convolution in (37) and get (38). To show (40) we take derivative on the ϕ term of the convolution
and using ϕ′(z) = −zϕ(z) to get

d

dy
Kr(y) = η(r(η·) ∗ ϕ′)(ηy) = η

∫
dxr(ηx)(x− ηy)ϕ(x− ηy) = (K(xr)−KxKr)(y) ,

where we used (39) for the second term. This proves (40) by the definition of K1 operator.

In view of (38) we see that to apply Proposition 7 we need to be able to compute inner prod-
ucts of the form (Kr1,Kr2)L2(f0). To simplify these computations, we first extend (via (37)) the
domain of K to L2(R,Leb) and then introduce the self-adjoint operator S = K∗K : L2(R,Leb)→
L2(R,Leb), so that for any f, g ∈ L2(Leb) we have

(Kf,Kg)L2(f0) = (Sf, g)L2(Leb) . (41)

An explicit computation shows that S is in fact a Mehler kernel operator, i.e.

Sf(x) =

∫
f(x̃)S(x, x̃)dx̃, (42)

with (in view of (37)):

S(x, x̃) =
1

η2

∫ ∞
−∞

ϕ(x/η − ηy)ϕ(x̃/η − ηy)f0(y) dy = λ1e
−λ2

2
(x2+x̃2−2ρxx̃) , (43)

where

λ1 =
1

2πs

1 + s√
1 + 2s

, λ2 =
(1 + s)2

s(1 + 2s)
, ρ =

s

1 + s
. (44)

It is well-known that the Mehler kernel is diagonalized by the Hermite functions [Meh66]. We
collect all the relevant technical details in the following lemma proved in Appendix A.1.

Lemma 9. For every s > 0, there is an orthonormal basis {ψk : k = 0, 1, . . .} in L2(Leb) consisting
of eigenfunctions of the operator S, satisfying the following:

(Kψk,Kψn)L2(f0) = λ0µ
k1{k = n} (45)

(K1ψk,K1ψn)L2(f0) =

{
0, |k − n| ≥ 3 ,

λ3(kµk−1 + (k + 1)µk+1), k = n ,
(46)

‖ψk‖∞ ≤
√
α1 , (47)

where µ, λ0, λ3, α1 are positive constants depending only on s, which, for 0 < s < 1/2, satisfy

µ � s, λ0 �
1√
s
, λ3 �

√
s, α1 �

1√
s
. (48)

In addition, for all s > 0 we have 0 < µ < 1.
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Proof of Theorem 1. In view of Lemma 5, it is equivalent to consider the individual regret Regretn.
We first consider the s-subgaussian case. Without loss of generality, assume that s < 1/2. By
applying Proposition 7, we aim to show the following lower bound

Regretn(SubG(2s)) ≥ c

n

log n

log 1
s

for some universal constant c. The case of compact support then follows from taking s � 1
logn and

truncation (Lemma 6).
Let G′s be the set of distributions G in Proposition 7, namely, G′s = {G : 1/2 ≤ dG

dG0
≤ 3/2},

where G0 = N (0, s). It is straightforward to verify that G′s ⊂ SubG(2s) so we focus on lower
bounding Regretn(G′s). We select the required m perturbations as follows:

rj = ξm+3jψm+3j , j = 1, . . . ,m ,

where

ξi ,
1√

(K1ψi,K1ψi)
.

In view of Lemma 9, applying Proposition 7 with τ = τ1 = 1 and τ2 = 0 yields

Regretn(G′s) &
m

max(nγ,m2a2)
, (49)

where we can take
a = max

m≤i≤4m
ξi‖ψi‖∞, γ = max

m≤i≤4m
ξ2
i ‖Kψi‖2L2(f0) .

By Lemma 9, we have

ξ2
i =

1

λ3(iµi−1 + (i+ 1)µi+1)
� 1√

smµi−1
.

Together with ‖Kψi‖2 � 1√
s
µi we get

γ � 1

m
. (50)

Similarly, we have

a2 = max
m≤i≤4m

(ξi)
2‖ψi‖2∞ .

1

smµ4m−1
(51)

Finally, we select m so that nγ > m2a2. In view of the previous estimates, this requirement is
equivalent to n

m & m
s µ

1−4m � mµ−4m. It is clear that taking m = c logn

log 1
µ

� logn

log 1
s

for sufficiently

small constant c fulfills this requirement. In all, from (49) we obtain the desired bound

Regretn(G′s) &
1

n

log n

log 1
s

, (52)

where the hidden constant is uniform in 0 < s < 1/2.
Finally, we prove the lower bound (7) for priors supported on [−h, h]. We choose s = c

logn

in (52) with c > 0 to be specified shortly. Recall that every G ∈ G′s satisfies dG
dG0
≤ 3/2, where

G0 = N (0, s). Thus, for every G we have Eθ∼G[θ4] . s4, while G[|θ| > h] ≤ 3e−
h2

2s . Applying
Lemma 6 we obtain then

Regretn(P([−h, h])) ≥ Regretn(G′s)−O(1)

√
ne−

h2

2s s4 .

By selecting c sufficiently small depending on h, we can ensure the second term is at most O(n−2)
so that (52) implies the required lower bound of Ωh( 1

n( logn
log logn)2).
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Remark 2 (Optimality of the construction). Consider s = 1. Can we get a lower bound better than

Ω( log2 n
n ) by selecting other functions ri (and still with the same base prior G0) in Proposition 7? We

will argue that the answer is negative, at least if the latter proposition is applied with τ = τ1 = 1 and
τ2 = 0 as we did above. Indeed, suppose we found m, a, γ such that there are functions r1, . . . , rm
such that ‖ri‖∞ ≤ a, (K1ri,K1rj)L2(f0) = 1{i 6= j}, and ‖Kri‖2L2(f0) ≤ γ. Then Proposition 7 yields

the regret lower bound (28), namely, Regretn & min{ mnγ ,
1

ma2
}. We will show in Appendix A.2 that

for any such collection of functions it must be that m . log a and γ & 1
log a . This implies that the

resulting lower bound is at most on the order of min{ log2 a
n , 1

ma2
} . min{ loga

n , 1
ma2
} . log2 n

n , and
therefore, to be interesting we need to have a2 . n

log2 n
, or log a . log n.

Remark 3 (Metric properties of Gaussian convolution). We can rephrase the content of Lemma 9
and the previous remark also as an interesting analytical fact. Consider a convolution operator
T : L∞ → L2(N (0, 1)) defined as

Tf = f ∗ N (0, λ) .

We want to understand the largest number of orthonormal functions that one can find in the image
under T of an L∞-ball B∞(0, a) = {f : ‖f‖∞ ≤ a} as a → ∞. As an attempt, one may try
working with sinusoids, which are eigenfunctions of the convolution; however, selecting appropri-
ately normalized sinusoids only yields Θ(

√
log a) such functions. At the same time, Lemma 9 gives

Θ(log a) functions, which, as shown in Remark 2, is in fact optimal.

3.2 Poisson model

Consider Y ∼ Poi(θ), where θ takes values in R+ and Y takes values in Z+. As before, let G0

denote a prior on θ and f0 the corresponding probability mass function (PMF) for Y . In order to
have tractable expressions for K and K1 it seems natural to select G0 to be a conjugate prior, so
we record some observations:

• G0 is Gamma(α, β), with density

G0(x) =
βα

Γ(α)
xα−1e−βx x ∈ R+ . (53)

• f0 is negative binomial, with PMF

f0(y) =

(
y + α− 1

y

)(
β

1 + β

)α( 1

1 + β

)y
y ∈ Z+ (54)

• The posterior distribution of θ given Y = y is Gamma(y+α, β+1) and thus the operator (21)
can be written as

Kr(y) =

∫ ∞
0

r(x)K(x, y)dx ,

with the kernel function explicitly being given as

K(x, y) =
(1 + β)y+α+1

Γ(y + α)
xy+α−1e−(1+β)x . (55)

In the special case of α = 1, G0 is an exponential distribution with density g0(x) = βe−βx and the
induced Poisson mixture is geometric distribution with PMF f0(y) = β

1+β ( 1
1+β )y.

As before, we first derive a useful differential expression for the K1 operator.
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Proposition 10 (From K1 to K). Let G0 = Gamma(α, β), α > 0, then for all r = r(x), smooth
and bounded on R+, we have

K1r =
1

1 + β
K(xr′) . (56)

Conversely, suppose that for some G0, which is smooth on [0,∞) and strictly positive on (0,∞),
and all smooth bounded r on R+ we have

K1r = cK(xr′) (57)

for some constant c. Then 0 < c < 1 and G0 = Gamma(α, 1
c − 1) for some α > 0.

Proof. Fix an arbitrary smooth prior density G0 strictly positive on R+, and denote by f0(y) the
induced mixture PMF. The kernel of operator K is given by

K(x, y) =
G0(x)

f0(y)
e−x

xy

y!
.

We have then the following easily verified identities:

K(xg)(y) =
f0(y + 1)

f0(y)
(y + 1)Kg(y + 1) (58)

∂xK(x, y + 1) = K(x, y)
f0(y)

f0(y + 1)
w(x, y) w(x, y) , 1 + (∂x lnG0(x)− 1)

x

y + 1
(59)

f0(y + 1)K(x, y + 1) = f0(y)K(x, y)
x

y + 1
(60)

From (58) we have

K(xr′)(y) =
f0(y + 1)

f0(y)
(y + 1)K(r′)(y + 1) .

On the other hand, since r is bounded, integrating by parts and noting that K(0, y+ 1) = 0 for all
y ≥ 0 we obtain4

K(r′)(y + 1) =

∫
R+

dxr′(x)K(x, y + 1) = −
∫
R+

dx r(x)∂xK(x, y + 1) .

Invoking (59) we overall get

K(xr′)(y) = −(y + 1)

∫
dxr(x)K(x, y)w(x, y) dx . (61)

Next, we apply (58) to get

Kx(y) =
(y + 1)f0(y + 1)

f0(y)
.

Then, from (25) we obtain that

K1r(y) = K(xr)(y)− (y + 1)f0(y + 1)

f0(y)
Kr(y) .

Applying (58) to the first term we get

K1r(y) =
(y + 1)f0(y + 1)

f0(y)
(Kr(y + 1)−Kr(y)) . (62)

4K(∞, y + 1) = 0 may not hold. Is integration by parts OK? Should we also require G0 to be bounded to be safe?
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Via (61) and (62), we observe that (57) is equivalent to

(y + 1)f0(y + 1)

f0(y)

∫
R+

dxr(x)(K(x, y + 1)−K(x, y)) = −c
∫
dxr(x)(y + 1)K(x, y)w(x, y) ,

which needs to hold for all r(x) and y ≥ 0. Thus, (57) is equivalent to

f0(y + 1)

f0(y)
(K(x, y + 1)−K(x, y)) = −cw(x, y)K(x, y) .

Apply (60) to replace K(x, y + 1) with K(x, y) to get:(
x

y + 1
− f0(y + 1)

f0(y)

)
K(x, y) = −cw(x, y)K(x, y) .

Since G0(x) > 0 for all x > 0, we also get that K(x, y) > 0 and, thus, overall (57) is equivalent to

x(1 + c(∂x lnG0(x)− 1)) = (y + 1)

(
−c+

f0(y + 1)

f0(y)

)
. (63)

From here we first notice that when G0 = Gamma(α, β) and f0 is the negative binomial both sides
evaluate to α−1

1+β if c = 1
1+β . This proves (56) and the first part of the proposition. For the second

part, notice that in order for (63) to hold for all x, y both sides must be constants, implying that
that f0(y) is a negative binomial PMF and, thus, the G0 is a Gamma distribution.

The converse part of Proposition 10 justifies yet again our focus on the Gamma prior G0. In
Appendix B we proceed by (almost) diagonalizing the self-adjoint compact integral operator K∗K.
The result of this analysis is summarized in the following.

Lemma 11. Fix δ > 0. Let G0 = Gamma(α, β). Then there exist absolute positive constants C,m0

such that for all m ≥ m0, β ≥ 2 and α ≥ 4m, there are functions r1, . . . , rm with the following
properties:

‖K1rj‖2L2(f0) = 1 , (64)

(Krj ,Kri)L2(f0) = (K1rj ,K1ri)L2(f0) = 0 ∀i 6= j (65)

‖Krj‖2L2(f0) ≤
Cβ

αm
, (66)

‖rj‖∞ ≤
√
β

α
eC(m log β+α) . (67)

Lemma 12. In the special case of α = 1 (so that G0 is the exponential distribution with mean
1/β) for any fixed β > 0 there exists a constant C = C(β) > 0 such that for all m ≥ 1 there exist
functions r1, . . . , rm satisfying (64), (65) and

‖Krj‖2L2(f0) ≤
C

m2
, (68)

‖rj‖∞ ≤ eCm . (69)

Proofs of Lemmas 11 and 12 are found in Appendix B. Assuming these lemmas we are in position
to prove the lower bound in Theorem 2. (The upper bound is proved by analyzing the Robbins
estimator in Appendix C.) At the high level, for the lower bound in the compactly supported case
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we will choose the base prior G0 = Gamma(α, β) with α = Θ(log n) and β = Θ(log n). In this case,
G0 is concentrated on a constant mean with variance Θ( 1

logn); this is conceptually similar to the

construction for the Gaussian model with bounded means where we choose G0 = N(0,Θ( 1
logn)).

For the subexponential class, however, we choose an exponential G0 (with α = 1 and β = Θ(1)),
which is analogous to G0 = N(0,Θ(1)) in the Gaussian model with subgaussian priors.

Proof of Theorem 2: Lower bound. We start with the compactly supported case. Let G = P([0, h])
denote the collection of all priors on [0, h]. First, in view of Lemma 5 the lower bound is equivalent
to proving that

Regretn(G) &
1

n

(
log n

log log n

)2

.

We aim to apply Proposition 7 with functions r1, . . . , rm chosen from Lemma 11 applied with

m = c1
log n

log logn
, α = c1 log n , β = c2α,

with constants c1, c2, c3 > 0 to be specified later based on h. Properties (64) and (65) ensure that
τ2 = 0, τ = τ1 = 1 and γ = Cc2

m for some absolute constant C (in the notation of the Proposition 7).

Setting G′ = {G : | dGdG0
− 1| ≤ 1/2}, Proposition 7 implies that

Regretn(G′) & m2

n
� 1

n

(
log n

log log n

)2

, (70)

provided that
m
√
c2e

C(m log β+α) <
√
nγ =

√
Cc2n/m . (71)

Note that as n→∞, the left side is n2Cc1+o(1) and the right side is n1/2+o(1). Thus, taking c1 = 1
8C

ensures that, for all sufficiently large n ≥ n0, condition (71) and, in turn, the bound (70) hold.
To translate (70) to regret on the set of priors G = {G : supp(G) ⊂ [0, h]} we apply Lemma 6

(with a = h). Note that for any G ∈ G′ we have G[θ > h] ≤ 2G0[θ > h]. For G0 = Gamma(α, β)
with mean α

β = 1
c2

, Chernoff bound yields

G0[θ > h] ≤ inf
t>0

e−th
(

1− t

β

)−α
= e−hβ+α+α log(hβα ) = e−α(hc2+1−log(hc2)), (72)

provided that h > 1
c2

. Recall that α = c1 log n. Thus, choosing c2 = κ/h with κ = κ(c1) > 1 such

that κ+ 1− log(κ) = 4
c1

, we get G[θ > h] ≤ 2n−4. On the other hand, we have

EG0 [θ4] =
1

β4

∫ ∞
0

yα+3

Γ(α)
e−ydy =

Γ(α+ 4)

Γ(α)β4
� c−4

2 .

Overall, from (70) and Lemma 6 we obtain that

Regretn(G) &
1

n

(
log n

log log n

)2

−O(n−3/2) ,

completing the proof of the lower bound (9).
Next we address the subexponential case. Recall that SubE(s) denotes the collection of all

priors G such that G(X ≥ t) ≤ 2e−t/s. Choose the base prior G0 to be Γ(1, β), namely, the
exponential distribution with parameter β. Then G′ = {G : | dGdG0

− 1| ≤ 1/2} ⊂ SubE(s). The
rest of the argument is the same by applying Proposition 7 with Lemma 12 in place of Lemma 11.
Specifically, let α = 1, β = s,m = c log n. Thanks to Lemma 12, we may apply Proposition 7 with
τ2 = 0, τ = τ1 = 1 and γ = C

m2 , where C = C(β). Choose c such that meCm ≤
√
n/m, we obtain

Regret(SubE(s)) ≥ Regret(G′) & m3

n �
log3 n
n , with hidden constants depending on s only.
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4 Discussion

In this paper we proved regret lower bounds for nonparametric empirical Bayes estimation. For
the Poisson model (Theorem 2), this is achieved by the Robbins estimator (5) which certifies its
optimality. For the Gaussian model (Theorem 1), the rate for the optimal regret is open, but given
Remark 2 it is likely that the improvement of the upper bounds is the bottleneck.

Our program for proving regret lower bound (provided by Proposition 7) is general and applies
to arbitrary models. However, its execution depends on the choice of a good base prior, such that
the resulting kernels K and K1, cf.(21) and (25), are easy to handle. Namely, the lower bound
requires understanding the decay of the eigenvalues and the growth of the eigenfunctions of these
kernels. As such, this is the main difficulty of extending our work to more general models, e.g.
exponential families considered in [Sin79,Pen99,LGL05].

To end this paper, we discuss related problems in empirical Bayes with the hope of offering
different perspectives and identifying open questions.

Restricted EB. In this paper we adopt the general EB formulation where the goal is to ap-
proach the Bayes risk (1). In comparison, restricted EB aims to approach the minimum risk in a
given class of estimators, such as linear or thresholding estimators. This perspective provides EB
interpretations for a number of commonly used methodologies for denoising or model selection, in-
cluding James-Stein estimator, FDR, AIC/BIC, etc; see [EM72,GF00,JS04,JZ09]. It is of interest
to understand the regret in restricted EB settings. Notably, the reduction to individual regret in
Section 2.1 no longer holds.

Multiple testing. In addition to estimation, multiple testing and variable selection [GF00,YL05]
are important formulations in empirical Bayes. As a specific problem akin to ours, consider the
normal means problem where for each θi we aim to test the hypothesis H0,i : θi ≤ θ0 and H1,i : θi >
θ0. For any test procedure δ ∈ {0, 1}, a meaningful loss function is R(θ, δ) , δ(θ0 − θ)1 {θ ≤ θ0}+
(1− δ)(θ− θ0)1 {θ > θ0}. An O((log n)3/2) upper bound on the total regret is shown in [Lia00] (see
also [LG02]). It will be interesting to obtain regret lower bound for such testing problems. Note
that for this non-quadratic loss, the reduction (17) to estimating regression function does not hold.

Compound regret. As shown in Proposition 3 and Proposition 4, the EB regret lower bounds
in this paper can be extended to the compound setting. In comparison, regret upper bounds are
less understood. For the Poisson model, it is not obvious whether the analysis of Robbins estimator
in Appendix C applies to the compound regret in (12). For the Gaussian model, converting the
multiplicative bound of [JZ09] into additive form yields a regret that scales at least as

√
n. As

such, achieving a logarithmic compound regret is currently open.

Sequential version. It is of practical interest to consider the sequential version of the EB or
compound estimation problem (see, e.g., [Han57,Sam65,VR66,Gil68]), in which case the estimation
of each parameter θt can only depend on the data received so far. To this end, consider the
accumulative regret, which is a variant of the total regret (6)

AccRegretn(G) , inf
θ̂n

sup
G∈G

{
EG
[
‖θ̂n(Y1, . . . , Yn)− θn‖2

]
− n ·mmse(G)

}
. (73)

with the causality constraint that θ̂t = θ̂t(Y1, . . . , Yt) for each t = 1, . . . , n. The following simple
result relates the accumulative regret to individual regret. For example, for bounded normal means

problem, Theorem 1 shows that the accumulative regret is between ( logn
log logn)2 and (logn)3

(log logn)2
.
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Lemma 13.

n · Regretn(G) ≤ AccRegretn(G) ≤
n∑
k=1

Regretk(G).

The lower bound follows by dropping the causality constraint and using Lemma 5. The up-
per bound simply follows from applying the optimal estimator that achieves the individual regret
Regretk for sample size k. It is unclear whether this strategy is optimal, because the worst-case
“hyperprior” (prior on the set of priors) for each individual regret depends on the sample size, while
in (73) the prior is frozen throughout all sample sizes.

`p-ball and sparsity. For the normal mean model Theorem 1 provides a regret lower bound for
subgaussian priors. It is of great interest to consider the moment constraint due to its connection
to sparsity and adaptive estimation. Consider the EB setting, where the prior G has bounded pth
absolute moment, namely,Mp,α , {G :

∫
|θ|pG(dθ) ≤ αp}. [JZ09, Theorem 3] showed that for this

class the individual regret is at most Regret(Mp,α) = Õ((α/n)
p

1+p ). (Here and below tilde hides
logarithmic factors.) Determining the tightness of this bound is an open question. In comparison,
under the same moment condition, the minimax squared Hellinger risk for density estimation is

also Õ((α/n)
p

1+p ) (see [Zha09, Theorem 1] or [JZ09, Theorem 4]). This dependency on n is optimal
within logarithmic factors as shown by [KG20, Theorem 2.3] for constant α.

The connection to sparse estimation lies in the compound setting. Suppose the mean vector
belongs to the `p-ball Θn,p,α = {θn ∈ Rn :

∑n
i=1 |θi|p ≤ nα}, where 0 < p < 2. The minimax squared

error of estimating θn on the basis of Y n ∼ N (θn, I) is known to be Θ̃(nαp) (see [DJ94, Theorem 3]
for precise characterizations). [JZ09, Theorem 2] showed that EB estimator based on NPMLE can
adaptively achieve the minimax risk over Θn,p,α up to an 1 + o(1) multiplicative factor, provided

that α = Ω̃(n−1/p); this condition can be explained by comparing the regret (α/n)
p

1+p with the
minimax risk per coordinate αp. Using arguments similar to Proposition 4 one can show that the
regret in the compound setting is at least that in the EB setting. Thus proving regret lower bound
sheds light on to what extent can one adapt to the radius of the `p-ball and the optimality of
NPMLE-based schemes.

A Proofs for the Gaussian model

A.1 Proof of Lemma 9

Let {Hk} denote the monic orthogonal polynomial with respect to the standard normal density ϕ,
i.e. Hk(y) = (−1)key

2/2 dn

dyn e
−y2/2, so that where H0(y) = 1, H1(y) = y,H2(y) = y2 − 1, . . ..

We start by recalling the following facts about Hermite polynomials that will be used in the
proof:5

• Orthogonality [GR07, 7.374]: ∫
ϕ(x)Hi(x)Hj(x) = j!1 {i = j}. (74)

• Three-term recursion [GR07, 8.952.2]:

xHk(x) = Hk+1(x) + kHk−1(x). (75)
5These facts are adapted from [GR07, Chap. 7 and 8]. Therein, the Hermite polynomials, denoted here by Hk,

are orthogonal with respect to e−x
2

. Thus Hk(x) = 2−k/2Hk(x/
√

2).
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• Derivatives [GR07, 8.952.1]:
H ′k(y) = kHk−1(y), (76)

• Cramér’s inequality [GR07, 8.954.2]:

|Hk(y)| ≤ κ
√
k!e

y2

4 , (77)

where κ ≈ 1.086 is an absolute constant.

• Mehler formula [Meh66]: For any 0 < µ < 1 and u, v ∈ R we have

∞∑
k=0

µk

k!
Hk(u)Hk(v)ϕ(u)ϕ(v) =

1

2π
√

1− µ2
e
− 1

2(1−µ2)
(u2+v2−2µuv)

. (78)

From (78) by dividing both sides by
√
ϕ(u)ϕ(v) we obtain

∞∑
k=0

µk

k!
gk(u)gk(v) =

1√
2π(1− µ2)

e−
a1
2

(u2+v2−2c1uv), a1 ,
1

2

1 + µ2

1− µ2
, c1 ,

2µ

1 + µ2
, (79)

with gk(u) , Hk(u)
√
ϕ(u), which forms a complete set of orthogonal functions in L2(Leb), cf. (74).

Our goal is to find constants (µ, α1, α2) such that

α2

∑
k

µk

k!
gk(α1x)gk(α1x̃) = S(x, x̃) , (80)

with S(x, x̃) defined in (43), in which case {gk(α1x)} will be the orthogonal eigenbasis of the S
operator in (42). By comparing (79) and the definition of S(x, x̃), we need to fulfill

c1 = ρ, a1α
2
1 = λ2

where ρ = s
1+s , λ1 = 1

2πs
1+s√
1+2s

and λ2 = (1+s)2

s(1+2s) as in (44). Using (79), we find

µ =
ρ

1 + ρ1
, α1 =

√
2λ2ρ1 , α2 = λ1

√
2π(1− µ2) , ρ1 ,

√
1− ρ2 , (81)

which satisfies the desired (80); in particular, we have 0 < µ < 1. Finally, setting

ψk(x) ,
gk(α1x)

‖gk(α1·)‖L2(Leb)
=

√
α1

k!
Hk(α1x)

√
ϕ(α1x) (82)

completes the construction of the orthonormal eigenbasis of S. Indeed, (80) is then rewritten as

S(x, x̃) =
∞∑
k=0

λ0µ
kψk(x)ψk(x̃) , (83)

where

λ0 ,
α2

α1
=

1√
2πs(1 + ρ1)

, (84)

where we used 1− µ2 = 2ρ1
1+ρ1

to simplify the expression. In turn, (83) implies that

Sψk = λ0µ
kψk , (85)
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i.e. that {ψk} is the orthonormal eigenbasis for S.
We proceed to checking properties (45)-(47) of the ψk claimed in the statement of the lemma.

In view of (41), (45) is just a restatement of (85). For (46) we notice that

(K1ψk,K1ψn)L2(f0)
(38)
= η4(Kψ′k,Kψ

′
n)L2(f0)

(41)
= η4(Sψ′k, ψ

′
n)L2(Leb) .

On the other hand, differentiating (82) and using (76) and (75) we get

ψ′k(x) =

√
α1

k!

√
ϕ(α1x)

[
α1H

′
k(α1k)−Hk(α1x)

α2
1

2
x

]
=

√
α1

k!

√
ϕ(α1x)

[
α1kHk−1(α1x)− α1

2
(Hk+1(α1x) + kHk−1(α1x))

]
=
α1

2
[
√
kψk−1(x)−

√
k + 1ψk+1] .

This implies that in the basis ψk the operator K∗1K1 is tridiagonal, i.e.

(K1ψk,K1ψm)L2(f0) = λ3 ·


−
√

(k − 1)kµk−1, m = k − 2

kµk−1 + (k + 1)µk+1, m = k

−
√

(k + 1)(k + 2)µk+1, m = k + 2

0, o/w

, (86)

where

λ3 = λ0
α2

1η
4

4
=

1√
8π

√
s

1 + ρ1

ρ1

1 + 2s
. (87)

This proves (46).
To show (47), we simply apply (77) to (82)

|ψk(x)| ≤ κ
√
α1

k!

√
k!e

α1x
2

4

√
ϕ(α1x) =

κ

(2π)1/4

√
α1 ≤

√
α1 .

(In other words, L2-normalized Hermite functions are uniformly bounded.)
Finally, (48) follows from the expressions of µ, λ0, λ3, α1 in (81), (84), and (87), by noting that

ρ = s(1 + o(1)) and ρ1 → 1 as s→ 0.

A.2 Proof for Remark 2

In this appendix we justify the claim about m and γ in Remark 2. Namely, suppose there exist
functions r1, . . . , rm such that ‖ri‖∞ ≤ a, (K1ri,K1rj)L2(f0) = 1{i 6= j}, and ‖Kri‖2L2(f0) ≤ γ.

Then we must have m . log a and γ & 1
log a .

To this end, we develop ri’s in the basis {ψk} as follows:

ri =
∑
k

ρi,kψk ,

where {ψk} are (dilated) Hermite functions in (82) and satisfy Lemma 9. It turns out that Hermite
functions have polynomial-size Lp-norms, namely [ADSMT12, Theorem 2.1]:

‖ψk‖Lp(Leb) � α
− 1
p

1 k
2−p
4p , 0 < p < 4 , (88)

24



where by (48) α1 � 1 since s = 1. Thus, |ρi,k| = |(ri, ψk)| ≤ ‖ri‖∞‖ψk‖1 . ak1/4. Now consider

(K1ri,K1rj)L2(f0) =
∑
k1,k2

ρi,k1ρj,k2(K1ψk1 ,K1ψk2) .

From (86) and the estimate |ρi,k| . ak1/4 we conclude that in the preceding sum the total contri-

bution of the terms with k1, k2 ≥ k0 can be bounded as . a2k
O(1)
0 µk0 . Thus, selecting k0 � log a

we can define truncated versions
r̃i =

∑
k≤k0

ρi,kψk .

For these m functions we have

(K1r̃i,K1r̃j)L2(f0) = 1{i 6= j}+ o(1)

as a → ∞. So on one hand, the set of m functions {K1r̃i, i ∈ [m]} is almost orthonormal, and
on the other hand it is contained in the span of functions {K1ψj , 0 ≤ j ≤ k0}. This implies
m ≤ k0 + 1 . log a.

Next, we show the claim for γ. A similar truncation argument (this time leveraging the di-
agonal structure of K in (45)) shows that ‖Kr̃i‖2L2(f0) = (1 + o(1))‖Kri‖2L2(f0). Since r̃i ∈ V ,
span{ψ1, . . . , ψk0} we have

1 + o(1)

γ
≤ max

f∈V

‖K1f‖2L2(f0)

‖Kf‖2L2(f0)

=: ξ .

Standard manipulations then show that ξ equals maximal eigenvalue of the operator S−
1
2K∗1K1S

− 1
2

restricted to the subspace V . This k0×k0 matrix is (as can be seen from (45) and (86)) tridiagonal
with k-th row’s non-zero entries being {−

√
(k − 1)k, kµ + µ(k + 1),−

√
(k + 1)(k + 2)}. Bounding

the maximal eigenvalue by the maximal absolute row-sum, we get ξ . k0 . log a, as required.

B Proofs for the Poisson model

In this appendix we prove supporting Lemmas 11 and 12 for the Poisson model. Similar to the
proof of Lemma 9, we first derive the explicit expression of the operator S = K∗K : L2(Z+, f0)→
L2(R+,Leb) that satisfies

(Kf,Kg)L2(Z+,f0) = (Sf, g)L2(R+,Leb) . (89)

.

Proposition 14 (Kernel under the Gamma prior). Let G0 = Gamma(α, β) and f0 be the in-
duced negative binomial distribution (54). Let K denote the operator in (21) which acts as K :
L2(R+,Leb) → L2(Z+, f0). Then the operator S , K∗K : L2(R+,Leb) → L2(R+,Leb) satisfies
Sr(x) =

∫∞
0 S(x, x′)r(x′)dx′ with kernel function given by

S(x, x′) = C(α, β)e−(x+x′)(1+β)((1 + β)xx′)
α−1
2 Iν(2

√
(1 + β)xx′), ν , α− 1 , (90)

where C(α, β) = (1+β)3βα

Γ(α) and Iν(z) is the modified Bessel function.
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Proof. With this choice of G0 the kernel K(x, y) and f0(y) are given by (55) and (54), respectively.
Then

S(x, x′) =
∑
y≥0

f0(y)K(x, y)K(x′, y)

=
∑
y≥0

(
y + α− 1

y

)(
β

1 + β

)α( 1

1 + β

)y (1 + β)2(y+α+1)

Γ(y + α)2
(xx′)y+α−1e−(1+β)(x+x′)

(a)
= (1 + β)3 βα

Γ(α)
e−(1+β)(x+x′)

∑
y≥0

((1 + β)xx′)y+α−1

y!Γ(y + α)

(b)
= (1 + β)3 βα

Γ(α)
e−(1+β)(x+x′)((1 + β)xx′)

α−1
2 Iα−1(2

√
(1 + β)xx′) ,

where in (a) we used
(
y+α−1

y

)
= Γ(y+α)

y!Γ(α) and in (b) we applied the following identity [GR07, (8.445)]:
for any ν ∈ R and z ∈ R the modified Bessel functions satisfies

Iν(z) =
∞∑
y=0

1

y!Γ(y + ν + 1)

(z
2

)ν+2y
.

The easiest way to proceed would be to diagonalize the S operator, i.e. to solve the equation
SΓλ = λΓλ. Letting Γλ(x) ≡ φλ(

√
bx), b = 2

√
1 + β, this equation is equivalent to

2
√

1 + ββα

Γ(α)

∫
R+

e−b(u
2+s2)/4(us)α−1Iα−1(us)φλ(s)s ds = λφλ(u) .

Unfortunately, we were not able to solve this (except for α = 1, in which case the solution found
below is an actual eigenbasis; see (102) below.) Instead, we will find a collection of functions Γi
with the property that6

(SΓi,Γj) = 0, ∀i 6= j . (91)

Our method to do so is based on the following observation. Suppose there is a decomposition

S(x, y) = w1(x)w1(y)
∑
n

anfn(x)fn(y) , (92)

for some strictly positive weight function w1, such that the system of functions {fn} is orthogonal
in L2(R+, w). Then, the system of functions

Γn(x) ,
w(x)

w1(x)
fn(x) , (93)

satisfies (91). Indeed,

(SΓi,Γj) =
∑
n

an

∫
dx

∫
dy w(x)w(y)fi(x)fn(x)fj(y)fn(y) = ai‖fi‖4L2(w)1{i = j} . (94)

6Here and below, unless specified otherwise, inner products (·, ·) are with respect to L2(R+,Leb).
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To get the required decomposition (92) we recall the Hardy-Hille summation formula (cf. [GR07,
8.976.1]): For all x, y ∈ R, ν > −1 and |z| < 1 we have

∑
n≥0

n!
Lνn(x)Lνn(y)zn

Γ(n+ ν + 1)
=

(xyz)−ν/2

1− z
exp

(
−(x+ y)

z

1− z

)
Iν

(
2
√
xyz

1− z

)
, (95)

where Lνn are a family of generalized Laguerre polynomials, cf. [GR07, (8.970)] for the definition.
We aim to apply this identity with x ← γ2x and y ← γ2x

′, where γ2 > 0 is a parameter to be
chosen shortly, to get an expression for Iν(2

√
(1 + β)xx′). This forces the choice of z as a solution

of √
z

1− z
γ2 =

√
1 + β . (96)

With this z we get from (90) and (95) the following expansion

S(x, x′) = w1(x)w1(x′)
∑
n

anL
ν
n(γ2x)Lνn(γ2x

′) , (97)

where w1(x) , (γ2x)νe−γ3x, γ3 , 1 + β − γ2
z

1−z and

an = C(α, β)(1 + β)
ν
2 z

2n+ν
2 (1− z)γ−ν2

n!

Γ(n+ ν + 1)
. (98)

We recall the orthogonality relation for Laguerre polynomials [AS64, 22.2.12]:∫
R+

dxxνe−xLνm(x)Lνn(x) =
Γ(n+ ν + 1)

n!
1 {m = n}. (99)

Thus, setting w(x) = (γ2x)νe−γ2x we get that Lνn(γ2x) is an orthogonal system in L2(R+, w).
Consequently, from (93) we get our required system of functions

Γn(x) , e−γ1xLνn(γ2x) , γ1 ,
γ2

1− z
− 1− β (100)

satisfying, in view of (94), (98), and (99),

(SΓn,Γm) = bn1{n = m} , bn , C2(α, β)zn
Γ(n+ α)

n!
(101)

and
C2(α, β) , C(α, β)(1− z)((1 + β)z)

α−1
2 γ−α−1

2

with C(α, β) = (1+β)3βα

Γ(α) given in Proposition 14. We note that in the special case of α = 1, we

have ν = 0 and Γn(x) = e−γ1xLn(2γ1x) with Ln being the usual Laguerre polynomials. Using (97)
and (99), one can verify that S(x, x′) =

∑
n≥0 anΓn(x)Γn(x′) and

SΓk =
ak
γ1

Γk. (102)

In other words, for α = 1, {Γk} are indeed the eigenbasis of the operator S; however, this is not
true when α 6= 1 (which will be the case of proving the compactly supported case of Theorem 2).

To proceed further, we need to recall the following properties of Laguerre polynomials:
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• Exponential growth [AS64, 22.14.13]: for all degrees n and all ν, x ≥ 0,

|Lνn(x)| ≤ ex/2
(
n+ ν

n

)
, ex/2

Γ(n+ ν + 1)

n!Γ(ν + 1)
. (103)

• Recurrence (cf. [AS64, 22.8 and 22.7]):

x
d

dx
Lνn(x) = nLνn(x)− (n+ ν)Lνn−1(x) (104)

xLνn(x) = (2n+ ν + 1)Ln(x)− (n+ 1)Ln+1(x)− (n+ ν)Ln−1(x) (105)

To complete the construction we still need to choose γ2 > 0. We do so in a way that permits
us to prove the L∞-boundedness of Γn(x) functions by way of (103). That is, we set

γ1 = γ2/2 .

Together with (96) and (100) this forces the following choice of γ1, γ2, γ3, z:

z = (
√

1 + β −
√
β)2, γ1 = γ3 =

√
β(1 + β), γ2 = 2

√
β(1 + β) . (106)

We note that in order for (95) to hold we also need to make sure |z| < 1, which is indeed the case
for all β > 0.

Similarly to how we defined S = K∗K in (89), we also define S1 = K∗1K1. We summarize
properties of the constructed set of functions in the following Lemma.

Lemma 15. The system of functions (100) with choice (106) satisfies

‖Γk‖∞ ≤
(
k + α

k

)
(107)

(SΓk,Γk) = bk (108)

(S1Γk,Γk) =
bk

4(1 + β)2

{
α2 + (k + 1)(k + α)z + (k + α− 1)k

1

z

}
, (109)

with bk defined in (101). Furthermore,

(SΓk,Γj) = 0, k 6= j (110)

and
(S1Γk,Γj) = 0 ∀|k − j| ≥ 3 (111)

Proof. We note that (108) and (110) have been established in (101) already, and (107) in (103).
To prove identities involving S1, note that using Proposition 10 we get

(S1Γk,Γj) =
1

(1 + β)2
(K(xΓ′k),K(xΓ′j))L2(f0) =

1

(1 + β)2
(S(xΓ′k), xΓ′j) . (112)

Denoting for convenience γ ≡ γ1 = γ2/2 such that Γk(x) = e−γxLνn(2γx) and recalling that ν = α−1
we have from the recurrence (104)–(105) of generalized Laguerre polynomials:

xΓ′k(x) = e−γx
{
−γxLνk(2γx) + 2γx(Lνk)′(2γx)

}
= e−γx

{
−1

2

(
(2k + ν + 1)Lνk − (k + 1)Lνk+1 − (k + ν)Lνk−1

)
+ (kLk − (k + ν)Lνk−1)

}
(2γx)

= e−γx
{
−α

2
Lνk +

k + 1

2
Lνk+1 −

k + ν

2
Lνk−1

}
(2γx)

= − α

2
Γk(x) +

k + 1

2
Γk+1(x)− k + ν

2
Γk−1(x). (113)
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If |k − j| ≥ 3, (111) follows from (112) and the orthogonality property (101). Finally, using
(113) and (101), (109) follows from

(S1Γk,Γk) =
1

(1 + β)2
(S(xΓ′k), xΓ′k)

=
1

4(1 + β)2

{
α2bk + (k + 1)2bk+1 + (k + α− 1)2bk−1

}
=
C2(α, β)zk

4(1 + β)2

{
α2 Γ(k + α)

k!
+ (k + 1)2 Γ(k + α+ 1)

(k + 1)!
z + (k + α− 1)2 Γ(k + α− 1)

(k − 1)!

1

z

}
=

bk
4(1 + β)2

{
α2 + (k + 1)(k + α)z + (k + α− 1)k

1

z

}
.

We are now in a position to prove Lemma 11.

Proof of Lemma 11. Fix m and select

rk =
1√

(S1Γk,Γk)
Γk, k ∈ K = {m,m+ 3, . . . , 4m} .

This ensures that conditions (64) and (65) are satisfied. Recall that z = 1
(
√
β+1+

√
β)2

and the

assumption that β ≥ 2. We have

m ≤ k ≤ 4m,
1

6β
≤ z ≤ 1

4β
≤ 1

8
.

Denote δ = α/β. To show (66) notice that from (101) and (109) we have for any k ∈ K

‖Krk‖2L2(f0) = (Srk, rk) =
(SΓk,Γk)

(S1Γk,Γk)
=

4(1 + β)2

α2 + (k + 1)(k + α)z + (k + α− 1)kz
� 1

δm+ δ2
,

since α2 + (k + 1)(k + α)z + (k + α− 1)k 1
z � α

2 +mαβ, using the assumption of m ≤ α.
To show (67), we use (107) to get

max
k∈K
‖rk‖∞ . max

k∈K

√
1

δmbk

(
k + α

k

)
. (114)

Using (101) and γ2 = 2
√
β(1 + β), we have

bk = (1 + β)3(1− z) · βα · (z(1 + β))
α−1
2 · γ−α−1

2 · zk
(
k + α− 1

k

)
= ABα/2zk

(
k + α− 1

k

)
where B , zβ2(1+β)

γ22
= zβ

4 ≥
1
24 and A , (1+β)3(1−z)

2
√
zβ

≥ 1
2 for all β ≥ 2. Thus we get bk ≥ 1

25−αzk

and (using k ≤ 4m) (
k + α

k

)2

b−1
k ≤ 2 · 5α(6β)k4k+α ≤ exp(C ′(α+m log β))
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for some absolute constant C ′. Thus, from (114) we have shown that

max
k∈K
‖rk‖∞ ≤

√
β

α
eC(m log β+α) ,

for some absolute constant C. This completes the proof of (67).

Proof of Lemma 12. For α = 1 and fixed β > 0 (not dependent on m) we select functions rj as
in the proof of Lemma 11. This time, however, we have C(α, β) � C2(α, β) � z � γ1 � γ2 � 1,
bk � zk. This implies via (108)–(109) that

‖Krj‖2L2(f0) =
(SΓk,Γk)

(S1Γk,Γk)
� 1

m2
,

since (α2 + (k + 1)(k + α)z + (k + α− 1)k 1
z ) � m2. This proves (68). To show (69) we notice that

from (107) and α = 1:

‖rk‖∞ =
‖Γk‖∞√
(S1Γk,Γk)

.
m√
z4mm2

= z−2m .

Since z < 1 we get the estimate (69).

C Regret bound for the Robbins estimator

In this appendix we prove the upper bound part of Theorem 2 for the Poisson model by analyzing
the Robbins estimator θ̃n in (5). We first consider the compact supported case and show that for
any prior G on [0, h],

EG
[
‖θ̃n − θn‖2

]
− n ·mmse(G) ≤ c2

(
log n

log logn

)2

, (115)

for some constant c2 = c2(h). To this end, we mostly follow the method of [BGR13] fixing a mistake
there7 and adapting the proof to fixed sample size n (as opposed to Poi(n) in [BGR13]). First, we
consider the case of bounded support. For any fixed prior G and its induced Poisson mixture f ,
recall the Bayes optimal estimator in (4), namely

θ̂G(y) = (y + 1)
f(y + 1)

f(y)
. (116)

Then the total regret of Robbins’ estimator under the prior G is given by

R(G, θ̃n) ,
n∑
i=1

(
E[(θ̃i − θi)2]− E[(θ̂G(Yi)− θi)2]

)
(a)
=

n∑
i=1

E[(θ̃i − θ̂G(Yi))
2]

(b)
=

∞∑
y=0

E

[
N(y)(y + 1)2

(
N(y + 1)

N(y)
− f(y + 1)

f(y)

)2

1{N(y) > 0}

]

=
∞∑
y=0

E

[
1{N(y) > 0}(y + 1)2

N(y)

(
N(y + 1)− f(y + 1)N(y)

f(y)

)2
]

7In the first display equation in the proof of [BGR13, Theorem 1], the last identity does not hold.
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where (a) follows from E[θi|Yi] = θ̂G(Yi); in (b) we recall the definition of N(y) =
∑n

i=1 1 {Yi = y}
from (5).

Conditioning on N(y) we have that N(y+ 1) ∼ Binom(n−N(y), f(y+1)
1−f(y)). Thus, by the (condi-

tional) bias-variance decomposition we have (denoting temporarily q , f(y+1)
1−f(y)):

E

[(
N(y + 1)− f(y + 1)N(y)

f(y)

)2
∣∣∣∣∣N(y)

]
= (n−N(y))q(1− q) +

(
(n−N(y))q − f(y + 1)

f(y)
N(y)

)2

≤ n
f(y + 1)

1− f(y)
+

(
f(y + 1)

(1− f(y))f(y)

)2

(nf(y)−N(y))2 .

We now notice a simple fact about the Poisson mixture density f(y): Since for every x > 0,
xye−x

y! ≤ yye−y

y! ≤ 1√
2πy

(Stirling’s), we have

f(y) ≤ 1√
2πy

∀y > 0 .

Thus, in all terms except y = 0 we have 1
1−f(y) . 1 and we can write

R(G, θ̃n) . I0 +

∞∑
y=1

I1(y) + I2(y) (117)

where

I0 ,
f(1)

1− f(0)
nv1(n, f(0)) +

(
f(1)

(1− f(0))f(0)

)2

v2(n, f(0))

I1(y) , (y + 1)2nf(y + 1)v1(n, f(y))

I2(y) ,

(
(y + 1)

f(y + 1)

f(y)

)2

v2(n, f(y)) ,

and the two functions v1, v2 are defined in the next lemma (whose proof is given at the end of this
appendix):

Lemma 16. Let B ∼ Binom(n, p) and define

v1(n, p) , E[B−11{B > 0}] , v2(n, p) , E[B−11{B > 0}(B − np)2] .

There exist absolute constants c1, c2 > 0 such that for all n ≥ 1, p ∈ [0, 1] we have

v1(n, p) ≤ c1 min

(
np,

1

np

)
≤ c1, v2(n, p) ≤ c2 min(1, np) ≤ c2 .

Assuming this lemma, we proceed to bounding the terms in (117). For I0, we obtain by bounding
v1(n, f(0)) . 1

nf(0) and v2 . 1 that

I0 .
f(1)

(1− f(0))f(0)
+

(
f(1)

(1− f(0))f(0)

)2

. (118)
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Now, notice that f(1) ≤ 1 − f(0) and thus f(1)
(1−f(0))f(0) ≤

1
f(0) . To get another bound, we need to

make a key observation: for every y ≥ 0, θ̂G(y) = EG[θ|Y = y] defined in (116) belongs to the
interval [0, h] (since G is supported on [0, h]); in other words,

(y + 1)
f(y + 1)

f(y)
≤ h ∀y ≥ 0 . (119)

In particular, applying this with y = 0 to bound f(1)
f(0) ≤ h we get, overall, that

f(1)

(1− f(0))f(0)
≤ min

(
1

f(0)
,

h

1− f(0)

)
. max(1, h) .

From (118), thus, we get
I0 . max(1, h) . (120)

Next, we bound I1(y) via Lemma 16 and (119) as

I1(y) . (y + 1)2nf(y + 1) min

(
nf(y),

1

nf(y)

)
= (y + 1)

(
(y + 1)

f(y + 1)

f(y)

)
min

(
(nf(y))2, 1

)
≤ h(y + 1) min

(
1, (nf(y))2

)
. (121)

To proceed, we need another lemma (also proved at the end of this appendix):

Lemma 17. Let f be a Poisson mixture with mixing distribution G.

• Suppose G is supported on [0, h]. Then for some constants c = c(h) and y0 = max(2h, c logn
log logn),

∑
y≥y0

f(y) ≤ 1

n
, (122)

∑
y>y0

f(y)2(y + 1) ≤ 4h

n2
(123)

• Suppose G satisfies G[X > x] ≤ ae−bx for all x > 0. Then for some constant c2 = c2(a, b)
and y1 = c2 log n, ∑

y≥y1

f(y) ≤ 1

n
, (124)

∑
y>y1

f(y)2(y + 1) ≤ 1

n2
(125)

Thus, choosing y0 as above we can sum (121) to get (in the sequel all constants depend on h)∑
y≥1

I1(y) .
∑
y≤y0

(y + 1) + n2
∑
y>y0

f(y)2(y + 1)

. y2
0 + 1 �

(
log n

log log n

)2

. (126)
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Similarly, we have

∑
y≥1

I2(y)
(a)

≤ h2
∑
y≥1

v2(n, f(y))

(b)

. h2
∑
y≥1

min(1, nf(y)) (127)

(c)

≤
∑
y<y0

1 + n
∑
y≥y0

f(y) ≤ y0 + 1 � log n

log logn
, (128)

where (a) is by (119), (b) is Lemma 16, (c) is by taking y0 as in Lemma 17 and applying (123).
Substituting (120), (126), and (128) into (117), we obtain

R(G, θ̃n) ≤ I0 +
∑
y≥1

I1(y) + I2(y) .

(
log n

log log n

)2

,

completing the proof of (115).
Next, we proceed to the subexponential case. Fix a prior G ∈ SubE(s), namely, G((t,∞)) ≤

2e−t/s for all t > 0. In the rest of the proof all constants depend on s. We first show that it is
possible to replace G with a truncated prior G′[X ∈ ·] = G[X ∈ ·|X ≤ c log n] for a suitably large
c = c(s) > 0. Indeed, observe that the Robbins estimator for any coordinate j satisfies:

θ̃j = (Yj + 1)
N(Yj + 1)

N(Yj)
≤ (Yj + 1)n . (129)

This is because, crucially, N(Yj) ≥ 1 by definition. Since E[Y 4
j ] =

∫
G(dθ)(θ4 + 6θ3 + 7θ2 + θ) . 1,

we have
E[θ̃4

j ] ≤ n4E[(Yj + 1)4] . n4. (130)

Next, since the G is subexponential, we can select c so large that

ε = G[X > c log n] ≤ 1

n10
.

Now, denote as in the proof of Lemma 6 the event E = {θj ≤ c log n, j = 1, . . . , n}. Recall that

EG denotes expectation with respect to θi
iid∼ G and Yi ∼ Poi(θi). Then

1

n
R(G, θ̃n) = EG[(θ̃1 − θ1)2]−mmse(G)

≤ EG[(θ̃1 − θ1)2|E]−mmse(G′) + mmse(G′)−mmse(G) + EG[(θ̃1 − θ1)21Ec ]

=
1

n
R(G′, θ̃n) + mmse(G′)−mmse(G) + EG[(θ̃1 − θ1)21Ec ] , (131)

where the first identity follows from symmetry. For the last term in (131) we have from Cauchy-
Schwarz and P[Ec] ≤ nε:

EG[(θ̃1 − θ1)21Ec ] ≤
√
nε

√
EG[(θ̃1 − θ1)4 .

√
nεn2 ,

where in the last step we used (130) and EG[θ4
1] . 1 (since G is subexponential).
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For the second term, as in (20) we use mmse(G′) ≤ 1
1−εmmse(G) so that

mmse(G′)−mmse(G) ≤ ε

1− ε
mmse(G) . ε .

Altogether, we get from (131) that

R(G, θ̃n) ≤ R(G′, θ̃n) +O(1/n) ,

Thus, it is sufficient to analyze the regret of Robbins under the prior G′. Note that G′ satisfies the
assumptions in the second part of Lemma 17 with constants a, b depending on s only. According
to (117) we need to bound I0,

∑
y≥1 I1(y) and

∑
y≥2 I2(y). We set h = c log n (which is the support

of G′) and get from (120) the bound I0 . log n. For I1 we have from (121) the following estimate

∑
y≥1

I1(y) . h
∑
y≥1

(y + 1) min(1, nf(y))2 ≤ h

 y1∑
y=1

(y + 1) + n2
∑
y>y1

(y + 1)f2(y)

 ,

where y1 � log n is defined in Lemma 17. Then the first sum is proportional to log2 n and the
second, in view of (125), is at most 1

n2 . Overall we get∑
y≥1

I1(y) . h(y2
1 + 1) � log3 n .

Similarly, from (127) we have

∑
y≥1

I2(y) . h2
∑
y≥1

min(1, nf(y)) ≤ h2

∑
y≤y1

1 + n
∑
y>y1

f(y)

 .

The first sum equals y1 and the second is bounded by 1
n (via (124)), so we get∑

y≥1

I2(y) . h2(y1 + 1) � log3 n .

Altogether, we obtain the claimed O(log3 n) regret bound for the subexponential class.

Remark 4. In the analysis of Robbins estimator, if we denote by y the effective support of the
Poisson mixture (i.e. the 1− 1

n10 quantile) and by h the effective support of the mixing distribution,

then the total regret is at most O(hy(h+ y)). In the compact support case h � 1 and y � logn
log logn ,

while in the subexponential case h � y � log n. This explains the rates in (9) and (10), respectively.

Proof of Lemma 16. Note that B−11{B > 0} ≤ 2
B+11{B > 0}. Furthermore, we have

E[(B + 1)−11{B > 0}] =
n∑
k=1

n!

(k + 1)!(n− k)!
pk(1− p)n−k

=
1

p(n+ 1)

n∑
k=1

(
n+ 1

k + 1

)
pk+1(1− p)n−k

≤ 1

pn
P[Binom(n+ 1, p) ≥ 2] ≤ 1

np
.
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For the case of np ≤ 1,

E[B−11{B > 0}] ≤ P[B ≥ 1] ≤
n∑
k=1

(np)k

k!
≤ np · P[Poi(np) ≥ 0] ≤ np.

Overall, we have

E[(B + 1)−11{B > 0}] ≤ min

(
np,

1

np

)
, (132)

and the desired bound v1(n, p) ≡ E[B−11{B > 0}] ≤ 2 min(np, 1
np).

For v2, we again bound B−11{B > 0} ≤ 2
B+11{B > 0}, and also notice that (B − np)2 =

(B + 1− (n+ 1)p− (1− p))2 ≤ 2(B + 1− (n+ 1)p)2 + 2(1− p)2. This implies

v2(n, p) ≤ 2E[(B + 1)−11{B > 0}{((n+ 1)p− (B + 1))2 + (1− p)2}]

Notice that by (132) expectation of the second quadratic term can be bounded as . (1 − p)2.
Thus, we focus on the first term, for which we have the following expression in terms of B̃ ∼
Binom(n+ 1, p):

E[(B + 1)−11{B > 0}{((n+ 1)p− (B + 1))2

=
n∑
k=1

n!

(k + 1)!(n− k)!
pk(1− p)n−k(k + 1− (n+ 1)p)2

=
1

(n+ 1)p
E[1{2 ≤ B̃ ≤ n+ 1}((n+ 1)p− B̃)2]

≤ 1

(n+ 1)p
Var[B̃] = 1− p

This proves v2(n, p) ≤ 2. On the other hand, suppose np < 1. Then for any B ≥ 1 we have
(B − np)2 ≤ B2 and, consequently,

v2(n, p) ≤ E[1{B > 0}B] ≤ np .

And, hence, we have v2 ≤ 2 min(1, np).

Proof of Lemma 17. First, let us consider the compactly supported case. For any y > h > x
we have xye−x

y! ≤ f̄(y) , hye−h

y! , implying that f(y) = EXλ2 [X
ye−X

y! ] ≤ f̄(y). Note that f̄(y) is
monotonically decreasing in y for y > h. Furthermore, we have for any y0 ≥ 2h that

∑
y≥y0

f̄(y) =
hy0e−h

y0!

∑
m≥0

y0!

(y0 +m)!
hm

≤ f̄(y0)
∑
m≥0

(
h

y0

)m
≤ 2f̄(y0). (133)
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Furthermore, we have ∑
y>y0

f̄(y)2(y + 1)
(a)

≤ 2
∑
y>y0

yf̄(y)2

(b)
= 2h

∑
y>y0

f̄(y − 1)f̄(y)2

(c)

≤ 2hf̄(y0)
∑
y>y0

f̄(y)

(d)

≤ 4hf̄(y0)2 ,

where in (a) we used the fact that y ≥ 1, in (b) the identity yf̄(y) = hf̄(y − 1), in (c) the
monotonicity of f̄ , and in (d) we applied (133). Thus, selecting y0 > c(h) logn

log logn yields f̄(y0) ≤ 1
n

and completes the proof of (122) and (123).
For the subexponential case, let us denote by F̄ (x) = G[X > x] and recall F̄ (x) ≤ ae−bx. Then

from integration by parts we have

f(y) = EXλ2
[
Xye−X

y!

]
=

1

y!

∫ ∞
0

(y − x)xy−1e−xF̄ (x)dx

≤ 1

y!

∫ ∞
0

yxy−1e−xF̄ (x)dx

≤ a

(y − 1)!

∫ ∞
0

xy−1e−(1+b)xdx

= a(1 + b)−y , f̃(y) .

The estimates (124) and (125) then easily follow from the properties of geometric distribution f̃ .

D Proofs for the compound setting

Proof of Proposition 3. As noted in [GR09], the first inequality of (14) follows from Roracle(Gθn) ≤
nmmse(Gθn) since f(Y n) = (f1(Y1), . . . , f1(Yn)) is permutation-invariant. For the second, by the
concavity of G 7→ mmse(G) (see [WV12, Corollary 1]), we have

E
θn
iid∼G

mmse(Gθn) ≤ mmse(G) , (134)

and, therefore,

EG[‖θn − θ̂n(Y n)‖2]− nmmse(G) ≤ EG[‖θn − θ̂n(Y n)‖2 − nmmse(Gθn)].

Taking inf
θ̂n

supG on both sides proves the second inequality in (14).

Proof of Proposition 4. The proof follows the proof strategy for the second inequality in (14) and
the fact that the empirical distribution drawn from a subgaussian distribution is subgaussian (with
multiplicative adjustment of constants) with probability 1− 1/poly(n).

Fix s > 0 and G ∈ SubG(s). Let θ1, . . . , θn
i.i.d.∼ G and denote the empirical distribution Gθn =

1
n

∑n
i=1 δθi . We first show that there exists an absolute constant C0 such that

P [Gθn ∈ SubG(C0s)] ≥ 1− n−4. (135)
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Indeed, by the equivalent characterization of subgaussian constant (see [Ver18, Proposition 2.5.2]),
it suffices to show

P

[
1

n

n∑
i=1

exp

(
θ2
i

C1s

)
> 2

]
≤ n−4. (136)

for some absolute constant C1. Since P [|θi| ≥ t] ≤ 2e−t
2/(2s) by assumption, there exists C1 such

that iid random variables Xi , exp
(
θ2i
C1s

)
satisfy E [X] ≤ 1.1 and E

[
X8
i

]
≤ 1.2. From Rosen-

thal’s inequality [Ros70, Theorem 3] we obtain E[(
∑

iXi − E[X])8] . n4, and then from Markov’s
inequality P[ 1

n

∑
iXi > 2] . n−4, concluding the proof of (136).

Next recall that for a given class of priors G, the total regret in the compound setting is defined
as

TotRegretCompn(G) , inf
θ̂n

sup
θn∈Θ(G)

{
Eθn [‖θ̂n(Y n)− θn‖2]− n ·mmse(Gθn)

}
,

where Θ(G) , {θn : Gθn ∈ G}. A simple observation is that for TotRegretCompn(SubG(s)), it is
sufficient to restrict to θ̂n = θ̂n(Y n) such that ‖θ̂n‖ ≤

√
C2sn deterministically for some absolute

constant C2. This simply follows from the fact that for any θn ∈ Θ(SubG(s)), ‖θn‖ ≤
√
C2sn, so

that for any estimator θ̂n, the modification θ̃n , argmin{‖θ̂n − x‖ : ‖x‖ ≤
√
C2sn} improves θ̂n

pointwise, in the sense that ‖θ̃n − θn‖ ≤ ‖θ̂n − θn‖ for every θn ∈ Θ(SubG(s)).
Finally, we show

TotRegretCompn(SubG(C0s)) ≥ TotRegretn(SubG(s))−O(sn−1) (137)

To this end, fix any estimator θ̂n such that ‖θ̂n‖ ≤
√
C2C0sn. For any G ∈ SubG(s), let

θ1, . . . , θn
i.i.d.∼ G. Then

sup
θn∈Θ(SubG(C0s))

{
Eθn [‖θ̂n(Y n)− θn‖2]− n ·mmse(Gθn)

}
≥ E

[
‖θ̂n − θn‖2 − n ·mmse(Gθn) | Gθn ∈ SubG(C0s)

]
≥ E[‖θ̂n − θn‖2 − n ·mmse(Gθn)]− E[‖θ̂n − θn‖21 {Gθn /∈ SubG(C0s)}]
(a)

≥ E[‖θ̂n − θn‖2]− n ·mmse(G)−
√

E[‖θ̂n − θn‖4]P [Gθn /∈ SubG(C0s)]

(b)

≥ E[‖θ̂n − θn‖2]− n ·mmse(G)−O(
s

n
), (138)

where in (a) we apply (134) again for the first term and Cauchy-Schwarz for the second; (b) follows
from (135) and the following bounds

E[‖θ̂n − θn‖4] ≤ 8(E[‖θ̂n‖4] + E[‖θn‖4]

(c)

≤ 8((C2C0sn)2 + n2E2[θ2] + nVar[θ2])

. n2s2

and in (c) we used the fact that ‖θ̂n‖ ≤
√
C2C0sn. Taking the infimum on both sides of (138) over

θ̂n subject to the norm constraint followed by a supremum over G ∈ SubG(s) over the right side, we
complete the proof of (137). Since TotRegret(SubG(c0s)) is increasing with c0, the statement (137)
is equivalent to that of the Theorem upon taking c0 = 1

KC0
with a suitably large K.
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E Results on density estimation

The construction in the present paper can be used to yield improved or new lower bounds for
mixture density estimation. Denote by the minimax squared Hellinger risk for density estimation
over the mixture class {fG : G ∈ G}, namely,

Rn(G) , inf
f̂

sup
G∈G

EG[H2(fG, f̂)],

where f̂ is measurable with respect to the sample Y1, . . . , Yn
i.i.d.∼ fG and the Hellinger distance

between densities f and g with respect to a dominating measure ν is denoted by H(f, g) , (
∫

(
√
f−√

g)2dν)1/2.

General program. The following result is a counterpart of Proposition 7. Since we no longer
dealing with regression functions, the program only involves the operator K in (21) not the higher-
order operator K1.

Proposition 18. Fix a prior distribution G0, constants a, τ, τ2, γ ≥ 0 and m functions r1, . . . , rm
on X with the following properties.

1. For each i, ‖ri‖∞ ≤ a;

2. For each i, ‖Kri‖L2(f0) ≤
√
γ;

3. For any v ∈ {0,±1}m, ∥∥∥∥∥
m∑
i=1

viKri

∥∥∥∥∥
2

L2(f0)

≥ τ‖v‖22 − τ2; (139)

4. For each i,
∫
ridG0 = 0.

Then the minimax H2-risk for density estimation over the class of priors G = {G : |dG/dG0 − 1| ≤
1
2} satisfies

Rn(G) ≥ Cδ2(mτ − τ2) , δ ,
1

max(
√
nγ,ma)

, (140)

where C > 0 is an absolute constant.

Proof. The proof is almost identical to that of Proposition 7 based on Assouad’s lemma, so we only
point out the major differences. By the fourth assumption, µi =

∫
ridG0 = 0, so we simply have

dGu = (1 + δru)dG0 and fu = (1 + δhu)f0, where hu = Kru. By (31), we have 1
2 ≤ fu/f0 ≤ 3

2 , so
for any u, v ∈ {0, 1}m,

H2(fu, fv) �
∫

(fu − fv)2

f0
= δ2‖K(ru − rv)‖2L2(f0) ≥ δ

2(τdH(u, v)− τ2).

Then the conclusion follows from applying Assouad’s lemma as in the proof of Proposition 7.
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Truncation. Lemma 6 controls the effect of truncation on the regret. The counterpart for density
estimation is as follows.

Lemma 19. Under the setting of Lemma 6,

Rn(G) ≥ Rn(G′)− 8n
√
ε. (141)

Proof. Indeed, using Ga as defined in the proof of Lemma 6,

Rn(G) = inf
f̂

sup
G∈G

EG[H2(f̂ , fG)]

≥ inf
f̂

sup
G∈G′

EGa [H2(f̂ , fGa)]

(a)

≥ inf
f̂

sup
G∈G′

EG[H2(f̂ , fGa)]− 2nε

(b)

≥ inf
f̂

sup
G∈G′

EG[H2(f̂ , fG)]− 6H(fG, fGa)− 2nε

(c)

≥ Rn(G′)− 8n
√
ε,

where (a) follows from the following counterpart of (19) sinceH2 ≤ 2: EG[H2(fG, f̂)] ≤ EG[H2(fG, f̂)|E]+
2nε = EGa [H2(fG, f̂)]+2nε; (b) uses the triangle inequality and boundedness of Hellinger distance;
(c) is due to H2(fG, fGa) ≤ H2(G,Ga) ≤ TV(G,Ga) = ε, with the first step via the data processing
inequality.

Applications As a concrete application, we reuse the construction in Section 3.1 and Ap-
pendix A.1 to derive a minimax lower bound next for estimating Gaussian mixture densities. In
particular, the lower bound Ω( logn

n ) for s-subgaussian priors is previously shown in [Kim14,KG20]

for sufficiently large s, an assumption which in fact can be dropped; the lower bound Ω( logn
n log logn)

for bounded means appears to be new.

Theorem 20 (Gaussian mixture estimation). Consider the setting of Theorem 1.

• (Compactly supported case). For any h > 0, there exists constants c0 = c0(h) > 0 and n0,
such that for all n ≥ n0,

Rn(P([−h, h]) ≥ c0

n

log n

log logn
. (142)

• (Subgaussian case.) For any s > 0, there exists constants c1 = c1(s) > 0 and n0, such that
for all n ≥ n0,

Rn(SubG(s)) ≥ c1

n
log n . (143)

Proof. We show

Rn(SubG(s)) ≥ c log n

n
(144)

for some absolute constant c. Taking s = c(h)
logn and applying the truncation argument in (141)

yields (142) for the compactly supported case.
To prove (144), we apply Proposition 18 with rk = ψk

‖Kψk‖L2(f0)
, k = 1, . . . ,m, where {ψk} is the

class of functions from Lemma 9, so that τ = γ = 1, τ2 = 0 and a =
√

α1
λ0µm

. Since µ � s, choosing

m = c′ logn

log 1
s

for small constant c′ ensures nγ ≥ (ma)2, leading to the lower bound of Ω(mn ).
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The counterpart for the Poisson model is as follows. The proof is almost identical to that of
Theorem 20 using the construction in Lemma 11 and Lemma 12, and is hence omitted. It is not
hard to show that the lower bounds in (145) and (146) are in fact optimal [JPW21].

Theorem 21 (Poissoin mixture estimation). Consider the setting of Theorem 2.

• (Compactly supported case.) For any h > 0, there exists constants c0 = c0(h) > 0 and n0,
such that for all n ≥ n0,

Rn(P([0, h]) ≥ c0

n

log n

log logn
. (145)

• (Subexponential case.) For any s > 0, there exists constants c1 = c1(s) > 0 and n0, such that
for all n ≥ n0,

Rn(SubE(s)) ≥ c1

n
log n . (146)
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