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Preview: what this talk is about?
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Who cares about this model?

Global Monitoring with Animals
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Random-Access vs MAC
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Random-Access vs MAC
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® Question 1: Is there a useful asymptotics to study?

® Question 2: What sparsification is more useful? (IDMA vs. Slotted
ALOHA)

® Question 3: Limitations of linear codes.
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Key definition: random-access (same codebook) code

s ODDED "0
+

Received N
bt U O O O O

Definition (P."17)

f:[M]—R"isa (n, M, K,,¢€) random-access code if 3 list-K, decoder
g st.

PW; & g(f(Wh) +---+ f(Wk,) + Z2)] <€ Vj € [Ki]

where W; % Unif[M]. Fundamental limit (E}/No):

1
Ef(n,M, K, €) = ——— mi )13
b (n, M, Ky, ) 2log2Mm}nj§[1}}] 12
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Key definition: random-access (same codebook) code

s ODDED "0
+

Received N
bt U O O O O

Definition (P."17)

f:[M]—R"isa (n, M, K,,¢€) random-access code if 3 list-K, decoder
g st.

PW; & g(f(Wh) +---+ f(Wk,) + Z2)] <€ Vj € [Ki]

where W; % Unif[M]. Fundamental limit (E}/No):

1
Ef(n,M, K, €) = ——— mi )13
b (n, M, Ky, ) 2log2Mm}nj§[1}}] 12

How to do asymptotics?
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Key definition: random-access (same codebook) code

s ODDED "0
+

Received N
bt U O O O O

Definition (P."17)

f:[M]—R"isa (n, M, K,,¢€) random-access code if 3 list-K, decoder
g st.

PW; & g(f(Wh) +---+ f(Wk,) + Z2)] <€ Vj € [Ki]

where W; % Unif[M]. Fundamental limit (E}/No):

1
Ef(n,M, K, €) = ——— mi )13
b (n, M, Ky, ) 2log2Mm}nj§[1}}] 12

How to do asymptotics? Fixed K, and n — oo is useless.
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Key definition: random-access (same codebook) code

s ODDED "0
+

Received N
bt U O O O O

Definition (P."17)

f:[M]—R"isa (n, M, K,,¢€) random-access code if 3 list-K, decoder

gs.t.

PW; & g(f(Wh) +---+ f(Wk,) + Z2)] <€ Vj € [Ki]

where W; % Unif[M]. Fundamental limit (E}/No):

Ey(n, M, Ka,e)

1 . N
= mm;n sup ||f(])||2

JE[M]

How to do asymptotics? K, = un is impossible: K, > M
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Key definition: random-access (same codebook) code

s ODDED "0
+

Received N
bt U O O O O

Definition (P."17)

f:[M]—R"isa (n, M, K,,¢€) random-access code if 3 list-K, decoder

gs.t.

PW; & g(f(Wh) +---+ f(Wk,) + Z2)] <€ Vj € [Ki]

where W; % Unif[M]. Fundamental limit (E}/No):

Ey(n, M, Ka,e)

1 . N
= mm;n sup ||f(])||2

JE[M]

How to do asymptotics? Solution: K, = un and M = 2FK,

Yury Polyanskiy

Remarks on massive random access 6



Same-codebook codes = compressed sensing

® random-access = all users share same codebook
e ... obviously decoding is upto permutation of users
e Equivalent to compressed-sensing  [yin-kim-Rao'11]
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Same-codebook codes = compressed sensing

® random-access = all users share same codebook
e ... obviously decoding is upto permutation of users
e Equivalent to compressed-sensing  [yin-kim-Rao'11]

Let same-codebook (column) vectors be c1,...¢;.
X=(c1 | -+ | cum)

Let 8 € {0,1}M with 8; = 1 if codeword j was transmitted
Then the problem is:

Y=X5+72, Goal: E[||8 — A(Y)|]] — min

(linear regression with sparsity ||8|lo = K, aka comp.sensing).

PUPE requirement translates to false-discovery rate (FDR)
requirement: ||5]|o < Kj.
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Same-codebook codes = compressed sensing

® random-access = all users share same codebook

e ... obviously decoding is upto permutation of users
e Equivalent to compressed-sensing  [yin-kim-Rao'11]

® Let same-codebook (column) vectors be c1,...c¢;.

X=(aa | - | em)

* Let B € {0,1}M with 8; = 1 if codeword j was transmitted
® Then the problem is:

Y =XB+2  Goal: E[||§ - B(Y)|] = min
(linear regression with sparsity ||8|lo = K, aka comp.sensing).
® PUPE requirement translates to false-discovery rate (FDR)
requirement: ||5]|o < Kj.
® Regime of K, = un, M = 2*K, and n — oo: CS with fixed-aspect
ratio sensing matrix.
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® In [P."ISIT-2017] a random-coding achievability bound was shown:
E;;("% M, Kq,€) < Ere(n, M, Ky, €)

® The bound is messy, but let us study it numerically.
> Frame length n = 30000, 60000, 120000 (real d.o.f.)

» User payload: k = 100 bits
> Active users: K, = 1...1500 (variable)
> Target error PUPE = 1073
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Comparing random coding bound at different n
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Comparing random coding bound at different n
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5.5 T

n=30000, k=100
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n=120000, k=100 [
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Comparing random coding bound at different n

5.5

3.t

Eb/No, dB

n=30000, k=100
n=60000, k=100
n=120000, k=100

Bounds do not look comparable.

) - K B
Next: Normalize to p = == — user density
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Comparing random coding bound at different n (user

density)
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Comparing random coding bound at different n (user

density)

55 T T
n=30000, k=100
n=60000, k=100

5 n=120000, k=100 []

45 4

Y Alignment is much better, but still.
Next: Normalize to effective # of bits

Eb/No, dB

5
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
User density, u
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Effective number of bits

® Problem: Consider two values of blocklength n; < ns.
® ... with the same k and 11 we have K, 1 = puny < Kq2 = pna.

® ... So comparison of Ej/Ny is not quite fair.
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Effective number of bits

® Problem: Consider two values of blocklength n; < ns.
® ... with the same k and 11 we have K, 1 = puny < Kq2 = pna.

® ... So comparison of Ej/Ny is not quite fair.

Let us introduce effective number of bits as

M
keppr = logg I
a

. and then effective £} /Ny becomes

E 1 .
(%) =g sw IFG)IE
0/ eff eff je[M]
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Comparing bounds at different n (effective Ej,/Ny)

6 T T
130000, k=100 (ach)
1n=60000, k=100 (ach)
n=120000, k=100 (ach)
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Comparing bounds at different n (effective Ej,/Ny)

Effective Eb/No, dB

0
0

T

1n=30000, k=100 (ach)
n=60000, k=100 (ach)
n=120000, k=100 (ach)

We found the right scaling: n almost does
not matter.
Next: Take n — oo.

L L
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User density, 1
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Asymptotics of random-access

® We say that £ is asymptotically achievable effective E},/Nj at
(Megy, pye€) if I(n, M, K,,€) RA-code with M = MsrK,,
K, = pun and codewords of energy

lll|3 < 2€ logy My

for all n — .

e Asymptotic fundamental limit: minimal achievable &, i.e.

logo M
E (Mcgy, p1,€) = limsup 082

982 B, M, Ky, e
n—oo log My b @e)
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Asymptotics of RA and CS

® Recall connection to the compressed sensing.

e Call E > 0 feasible at a given ratio p/n and sparsity 7 if:

Y =VEXB+Z,  Z~N(0,1,),B€R

» Columns of X are of unit energy
> B {0,1)7 and [ 8]0 = 7,
> 35(Y, X) such that
IBlo < wun  (FDR)
1B8—=8lo < 2€Blo

® Then we have E} = min W
e
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Asymptotics of RA and CS

® Recall connection to the compressed sensing.

e Call E > 0 feasible at a given ratio p/n and sparsity 7 if:

Y =VEXB+Z,  Z~N(0,1,),B€R

» Columns of X are of unit energy
> B {0,1)7 and [ 8]0 = 7,
> 35(Y, X) such that

I8l < wn  (FDR)
1B—=Bllo < 2€Bllo

® Then we have E} = min W
2 e

® When X ZZ‘Jij\/'(O, 1/n) this is well studied in stat. physics.

Yury Polyanskiy Remarks on massive random access 14



Replica method prediction

e Consider a scalar problem:
B=+EA+N, A~Ber(r) Il N~N(O1)
e Define I1(F1) = I(A; B) and
p*(Ey,7) = min {IP’[A —0lA=1]:Pld=1] = w}
A

® |t can be seen that p* is a solution of

VEL=QT' () + Q" <7Tp*>-

1—m
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Replica method prediction

e Consider a scalar problem:
B=+EA+N, A~Ber(r) Il N~N(O1)
Define I (E;) = I(A; B) and
p*(Ey,7) = min {IP’[A —0lA=1]:Pld=1] = w}
A

® |t can be seen that p* is a solution of
VE=a )+t (7).
e Stat. physics predicts that mference in

Y =VEXB+2Z, X% N(0,1/n),B ~ Ber®(r)

is asymptotically equivalent to a scalar problem with E; = En
n € [0,1] (the multi-user efficiency) is given as a solution of

1
7 = argmin [flll(:vE) + 5(1’ -1- 1HZE):|
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=+/nEA+ N, A ~ Ber(m) 1L N ~ N(0,1)
Y =VEXB+2, X N(0,1/n),B ~ Ber®(r)

Theorem (Replica formula exact for binary /)

Consider a sequence of random variables
Vo = ]P)[/Bl = 1‘Y7X] S [07 1]

as p,n — oo with p/n = const. Then

Vv, pa=1B].
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B =\/nEA+ N, A ~ Ber(m) 1L N ~ N (0,1)

Y =VEXB+2Z, XY N(©0,1/n),B ~ Ber® ()

Theorem (Replica formula exact for binary ()

Consider a sequence of random variables
V., =P8 =1]Y, X] € [0,1]

as p,n — oo with p/n = const. Then

v, YPa=1B].

o Pfister-Reeves and Barbier-Macris have shown that
Var[p1|Y, X] — Var[A|B|

e This is not enough to conclude the proof.
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=+nEA+ N, A ~ Ber(m) 1L N ~ N(0,1)
Y =VEXB+Z, X N(©0,1/n),B ~ Ber® ()

Theorem (Replica formula exact for binary /)

Consider a sequence of random variables
V., =P[5 =1|Y, X] € [0,1]

as p,n — oo with p/n = const. Then

Vv, 4pa=1)B].

® Possible to argue indirectly for binary 5 only.
® If we have some sequence G,, = G, (Y, X) € [0,1] s.t

E[(Gn — £1)?] = Var[8|Y, X] then G ‘X E[81]Y, X].
For binary, this is = P[5, = 1| X,Y].

e AMP started at true [ yields such a G,,. The law of G,, is known to
converge to PlA = 1|B].
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Finite blocklength bound vs. n = oo asymptotics

3 T

T
n=30000, k=100
= = = n=infty, k = 91.5..100.0 (Replica Method)

Eb/No, dB

05k . 7
~ K4
*

L -
-----------------4

0 L L L L L L L
0 50 100 150 200 250 300 350
Number of active users, Ka

Yury Polyanski

Remarks on massive random access 17



Finite blocklength bound vs. n = oo asymptotics

3 T T T
n=30000, k=100
= = = n=infty, k = 91.5..100.0 (Replica Method)
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Finite blocklength bound vs. n = oo asymptotics

Eb/No, dB

25

T
n=30000, k=100

= = = n=infty, k = 91.5..100.0 (Replica Method)

Lesson: The [P."17] bound is 0.5 — 0.7 dB
not tight.

/ Al

Details: for each K, compute F, at
keff =k— logQ(Ka)'
Scale E, down by kekff

50 100 150 200 250 300
Number of active users, Ka
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Issue with the asymptotics

e Existence of (n, M, K,,€) does not imply existence of
(Ln, LM, LK, ¢€) code (with the same effective Ej,/Np).

® However, existence of (n, M, Poi(K,), €)-code does imply the above
as L — oo.

® |et us give a formal definition.
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RA-codes for random K,

Channel model:
Y = fWi) 4+ fWr)+ 2,  Z~N(0,1I,),T ~ Poi(K,)

where W; % Unif[M].
Definition

f:[M]—R"isa (n,M,Poi(K,),e) random-access code if 3
list-decoder g s.t.

E#{j: W; & g(Y)}]
Ellg(¥)l]

Open question: There is no random coding bound at present.

eE[T]

<
< E[T]
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Comparing T-fold ALOHA vs. IDMA

® Both T-fold Slotted ALOHA and IDMA try to sparsify collisions.
® T-SA partitions n as n = Ln; where L = K,/T. Collisions are in
n1-blocks

e Asymptotic fundamental limit of 7-SA is the minimal (effective)
Ey/Ng of a (T'/p, My, Poi(T), €)-codes.

Yury Polyanskiy Remarks on massive random access 20



Comparing T-fold ALOHA vs. IDMA

® Both T-fold Slotted ALOHA and IDMA try to sparsify collisions.

® T-SA partitions n as n = Ln; where L = K,/T. Collisions are in
n1-blocks

e Asymptotic fundamental limit of 7-SA is the minimal (effective)
Ey/Ng of a (T'/p, My, Poi(T), €)-codes.

e Asymptotic fundamental limit of IDMA: Need to solve a (new?)
sparse-design compressed sensing problem:

Y =VEXB+Z

> X € R™ P has unit-energy columns.
» X has constant s = M.f¢T non-zeros per-row!
» p/n = const, E = const, n — 0.

> Open question: Replica/AMP for X ud %N(O, )+ (1— %)(50
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Limitations of linear codes
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Binary Adder Channel (BAC)

B Ri+ Re <3/2

A 7 ' P
b lﬂh

1

Y=A+8B A,Be{0,1},Y €{0,1,2}

Maximal symmetric rate:
Coym = s maxa g [(A, B;Y) = max H(A+ B) = §

Maximal same-codebook rate: Cyyme = %

Maximal 0-error same-codebook rate: Co sgme < 0.5753

[Cohen-Litsyn-Zemor'01]

Maximal 0-error symmetric rate: Cp sym > 0.659 [Bross-Blake'os]
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Binary Adder Channel (BAC)

B Ri+ Re <3/2

A 7 ' P
b lﬂh

1

Y=A+8B A,Be{0,1},Y €{0,1,2}

® Maximal symmetric rate:
Coym = 3maxa g I(A,B;Y) = imaxH(A+ B) = 2
e Maximal same-codebook rate: Cyume = %
® Maximal 0-error same-codebook rate: Cj sgme < 0.5753
[Cohen-Litsyn-Zemor'01]

® Maximal O-error symmetric rate: Cp gym > 0.659 [Bross-Blake'sg]
® Thus, for low error-rate there is a penalty due to random access.
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Limitations of linear codes

Theorem (P.'19, unpublished)
For any same-codebook C C {0,1}" with |C| = 2¥, which is Fy-affine.

Then )
n
> = -
Pe—z(l 2k—2>

Thus, maximal achievable rate via such codes is < %

e WLOG, assume no constant coordinates. Then average codeword
weight = 7.

® Consider two codewords ci,co € C. Let S = {j:c1j =ca;}.

e If |S| < k then 30 # ¢ € C with ¢|g = 0.
(since we have n — k + |S| < n equations on c).

® Then c; ® ¢, co @ ¢ is a confusing pair: it has the same real-sum.
¢ Bound P[|S| < k] = P[|c1 & c2|g > n — k] via Chebyshev.
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Adder MAC: open issues

R Ri+ Ry <3/2

f—— S
b lRl

1

Y=A+1B A,Be{0,1},Y € {0,1,2}

¢ Challenge: Find same-codebook code beating 1/2 barrier.
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Adder MAC: open issues

R Ri+ Ry <3/2

f—— S
b lRl

1

Y=A+1B A,Be{0,1},Y € {0,1,2}

¢ Challenge: Find same-codebook code beating 1/2 barrier.
® Note: two-phase schemes are not allowed
> use first k1 data bits (out of K =nR > 1) to select a permutation
matrix for each user.
» Encode k; via any low-rate code into first n; coordinates.
» Then use non-same LDPC codes on the rest n — n; coordinates.
e Why not allow? e.g. the first k; bits have degree Q(n) (i.e. affect all

coded bits). Bad!
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Adder MAC: open issues

R Ri+ Ry <3/2

f—— S
b lRl

1

Y=A+1B A,Be{0,1},Y € {0,1,2}

¢ Challenge: Find same-codebook code beating 1/2 barrier.
® Note: two-phase schemes are not allowed
> use first k1 data bits (out of K =nR > 1) to select a permutation
matrix for each user.
» Encode k; via any low-rate code into first n; coordinates.
» Then use non-same LDPC codes on the rest n — n; coordinates.
e Why not allow? e.g. the first k; bits have degree Q(n) (i.e. affect all
coded bits). Bad!
¢ Challenge: How to decode sparse-graph same-codebook codes?
® Note: the local beliefs about bits are useless. Need to introduce
global “super nodes”.
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® Question 1: Is there a useful asymptotics to study?
A:Yes K, = un, M = okerr K, n — 00.

® Question 2: What sparsification is more useful? (IDMA vs. T-SA)
A: Need to solve Poi(K,) problem. Need to solve sparse-design CS.

® Question 3: Limitations of linear codes.
A: Non-capacity achieving. Challenge: Find alternatives.
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® Question 1: Is there a useful asymptotics to study?
A:Yes K, = un, M = okerr K, n — 00.

® Question 2: What sparsification is more useful? (IDMA vs. T-SA)
A: Need to solve Poi(K,) problem. Need to solve sparse-design CS.

® Question 3: Limitations of linear codes.
A: Non-capacity achieving. Challenge: Find alternatives.

Thank you!
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