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Who cares about this model?
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Plan

• Question 1: Is there a useful asymptotics to study?
• Question 2: What sparsification is more useful? (IDMA vs. Slotted

ALOHA)
• Question 3: Limitations of linear codes.
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Key definition: random-access (same codebook) code

+
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User K
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 output

Definition (P.’17)

f : [M ]→ Rn is a (n,M,Ka, ε) random-access code if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ]. Fundamental limit (Eb/N0):

E∗b (n,M,Ka, ε) =
1

2 log2M
min
f

sup
j∈[M ]

‖f(j)‖22

How to do asymptotics?
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2 log2M
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How to do asymptotics? Fixed Ka and n→∞ is useless.
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g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ]. Fundamental limit (Eb/N0):

E∗b (n,M,Ka, ε) =
1

2 log2M
min
f

sup
j∈[M ]

‖f(j)‖22

How to do asymptotics? Ka = µn is impossible: Ka �M
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Key definition: random-access (same codebook) code
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Definition (P.’17)

f : [M ]→ Rn is a (n,M,Ka, ε) random-access code if ∃ list-Ka decoder
g s.t.

P[Wj 6∈ g(f(W1) + · · ·+ f(WKa) + Z)] ≤ ε ∀j ∈ [Ka]

where Wi
iid∼ Unif[M ]. Fundamental limit (Eb/N0):

E∗b (n,M,Ka, ε) =
1

2 log2M
min
f

sup
j∈[M ]

‖f(j)‖22

How to do asymptotics? Solution: Ka = µn and M = 2kKa
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Same-codebook codes = compressed sensing

• random-access = all users share same codebook
• ... obviously decoding is upto permutation of users
• Equivalent to compressed-sensing [Jin-Kim-Rao’11]

• Let same-codebook (column) vectors be c1, . . . cj .

X =
(
c1 | · · · | cM

)
• Let β ∈ {0, 1}M with βj = 1 if codeword j was transmitted
• Then the problem is:

Y = Xβ + Z, Goal: E[‖β − β̂(Y )‖]→ min

(linear regression with sparsity ‖β‖0 = Ka aka comp.sensing).
• PUPE requirement translates to false-discovery rate (FDR)

requirement: ‖β̂‖0 ≤ Ka.
• Regime of Ka = µn, M = 2kKa and n→∞: CS with fixed-aspect

ratio sensing matrix.
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• In [P.’ISIT-2017] a random-coding achievability bound was shown:

E∗b (n,M,Ka, ε) ≤ Erc(n,M,Ka, ε)

• The bound is messy, but let us study it numerically.
I Frame length n = 30000, 60000, 120000 (real d.o.f.)
I User payload: k = 100 bits
I Active users: Ka = 1 . . . 1500 (variable)
I Target error PUPE = 10−3
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Comparing random coding bound at different n
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n=30000, k=100

Bounds do not look comparable.
Next: Normalize to µ = Ka

n – user density
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Comparing random coding bound at different n (user
density)
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Alignment is much better, but still.
Next: Normalize to effective # of bits
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Effective number of bits

• Problem: Consider two values of blocklength n1 < n2.
• ... with the same k and µ we have Ka,1 = µn1 < Ka,2 = µn2.
• ... So comparison of Eb/N0 is not quite fair.

• Let us introduce effective number of bits as

keff = log2
M

Ka

• ... and then effective Eb/N0 becomes(
Eb

N0

)
eff

=
1

2keff
sup
j∈[M ]

‖f(j)‖22
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Comparing bounds at different n (effective Eb/N0)
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We found the right scaling: n almost does
not matter.
Next: Take n→∞.
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Asymptotics of random-access

• We say that E is asymptotically achievable effective Eb/N0 at
(Meff , µ, ε) if ∃(n,M,Ka, ε) RA-code with M = MeffKa,
Ka = µn and codewords of energy

‖c‖22 ≤ 2E log2Meff

for all n→∞.
• Asymptotic fundamental limit: minimal achievable E , i.e.

E∗∞(Meff , µ, ε) = lim sup
n→∞

log2M

logMeff
E∗b (n,M,Ka, ε)
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Asymptotics of RA and CS

• Recall connection to the compressed sensing.
• Call E > 0 feasible at a given ratio p/n and sparsity π if:

Y =
√
EXβ + Z, Z ∼ N (0, In), β ∈ Rp

I Columns of X are of unit energy
I β ∈ {0, 1}p and ‖β‖0 = πp,
I ∃β̂(Y,X) such that

‖β̂‖0 ≤ µn (FDR)

‖β̂ − β‖0 ≤ 2ε‖β‖0

• Then we have E∗∞ = min E
2 log2 Meff

• When X iid∼ N (0, 1/n) this is well studied in stat. physics.
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Replica method prediction

• Consider a scalar problem:

B =
√
E1A+N , A ∼ Ber(π) ⊥⊥ N ∼ N (0, 1)

• Define I1(E1) = I(A;B) and

p∗(E1, π) = min
Â

{
P[A = 0|Â = 1] : P[Â = 1] = π

}
• It can be seen that p∗ is a solution of√

E1 = Q−1(p∗) +Q−1
(
πp∗

1− π

)
.

• Stat. physics predicts that inference in

Y =
√
EXβ + Z, X

iid∼ N (0, 1/n), β ∼ Ber⊗p(π)

is asymptotically equivalent to a scalar problem with E1 = Eη
• η ∈ [0, 1] (the multi-user efficiency) is given as a solution of

η = argmin
x

[
p

n
I1(xE) +

1

2
(x− 1− lnx)

]

Yury Polyanskiy Remarks on massive random access 15



Replica method prediction

• Consider a scalar problem:

B =
√
E1A+N , A ∼ Ber(π) ⊥⊥ N ∼ N (0, 1)

• Define I1(E1) = I(A;B) and

p∗(E1, π) = min
Â
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B =
√
ηEA+N, A ∼ Ber(π) ⊥⊥ N ∼ N (0, 1)

Y =
√
EXβ + Z, X

iid∼ N (0, 1/n), β ∼ Ber⊗p(π)

Theorem (Replica formula exact for binary β)

Consider a sequence of random variables

Vn = P[β1 = 1|Y,X] ∈ [0, 1]

as p, n→∞ with p/n = const. Then

Vn
(d)→ P[A = 1|B] .
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Theorem (Replica formula exact for binary β)

Consider a sequence of random variables

Vn = P[β1 = 1|Y,X] ∈ [0, 1]

as p, n→∞ with p/n = const. Then

Vn
(d)→ P[A = 1|B] .

• Pfister-Reeves and Barbier-Macris have shown that

Var[β1|Y,X]→ Var[A|B]

• This is not enough to conclude the proof.
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B =
√
ηEA+N, A ∼ Ber(π) ⊥⊥ N ∼ N (0, 1)

Y =
√
EXβ + Z, X

iid∼ N (0, 1/n), β ∼ Ber⊗p(π)

Theorem (Replica formula exact for binary β)

Consider a sequence of random variables

Vn = P[β1 = 1|Y,X] ∈ [0, 1]

as p, n→∞ with p/n = const. Then

Vn
(d)→ P[A = 1|B] .

• Possible to argue indirectly for binary β only.
• If we have some sequence Gn = Gn(Y,X) ∈ [0, 1] s.t.

E[(Gn − β1)2]→ Var[β1|Y,X] then Gn
(d)→ E[β1|Y,X].

For binary, this is = P[β1 = 1|X,Y ].
• AMP started at true β yields such a Gn. The law of Gn is known to

converge to P[A = 1|B].
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Finite blocklength bound vs. n =∞ asymptotics
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Lesson: The [P.’17] bound is 0.5 − 0.7 dB
not tight.

Details: for each Ka compute E∞ at
keff = k − log2(Ka).
Scale E∞ down by keff

k
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Issue with the asymptotics

• Existence of (n,M,Ka, ε) does not imply existence of
(Ln,LM,LKa, ε) code (with the same effective Eb/N0).
• However, existence of (n,M,Poi(Ka), ε)-code does imply the above

as L→∞.
• Let us give a formal definition.
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RA-codes for random Ka

Channel model:

Y = f(W1) + · · ·+ f(WT ) + Z, Z ∼ N (0, In), T ∼ Poi(Ka)

where Wi
iid∼ Unif[M ].

Definition
f : [M ]→ Rn is a (n,M,Poi(Ka), ε) random-access code if ∃
list-decoder g s.t.

E[#{j : Wj 6∈ g(Y )}] ≤ εE[T ]

E[|g(Y )|] ≤ E[T ]

Open question: There is no random coding bound at present.
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Comparing T -fold ALOHA vs. IDMA

• Both T -fold Slotted ALOHA and IDMA try to sparsify collisions.
• T -SA partitions n as n = Ln1 where L = Ka/T . Collisions are in
n1-blocks
• Asymptotic fundamental limit of T -SA is the minimal (effective)
Eb/N0 of a (T/µ,Meff ,Poi(T ), ε)-codes.

• Asymptotic fundamental limit of IDMA: Need to solve a (new?)
sparse-design compressed sensing problem:

Y =
√
EXβ + Z

I X ∈ Rn×p has unit-energy columns.
I X has constant s = MeffT non-zeros per-row!
I p/n = const, E = const, n→∞.
I Open question: Replica/AMP for X iid∼ c

pN (0, c′) + (1− c
p )δ0
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Limitations of linear codes
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Binary Adder Channel (BAC)

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = A+B A,B ∈ {0, 1}, Y ∈ {0, 1, 2}

• Maximal symmetric rate:
Csym = 1

2 maxA,B I(A,B;Y ) = 1
2 maxH(A+B) = 3

4

• Maximal same-codebook rate: Csame = 3
4

• Maximal 0-error same-codebook rate: C0,same ≤ 0.5753
[Cohen-Litsyn-Zemor’01]

• Maximal 0-error symmetric rate: C0,sym ≥ 0.659 [Bross-Blake’98]

• Thus, for low error-rate there is a penalty due to random access.
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Limitations of linear codes

Theorem (P.’19, unpublished)

For any same-codebook C ⊂ {0, 1}n with |C| = 2k, which is F2-affine.
Then

Pe ≥
1

2

(
1− n

2k − 2

)
Thus, maximal achievable rate via such codes is ≤ 1

2 .

• WLOG, assume no constant coordinates. Then average codeword
weight = n

2 .
• Consider two codewords c1, c2 ∈ C. Let S = {j : c1,j = c2,j}.
• If |S| < k then ∃0 6= c ∈ C with c|S = 0.

(since we have n− k + |S| < n equations on c).
• Then c1 ⊕ c, c2 ⊕ c is a confusing pair: it has the same real-sum.
• Bound P[|S| < k] = P[|c1 ⊕ c2|H > n− k] via Chebyshev.
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Adder MAC: open issues

A

B
R1

R2

1

1

Y
R1 +R2 ≤ 3/2

Y = A+B A,B ∈ {0, 1}, Y ∈ {0, 1, 2}
• Challenge: Find same-codebook code beating 1/2 barrier.

• Note: two-phase schemes are not allowed
I use first k1 data bits (out of k = nR� 1) to select a permutation

matrix for each user.
I Encode k1 via any low-rate code into first n1 coordinates.
I Then use non-same LDPC codes on the rest n− n1 coordinates.

• Why not allow? e.g. the first k1 bits have degree Ω(n) (i.e. affect all
coded bits). Bad!
• Challenge: How to decode sparse-graph same-codebook codes?
• Note: the local beliefs about bits are useless. Need to introduce

global “super nodes”.
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Outline

• Question 1: Is there a useful asymptotics to study?
A: Yes Ka = µn, M = 2keffKa, n→∞.
• Question 2: What sparsification is more useful? (IDMA vs. T -SA)

A: Need to solve Poi(Ka) problem. Need to solve sparse-design CS.
• Question 3: Limitations of linear codes.

A: Non-capacity achieving. Challenge: Find alternatives.

Thank you!
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