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Broadcasting on Two-Dimensional
Regular Grids

Anuran Makur, Elchanan Mossel, and Yury Polyanskiy

Abstract

We study an important specialization of the general problem of broadcasting on directed acyclic graphs, namely,
that of broadcasting on two-dimensional (2D) regular grids. Consider an infinite directed acyclic graph with the form
of a 2D regular grid, which has a single source vertex X at layer 0, and k+1 vertices at layer k ≥ 1, which are at a
distance of k from X . Every vertex of the 2D regular grid has outdegree 2, the vertices at the boundary have indegree
1, and all other non-source vertices have indegree 2. At time 0, X is given a uniform random bit. At time k ≥ 1, each
vertex in layer k receives transmitted bits from its parents in layer k − 1, where the bits pass through independent
binary symmetric channels with common crossover probability δ ∈

(
0, 1

2

)
during the process of transmission. Then,

each vertex at layer k with indegree 2 combines its two input bits using a common deterministic Boolean processing
function to produce a single output bit at the vertex. The objective is to recover X with probability of error better
than 1

2
from all vertices at layer k as k → ∞. Besides their natural interpretation in the context of communication

networks, such broadcasting processes can be construed as one-dimensional (1D) probabilistic cellular automata, or
discrete-time statistical mechanical spin-flip system on 1D lattices, with boundary conditions that limit the number of
sites at each time k to k+1. Inspired by the literature surrounding the “positive rates conjecture” for 1D probabilistic
cellular automata, we conjecture that it is impossible to propagate information in a 2D regular grid regardless of the
noise level δ and the choice of common Boolean processing function. In this paper, we make considerable progress
towards establishing this conjecture, and prove using ideas from percolation and coding theory that recovery of
X is impossible for any δ ∈

(
0, 1

2

)
provided that all vertices with indegree 2 use either AND or XOR for their

processing functions. Furthermore, we propose a detailed and general martingale-based approach that establishes the
impossibility of recovering X for any δ ∈

(
0, 1

2

)
when all NAND processing functions are used if certain structured

supermartingales can be rigorously constructed. We also provide strong numerical evidence for the existence of these
supermartingales by computing several explicit examples for different values of δ via linear programming.

Index Terms

Broadcasting, probabilistic cellular automata, oriented bond percolation, linear code, supermartingale, potential
function, linear programming.
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I. INTRODUCTION

The problem of broadcasting on two-dimensional (2D) regular grids is an important specialization of the broader
question of broadcasting on bounded indegree directed acyclic graphs (DAGs), which was introduced in [1]–[3]
to generalize the classical problem of broadcasting on trees and Ising models, cf. [4]. In contrast to the canonical
study of reliable communication through broadcast channels in network information theory [5, Chapters 5 and
8], the broadcasting problem, as studied in this paper, analyzes whether or not the “wavefront of information”
emitted (or broadcasted) by a single transmitter decays irrecoverably as it propagates through a large, and typically
structured, Bayesian network. For example, in the broadcasting on trees setting, we are given a Bayesian network
whose underlying DAG is a rooted tree T , vertices are Bernoulli random variables, and edges are independent
binary symmetric channels (BSCs) with common crossover probability δ ∈

(
0, 12
)
. The root contains a uniform

random bit that it transmits through T , and our goal is to decode this bit from the received values of the vertices
at an arbitrarily deep layer k (i.e. at distance k from the root) of T . It is proved in a sequence of papers [4],
[6], [7] that the root bit can be decoded with minimum probability of error bounded away from 1

2 as k → ∞
if and only if (1 − 2δ)2 br(T ) > 1, i.e. the noise level δ is strictly less than the critical Kesten-Stigum threshold
1
2

(
1− (1/br(T ))1/2

)
, which depends on the branching number br(T ) (see [8, Chapter 1.2]). This key result and

its generalizations, cf. [9]–[17], precisely characterize when information about the root bit contained in the vertices
at arbitrarily deep layers of a Bayesian network with a tree-structured topology vanishes completely.

Although broadcasting on trees is amenable to various kinds of tractable analysis, the general problem of
broadcasting on bounded indegree DAGs arguably better models real-world communication or social networks,
where each vertex or agent usually receives multiple noisy input signals and has to judiciously consolidate these
signals using simple rules. In the broadcasting on DAGs setting, we are given a Bayesian network with a single
unbiased Bernoulli source vertex such that all other Bernoulli vertices have bounded indegree, and all edges are
independent BSCs with noise level δ ∈

(
0, 12
)
. Moreover, the vertices with indegree larger than 1 compute their

values by applying Boolean processing functions to their noisy inputs. Determining the precise conditions on the
graph topology (e.g. the bound on the indegrees), the noise level δ, and the choices of Boolean processing functions
that permit successful reconstruction of the source bit is quite challenging. As a result, we usually characterize
when reconstruction is possible for specific classes of DAGs and choices of processing functions.

For instance, our earlier work [1], [2] studies randomly constructed DAGs with indegrees d and layer sizes Lk,
where Lk denotes the number of vertices at layer k (i.e. at distance k from the source vertex). It is established in
[2, Theorem 1] that if d ≥ 3 and all majority processing functions are used, then reconstruction of the source bit is
possible using the majority decoder when δ < δmaj(d) and Lk ≥ C(δ, d) log(k) for all sufficiently large k, where
δmaj(d) is a known critical threshold (cf. [2, Equation (11)]) and C(δ, d) > 0 is some fixed constant. Furthermore,
[2, Theorem 2] shows a similar result when d = 2 and all NAND processing functions are used. (Partial converse
results to [2, Theorems 1 and 2] are also developed in [2].) The aforementioned results demonstrate, after employing
the probabilistic method, the existence of deterministic DAGs with bounded indegree and Lk = Θ(log(k)) such that
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reconstruction is possible for sufficiently small noise levels δ. In fact, [2, Theorem 3, Proposition 2] also presents
an explicit quasi-polynomial time construction of such deterministic DAGs using regular bipartite lossless expander
graphs. In a nutshell, the results in [1], [2] illustrate that while Lk must be exponential in k for reconstruction to
be possible in trees, logarithmic Lk suffices for reconstruction in bounded indegree DAGs, because DAGs enable
information fusion (or local “error correction”) at the vertices.

As opposed to the randomly constructed and expander-based DAGs analyzed in [1], [2], in this paper, we consider
the problem of broadcasting on another simple and important class of deterministic DAGs, namely, 2D regular grids.
2D regular grids correspond to DAGs with Lk = k + 1 such that every vertex has outdegree 2, the vertices at the
boundary have indegree 1, and all other non-source vertices have indegree 2. For simplicity, we study the setting
where the Boolean processing functions at all vertices with indegree 2 are the same. As we will explain shortly,
the literature on one-dimensional (1D) probabilistic cellular automata suggests that reconstruction of the source
bit is impossible for such 2D regular grids regardless of the noise level δ and the choice of Boolean processing
function. In this vein, the main contributions of this paper include two impossibility results that partially justify
this intuition. In particular, we prove that recovery of the source bit is impossible on a 2D regular grid if all
intermediate vertices with indegree 2 use logical AND as the processing function, or all use logical XOR as the
processing function. These proofs leverage ideas from percolation and coding theory. This leaves only NAND as
the remaining symmetric processing function where the impossibility of reconstruction is unknown. Although we
do not provide a complete proof of the impossibility of broadcasting with NAND processing functions, another
main contribution of this paper is a careful elaboration of a martingale-based technique that yields the desired
impossibility result if a certain family of superharmonic potential functions can be rigorously constructed. While
such a (theoretical) construction currently remains open, we present some strong numerical evidence for it via linear
programming. Furthermore, this martingale-based approach can easily be modified to obtain potential proofs for
the impossibility of broadcasting on 2D regular grids for other choices of Boolean processing functions. Thus, we
believe that it is instructive for future work in this area.

A. Motivation

As discussed in our earlier work [2], the general problem of broadcasting on bounded indegree DAGs is closely
related to a myriad of problems in the literature. Besides its canonical broadcast interpretation in the context of
communication networks, broadcasting on DAGs is a natural model of reliable computation and storage, cf. [18]–
[23]. Indeed, the model can be construed as a noisy circuit that has been constructed to remember (or store) a bit,
where the edges are wires that independently make errors, and the Boolean processing functions at the vertices are
perfect logic gates. Special cases of the broadcasting model on certain families of DAGs also correspond to well-
known models in statistical physics. For example, broadcasting on trees corresponds to the extremality of certain
Gibbs measures of ferromagnetic Ising models [4, Section 2.2], and broadcasting on regular grids is closely related
to the ergodicity of discrete-time statistical mechanical spin-flip systems (such as probabilistic cellular automata) on
lattices [24]–[26]. Furthermore, other special cases of the broadcasting model, such as on trees, represent information
flow in biological networks, cf. [27]–[30], play a crucial role in random constraint satisfaction problems, cf. [31]–
[34], and are useful in proving converse results for community detection in stochastic block models, cf. [35, Section
5.1].

The main motivation for this work, i.e. the problem of understanding whether it is possible to propagate
information starting from the source specifically in regular grids (see Figure 1 for a 2D example), stems from the
theory of probabilistic cellular automata (PCA). Our conjecture is that such propagation is possible for sufficiently
low noise levels δ in 3 or more dimensions, and impossible for 2D regular grids regardless of the noise level and
the choice of Boolean processing function (which is the same for every vertex). This conjecture resembles and is
inspired by the literature on the positive rates conjecture for 1D PCA, cf. [26, Section 1], and the existence of non-
ergodic 2D PCA such as that defined by Toom’s North-East-Center (NEC) rule, cf. [36]. Notice that broadcasting
processes on 2D regular grids can be perceived as 1D PCA with boundary conditions that limit the layer sizes to
be Lk = k+ 1, and the impossibility of reconstruction on 2D regular grids intuitively corresponds to the ergodicity
of 1D PCA (along with sufficiently fast convergence rate to stationarity). Therefore, the existence of a 2D regular
grid with a choice of Boolean processing function which remembers its initial state bit for infinite time would
suggest the existence of non-ergodic infinite 1D PCA consisting of 2-input binary-state cells. However, the positive
rates conjecture states (in essence) that “relatively simple” 1D PCA with local interactions and strictly positive
noise probabilities are ergodic, and known counter-example constructions to this conjecture either require a lot
more states [37], or are non-uniform in time and space [38]. This intuition gives credence to our conjecture that
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Fig. 1. Illustration of a 2D regular grid where each vertex is a Bernoulli random variable and each edge is a BSC with parameter δ ∈
(
0, 1

2

)
.

Moreover, each vertex with indegree 2 uses a common Boolean processing function to combine its noisy input bits.

broadcasting is impossible for 2D regular grids. Furthermore, much like 2D regular grids, broadcasting on three-
dimensional (3D) regular grids can be perceived as 2D PCA with boundary conditions (as shown in subsection
II-D). Hence, the existence of non-ergodic 2D PCA, such as that in [36], suggests the existence of 3D regular grids
where broadcasting is possible, thereby lending further credence to our conjecture. In this paper, we take some first
steps towards establishing the 2D part of our larger conjecture.

Since the thrust of this paper partly hinges on the positive rates conjecture, we close this subsection by briefly
expounding the underlying intuition behind it. Borrowing terminology from statistical physics, where a spin-flip
system is said to experience a phase transition if it has more than one invariant measure, the positive rates conjecture
informally states that there are “no phase transitions in one dimension” [26, Section 1]. In fact, this statement is
true for the special (and better understood) case of Ising models, where there is a phase transition in 2D when
the temperature is sufficiently small, but not in 1D [26, Section 2]. Building intuition off of Ising models, it is
explained in [26, Section 2] that when a binary-state 2D PCA is non-ergodic, its multiple invariant measures are
“close to” the various stable ground state configurations, e.g. “all 0’s” and “all 1’s.” Furthermore, for a ground state
configuration such as “all 0’s” to be deemed stable, we require that finite “islands” of 1’s that are randomly formed
by the noise process are killed by the transition (or Boolean processing) functions of the automaton, e.g. Toom’s
NEC rule kills such finite islands starting with their corners. However, for 1D PCA, a transition function with finite
interaction neighborhood that is at the boundary of a large finite island cannot easily distinguish the island from
the true ground state. Therefore, we cannot expect stable ground state configurations to exist in such simple 1D
PCA, and hence, it is conjectured that such 1D PCA are ergodic.

B. Outline

We now delineate the organization of the remainder of this paper. The next subsection I-C formally defines the
2D regular grid model in order to present our results in future sections. Section II presents our main impossibility
results for the AND and XOR cases, describes our partial impossibility result for the NAND case and provides some
accompanying numerical evidence, discusses some other related impossibility results, and elucidates the connection
between 3D regular grid models and a variant of Toom’s PCA. Sections III and IV contain the proofs of our main
impossibility results for AND processing functions and XOR processing functions, respectively. Then, we derive
our partial impossibility result in section V by carefully expounding a promising approach for proving impossibility
results for 2D regular grids with NAND, and possibly other, processing functions via the construction of pertinent
supermartingales. Finally, we conclude our discussion and propose future research directions in section VI.

C. 2D Regular Grid Model

A 2D regular grid model consists of an infinite DAG with vertices that are Bernoulli random variables (with range
{0, 1}) and edges that are independent BSCs. The root or source random variable of the grid is X0,0 ∼ Bernoulli

(
1
2

)
,

and we let Xk = (Xk,0, . . . , Xk,k) be the vector of vertex random variables at distance (i.e. length of shortest path)
k ∈ N , {0, 1, 2, . . . } from the root. So, X0 = (X0,0) and there are k + 1 vertices at distance k. Furthermore,
the 2D regular grid contains the directed edges (Xk,j , Xk+1,j) and (Xk,j , Xk+1,j+1) for every k ∈ N and every
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j ∈ [k + 1] , {0, . . . , k}, where the notation (v, w) denotes an edge from source vertex v to destination vertex w.
The underlying DAG of such a 2D regular grid is shown in Figure 1.

To construct a Bayesian network (or directed graphical model) on this 2D regular grid, we fix some crossover
probability parameter δ ∈

(
0, 12
)
,1 and two Boolean processing functions f1 : {0, 1} → {0, 1} and f2 : {0, 1}2 →

{0, 1}. Then, for any k ∈ N\{0, 1} and j ∈ {1, . . . , k − 1}, we define:2

Xk,j = f2(Xk−1,j−1 ⊕ Zk,j,1, Xk−1,j ⊕ Zk,j,2) (1)

and for any k ∈ N\{0}, we define:

Xk,0 = f1(Xk−1,0 ⊕ Zk,0,2) and Xk,k = f1(Xk−1,k−1 ⊕ Zk,k,1) (2)

where ⊕ denotes addition modulo 2, and {Zk,j,i : k ∈ N\{0}, j ∈ [k+ 1], i ∈ {1, 2}} are i.i.d Bernoulli(δ) random
variables that are independent of everything else. This implies that each edge is a BSC(δ), i.e. a BSC with parameter
δ. Together, (1) and (2) characterize the conditional distribution of any Xk,j given its parents.

Observe that the sequence {Xk : k ∈ N} forms a Markov chain, and our goal is to determine whether or not the
value at the root X0 can be decoded from the observations Xk as k → ∞. Given Xk for any fixed k ∈ N\{0},
inferring the value of X0 is a binary hypothesis testing problem with minimum achievable probability of error:

P
(
hkML(Xk) 6= X0

)
=

1

2

(
1−

∥∥P+
Xk
− P−Xk

∥∥
TV

)
(3)

where hkML : {0, 1}k+1 → {0, 1} is the maximum likelihood (ML) decision rule based on Xk at level k (with
knowledge of the 2D regular grid), P+

Xk
and P−Xk are the conditional distributions of Xk given X0 = 1 and

X0 = 0, respectively, and for any two probability measures P and Q on the same measurable space (Ω,F), their
total variation (TV) distance is defined as:

‖P −Q‖TV , sup
A∈F
|P (A)−Q(A)| . (4)

It is straightforward to verify that the sequence {P(hkML(Xk) 6= X0) : k ∈ N\{0}} is non-decreasing and bounded
above by 1

2 . Indeed, the monotonicity of this sequence is a consequence of (3) and the data processing inequality
for TV distance, and the upper bound on the sequence trivially holds because a randomly generated bit cannot beat
the ML decoder. Therefore, the limit of this sequence exists, and we say that reconstruction of the root bit X0 is
impossible, or “broadcasting is impossible,” when:

lim
k→∞

P
(
hkML(Xk) 6= X0

)
=

1

2
⇔ lim

k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 (5)

where the equivalence follows from (3).3 In every impossibility result in this paper, we will prove that reconstruction
of X0 is impossible in the sense of (5).

II. MAIN RESULTS AND DISCUSSION

In this section, we state our main results, briefly delineate the main techniques or intuition used in the proofs,
and discuss related results and models in the literature.

A. Impossibility Results for AND and XOR 2D Regular Grids

In contrast to our work in [2] where we analyze broadcasting on random DAGs, the deterministic 2D regular
grids we now study are much harder to analyze due to the dependence between adjacent vertices in a given layer.
So, as we will explain later, we have to employ seemingly ad hoc proof techniques from percolation theory, coding
theory, and martingale theory in this paper instead of the simple and elegant fixed point iteration intuition exploited
in [2]. As mentioned earlier, we analyze the setting where all Boolean processing functions in the 2D regular grid

1The cases δ = 0 and δ = 1
2

are uninteresting because the former corresponds to a deterministic grid and the latter corresponds to an
independent grid.

2We can similarly define a more general model where every vertex Xk,j has its own Boolean processing function fk,j , but we will only
analyze instances of the simpler model presented here.

3Likewise, we say that reconstruction is possible, or “broadcasting is possible,” when limk→∞ P(hkML(Xk) 6= X0) <
1
2

, or equivalently,
limk→∞ ‖P+

Xk
− P−Xk‖TV > 0.
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with two inputs are the same, and all Boolean processing functions in the 2D regular grid with one input are the
identity rule.

Our first main result shows that reconstruction is impossible for all δ ∈
(
0, 12
)

when AND processing functions
are used.

Theorem 1 (AND 2D Regular Grid). If δ ∈
(
0, 12
)
, and all Boolean processing functions with two inputs in the

2D regular grid are the AND rule, then broadcasting is impossible in the sense of (5):

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 .

Theorem 1 is proved in section III. The proof couples the 2D regular grid starting at X0,0 = 0 with the 2D regular
grid starting at X0,0 = 1, and “runs” them together. Using a phase transition result concerning bond percolation
on 2D lattices, we show that we eventually reach a layer where the values of all vertices in the first grid equal
the values of the corresponding vertices in the second grid. So, the two 2D regular grids “couple” almost surely
regardless of their starting state. This implies that we cannot decode the starting state by looking at vertices in
layer k as k → ∞. We note that in order to prove that the two 2D regular grids “couple,” we have to consider
two different regimes of δ and provide separate arguments for each. The details of these arguments are presented
in section III.

Our second main result shows that reconstruction is impossible for all δ ∈
(
0, 12
)

when XOR processing functions
are used.

Theorem 2 (XOR 2D Regular Grid). If δ ∈
(
0, 12
)
, and all Boolean processing functions with two inputs in the

2D regular grid are the XOR rule, then broadcasting is impossible in the sense of (5):

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 .

Theorem 2 is proved in section IV. In the XOR 2D regular grid, every vertex at level k can be written as a
(binary) linear combination of the source bit and all the BSC noise random variables in the grid up to level k. This
linear relationship can be captured by a binary matrix. The main idea of the proof is to perceive this matrix as
a parity check matrix of a linear code. The problem of inferring X0,0 from Xk turns out to be equivalent to the
problem of decoding the first bit of a codeword drawn uniformly from this code after observing a noisy version of
the codeword. Basic facts from coding theory can then be used to complete the proof.

We remark that at first glance, Theorems 1 and 2 seem intuitively obvious from the random DAG model perspective
of [2, Section I-C]. For example, consider a random DAG model where the number of vertices at level k ∈ N
is Lk = k + 1, two incoming edges for each vertex in level k ∈ N\{0} are chosen randomly, uniformly, and
independently (with replacement) from the vertices in level k − 1, and all Boolean processing functions are the
AND rule. Then, letting σk ,

∑k
j=0Xk,j/(k + 1) ∈ [0, 1] be the proportion of 1’s in level k ∈ N, the conditional

expectation function g(σ) = E[σk|σk−1 = σ] has only one fixed point regardless of the value of δ ∈
(
0, 12
)
, and we

intuitively expect σk to tend to this fixed point (which roughly captures the equilibrium between AND gates killing
1’s and BSC(δ)’s producing new 1’s) as k → ∞. So, reconstruction is impossible in this random DAG model,
which suggests that reconstruction is also impossible in the AND 2D regular grid. However, although Theorems
1 and 2 seem intuitively easy to understand in this way, we emphasize that this random DAG intuition does not
capture the subtleties engendered by the “regularity” of the 2D grid. In fact, the intuition derived from the random
DAG model can even be somewhat misleading. Consider the random DAG model described above with all NAND
processing functions (instead of AND processing functions). This model was analyzed in [2, Theorem 2], because
using alternating layers of AND and OR processing functions is equivalent to using all NAND processing functions
(see [2, Footnote 10]). [2, Theorem 2] portrays that reconstruction of the source bit is possible for δ <

(
3−
√

7
)
/4.

Yet, evidence from [39, Theorem 1], which establishes the ergodicity of 1D PCA with NAND gates, and the
detailed discussion, results, and numerical simulations in subsection II-B and section V, suggest that reconstruction
is actually impossible for the 2D regular grid with NAND processing functions. Therefore, the 2D regular grid
setting of Theorems 1 and 2 should be intuitively understood using random DAG models with caution. Indeed, as
sections III and IV illustrate, the proofs of these theorems are nontrivial.

The impossibility of broadcasting in Theorems 1 and 2 also seems intuitively plausible due to the ergodicity results
for numerous 1D PCA—see e.g. [24] and the references therein. (Indeed, as we delineated in subsection I-A, our
conjecture was inspired by the positive rates conjecture for 1D PCA.) However, there are four key differences
between broadcasting on 2D regular grids and 1D PCA. Firstly, the main question in the study of 1D PCA is
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whether a given automaton is ergodic, i.e. whether the Markov process defined by it converges to a unique invariant
probability measure on the configuration space for all initial configurations. This question of ergodicity is typically
addressed by considering the convergence of finite-dimensional distributions over the sites (i.e. weak convergence).
Hence, for many 1D PCA that have special characteristics, such as translation invariance, finite interaction range,
positivity, and attractiveness (or monotonicity), cf. [24], it suffices to consider the convergence of distributions on
finite intervals, e.g. marginal distribution at a given site. In contrast to this setting, we are concerned with the
stronger notion of convergence in TV distance. Indeed, Theorems 1 and 2 show that the TV distance between P+

Xk
and P−Xk vanishes as k →∞.

Secondly, since a 1D PCA has infinitely many sites, the problem of remembering or storing a bit in a 1D PCA
(with binary state space) corresponds to distinguishing between the “all 0’s” and “all 1’s” initial configurations. On
the other hand, as mentioned in subsection I-A, a 2D regular grid can be construed as a 1D PCA with boundary
conditions; each level k ∈ N corresponds to an instance in discrete-time, and there are Lk = k+ 1 sites at time k.
Moreover, its initial configuration has only one copy of the initial bit as opposed to infinitely many copies. As a
result, compared a 2D regular grid, a 1D PCA (without boundary conditions) intuitively appears to have a stronger
separation between the two initial states as time progresses. The aforementioned boundary conditions form another
barrier to translating results from the 1D PCA literature to 2D regular grids.

Thirdly, in our broadcasting model in subsection I-C, the independent BSCs are situated on the edges of the
2D regular grid. On the other hand, a corresponding 1D PCA (which removes the boundary conditions of the 2D
regular grid) first uses the unadulterated bits from the previous layer while computing its processing functions in the
current layer, and then applies independent BSC noise to the outputs of the functions. Equivalently, a 1D PCA with
BSC noise behaves like a 2D regular grid where the edges between levels 0 and 1 are noise-free, and for any site
at any level k ≥ 1, the BSCs of its two outgoing edges are coupled so that they flip their input bit simultaneously
(almost surely). It is due this difference between our broadcasting model and the canonical 1D PCA model that
we cannot, for example, easily translate the ergodicity result for 1D PCA with NAND gates and BSC noise in [39,
Theorem 1] to an impossibility result for broadcasting on 2D regular grids with NAND processing functions. We
additionally remark, for completeness, that there are some known connections between vertex noise and edge noise,
cf. [40], but these results do not help with our problem.

Fourthly, it is also worth mentioning that most results on 1D PCA pertain to the continuous-time setting—see e.g.
[24], [41] and the references therein. This is because sites are (almost surely) updated one by one in a continuous-
time automaton, but they are updated in parallel in a discrete-time automaton. So, the discrete-time setting is often
harder to analyze. Indeed, some of the only known discrete-time 1D PCA ergodicity results are in [39, Theorem
1] and [25, Section 3], where the latter outlines the proof of ergodicity of the 3-input majority vote model (i.e.
1D PCA with 3-input majority gates) for sufficiently small noise levels.4 This is another reason why results from
the 1D PCA literature cannot be easily transferred to our model.

B. Partial Impossibility Result for NAND 2D Regular Grid

We next present our final main result for the 2D regular grid with all NAND processing functions. Based on our
broader conjecture in subsection I-A, we first state the following conjecture in analogy with Theorems 1 and 2.

Conjecture 1 (NAND 2D Regular Grid). If δ ∈
(
0, 12
)
, and all Boolean processing functions with two inputs in

the 2D regular grid are the NAND rule, then broadcasting is impossible in the sense of (5):

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0 .

As noted in section I, we will present a detailed “program” for proving this conjecture in section V. This program
is inspired by the potential function technique employed in the proof of ergodicity of 1D PCA with NAND gates
in [39, Theorem 1], and can be construed as a more general approach to proving impossibility of broadcasting on
2D regular grids with other processing functions or ergodicity of the corresponding 1D PCA. In this subsection, we
delineate a sufficient condition for proving Conjecture 1 that follows from the arguments in section V, and provide
accompanying numerical evidence that this sufficient condition is actually true.

4As Gray explains in [25, Section 3], his proof of ergodicity is not complete; he is “very detailed for certain parts of the argument and very
sketchy in others” [25]. Although the references in [25] indicate that Gray was preparing a paper with the complete proof, this paper was never
published to our knowledge. So, the ergodicity of 1D PCA with 3-input majority gates has not been rigorously established.
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To this end, we begin with some necessary setup, notation, and definitions that are relevant to the NAND 2D
regular grid. Let {X+

k : k ∈ N} and {X−k : k ∈ N} denote versions of the Markov chain {Xk : k ∈ N} initialized at
X+

0 = 1 and X−0 = 0, respectively. Define the coupled 2D grid variables {Yk,j = (X−k,j , X
+
k,j) : k ∈ N, j ∈ [k+1]},

which yield the Markovian coupling {Yk = (Yk,0, . . . , Yk,k) : k ∈ N}. The coupled Markov chain {Yk : k ∈ N}
“runs” its “marginal” Markov chains {X+

k : k ∈ N} and {X−k : k ∈ N} on a common underlying 2D regular grid so
that along any edge BSC, either both inputs are copied with probability 1−2δ, or a shared independent Bernoulli

(
1
2

)
output bit is produced with probability 2δ. Moreover, we assume that each Yk,j for k ∈ N and j ∈ [k + 1] takes
values in the extended alphabet set Y , {0, 1, u}, where Yk,j = 0 if and only if X−k,j = X+

k,j = 0, Yk,j = 1 if
and only if X−k,j = X+

k,j = 1, and Yk,j = u if and only if X−k,j 6= X+
k,j . Our Markovian coupling, along with (44)

and (45) from subsection V-A, completely determines the transition kernels of {Yk : k ∈ N}, i.e. the conditional
distributions of Yk+1 ∈ Yk+2 given Yk for all k ∈ N, and this coupled Markov chain starts at Y0 = u almost
surely. As we will show in subsection V-A, it suffices to analyze the coupled Markov chain {Yk : k ∈ N} to deduce
the impossibility of broadcasting. (A more detailed explanation of our Markovian coupling can also be found in
subsection V-A.) Lastly, in order to present our final main result, we introduce the class of cyclic potential functions
(inspired by [39]), a partial order over these potential functions, and a pertinent linear operator on the space of
potential functions in the next definition.

Definition 1 (Cyclic Potential Functions and Related Notions). Given any finite set of strings v1, . . . , vm ∈ Y∗ =
∪k∈N\{0}Yk and any associated coefficients α1, . . . , αm ∈ R (with m ∈ N\{0}), we may define a corresponding
cyclic potential function w : Y∗ → R via the formal sum:

w =

m∑
j=1

αj{vj} ,

where curly braces are used to distinguish a string v ∈ Y∗ from its associated potential function {v} : Y∗ → R. In
particular, for every k ∈ N\{0} and every string y = (y0 · · · yk−1) ∈ Yk of length k, the cyclic potential function
w is evaluated as follows:

w[y] ,
m∑
j=1

αj1{length of vj ≤ k}
k−1∑
i=0

1
{(
y(i)k · · · y(i+s−1)k

)
= vj

}
where (i)k ≡ i (mod k) for every i ∈ N. Furthermore, we say that w is u-only if the strings v1, . . . , vm all contain
a u. For any fixed r ∈ N\{0}, we may also define a partial order �c over the set of all cyclic potential functions
for which the lengths of the underlying strings (with non-zero coefficients) defining their formal sums are bounded
by r. Specifically, for any pair of such cyclic potential functions w1 : Y∗ → R and w2 : Y∗ → R, we have:

w1�c w2 ⇔ ∀y ∈
⋃
k≥r

Yk, w1[y] ≥ w2[y] .

Finally, we define the conditional expectation operator E on the space of cyclic potential functions based on the
coupled NAND 2D regular grid as follows. For any input cyclic potential function w (defined by the formal sum
above), E outputs the cyclic potential function with formal sum:

E(w) ,
m∑
j=1

αj
∑

z∈Ysj+1

P
(
(Ysj+1,1, . . . , Ysj+1,sj ) = vj

∣∣Ysj = z
)
{z}

where sj denotes the length of vj for all j ∈ {1, . . . ,m}, and the probabilities are determined by the Markovian
coupling {Yk : k ∈ N}.

We note that Definition 1 collects several smaller definitions interspersed throughout section V, where they are
each carefully explained in greater detail, and many other closely related ideas and terminology are also introduced.
Using the concepts in Definition 1, the ensuing main theorem presents a sufficient condition for the impossibility
of broadcasting on the NAND 2D regular grid.

Theorem 3 (Sufficient Condition for NAND 2D Regular Grid). For any noise level δ ∈
(
0, 12
)
, suppose that there

exists r ∈ N\{0, 1}, and a cyclic potential function wδ : Y∗ → R whose formal sum is constructed with strings
(with non-zero coefficients) of length at most r − 1, such that:

1) wδ is u-only,
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TABLE I
FEASIBLE SOLUTIONS α∗(δ) OF THE LP (82) FOR DIFFERENT δ ∈

(
0, 1

2

)
WHEN r = 4

δ 0.0001 0.001 0.01 0.02 0.05 0.1 0.2

α∗(δ)

(000)
(001)
(00u)
(010)
(011)
(01u)
(0u0)
(0u1)
(0uu)
(100)
(101)
(10u)
(110)
(111)
(11u)
(1u0)
(1u1)
(1uu)
(u00)
(u01)
(u0u)
(u10)
(u11)
(u1u)
(uu0)
(uu1)
(uuu)



0
0

0.0000
0
0

1.9991
0.0004
1.9990
1.9986

0
0

0.0002
0
0

0.9988
1.0005
1.9996
1.9995
1.0000
1.0002
1.0000
2.0003
1.0006
1.9988
1.0000
1.9991
1.9990





0
0

0.0000
0
0

1.9908
0.0040
1.9904
1.9864

0
0

0.0020
0
0

0.9884
1.0047
1.9958
1.9948
1.0000
1.0020
1.0000
2.0027
1.0058
1.9881
1.0000
1.9910
1.9897





0
0

0.0171
0
0

1.9223
0.0421
1.9164
1.9528

0
0

0.0358
0
0

1.0010
1.3343
1.9526
1.9610
1.0000
1.0057
1.0000
2.2894
1.3689
1.9396
1.3358
1.9535
1.9499





0
0

0.0624
0
0

1.7777
0.0783
1.7509
1.8429

0
0

0.0948
0
0

0.9906
1.6963
1.8252
1.8482
1.0000
1.0000
1.0000
2.5746
1.7854
1.7970
1.6983
1.8211
1.8119





0
0

0.1151
0
0

1.3064
0.1477
1.2696
1.3672

0
0

0.1516
0
0

0.7999
1.3745
1.4142
1.4430
1.0000
1.0000
1.0000
2.0237
1.5929
1.4229
1.4511
1.4682
1.4577





0
0

0.1368
0
0

0.7631
0.1599
0.7283
0.8458

0
0

0.1589
0
0

0.5322
0.7787
0.9025
0.9489
1.0000
1.0000
1.0000
1.1221
1.0445
1.0000
1.0000
1.0000
1.0000





0
0

0.1402
0
0

0.3943
0.1852
0.4138
0.5363

0
0

0.1428
0
0

0.3189
0.5149
0.6328
0.7120
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000



2) wδ �c E(wδ),
3) There exists a constant C = C(δ) > 0 (which may depend on δ) such that wδ �c C{u},

where �c is defined using r (as in Definition 1), and C{u} : Y∗ → R is the cyclic potential function consisting
of a single string (u) ∈ Y with coefficient C. Then, Conjecture 1 is true, i.e. broadcasting on the 2D regular grid
where all Boolean processing functions with two inputs are the NAND rule is impossible in the sense of (5).

Theorem 3 is proved in subsection V-D. Intuitively, the first two conditions in the theorem statement ensure that
{wδ(Yk) : k ∈ N} is a supermartingale, and the third condition ensures that this supermartingale upper bounds
the total number of uncoupled grid variables at successive levels. Then, using a martingale convergence argument
along with some careful analysis of the stochastic dynamics of the coupled 2D regular grid, we can deduce that the
number of uncoupled grid variables converges to zero almost surely. Akin to the proof of Theorem 1, this implies
that broadcasting is impossible on the NAND 2D regular grid. As noted earlier, the details of the entire argument
can be found in section V.

While Theorem 3 describes specific cyclic potential functions that can be used to prove Conjecture 1, we do
not rigorously prove their existence for all δ ∈

(
0, 12
)

in this paper. However, much of the development in section
V aims to carefully explain these desired potential functions and derive results that enable us to computationally
construct them. In particular, we demonstrate in Proposition 10 that for fixed values of δ, r, and C, the problem of
finding an appropriate cyclic potential function wδ satisfying the three conditions of Theorem 3 can be posed as
a linear program (LP). This connection stems from a graph theoretic characterization of �c (the details of which
are expounded in subsection V-C).

Armed with this connection, we present some illustrative LP simulation results (computed using MATLAB with
CVX optimization packages) in Table I which numerically construct cyclic potential functions w∗δ : Y∗ → R that
satisfy the three conditions of Theorem 3 with the fixed constants r = 4 and C = C(δ) = 1. Specifically, we
consider different representative values of δ ∈

(
0, 12
)

in the first row of Table I. For any such fixed δ value,
the second row of Table I displays a corresponding vector of coefficients α∗(δ) ∈ R27 (which has been rounded
to 4 decimal places) that defines a cyclic potential function w∗δ : Y∗ → R satisfying the three conditions of
Theorem 3 and consisting of a formal sum over all strings of length 3. Indeed, for the readers’ convenience, we
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index these vectors of coefficients α∗(δ) with Y3 in Table I, so that each α∗(δ) defines w∗δ via the formal sum
constructed by scaling each index in Y3 with the associated value in α∗(δ) and adding them up (see Definition
1). For example, the first column of Table I states that when δ = 0.0001, the cyclic potential function, w∗δ =
1.9991{01u}+0.0004{0u0}+ · · ·+1.9991{uu1}+1.9990{uuu}, satisfies the conditions of Theorem 3 with r = 4
and C = 1. Furthermore, it is straightforward to see that the coefficients corresponding to strings in Y3 with no u’s
are always zero in Table I, and the coefficients corresponding to the last 9 strings in Y3 that begin with a u are all
lower bounded by 1. The former observation immediately confirms that the cyclic potential functions represented in
Table I satisfy the first condition of Theorem 3, and the latter observation shows that they satisfy the third condition
of Theorem 3 with C = 1 (using the idea of “purification” from section V). We refer readers to subsection V-E for
further details and discussion regarding how to compute the vectors α∗(δ) by solving LPs.

We close this subsection with three further remarks. Firstly, Table I only presents a small subset of our simulation
results for brevity. We have solved LPs for various other values of δ ∈

(
0, 12
)

and always obtained associated feasible
vectors of coefficients α∗(δ). We do not present simulation results for δ > 0.146446 . . . (other than δ = 0.2), because
part 2 of Proposition 2 implies that broadcasting is impossible in the sense of (5) in this case—see (9) and the
discussion below in subsection II-C. Moreover, the impossibility of broadcasting is intuitively more surprising for
smaller values of noise δ, so we emphasized the LP solutions for smaller values of δ in Table I since they are more
compelling. (Note, however, that we do not know any rigorous monotonicity result which shows that broadcasting
is impossible on the NAND 2D regular grid for δ′ ∈

(
0, 12
)

if it is impossible for a smaller δ ∈
(
0, 12
)

value, i.e.
δ < δ′.)

Secondly, it is worth mentioning that Theorem 3 and associated LP simulation results (as in Table I) yield non-
rigorous computer-assisted proofs of the impossibility of broadcasting on NAND 2D regular grids for individual
values of δ ∈

(
0, 12
)
. Hence, Table I provides strong evidence that broadcasting is indeed impossible on the NAND

2D regular grid for all δ ∈
(
0, 12
)

in the sense of (5). We elaborate on possible approaches to rigorize our LP-based
argument at the end of subsection V-E.

Finally, we emphasize that by fully establishing the AND and XOR cases in Theorems 1 and 2, and partially
establishing the NAND case in Theorem 3 and our simulations, we have made substantial progress towards proving
the 2D aspect our conjecture in subsection I-A that broadcasting is impossible for 2D regular grids for all choices
of common Boolean processing functions. Indeed, there are 16 possible 2-input logic gates that can serve as
our processing function. It turns out that to prove our conjecture, we only need to establish the impossibility of
broadcasting for four nontrivial cases out of the 16 gates. To elaborate further, notice that the two constant Boolean
processing functions that always output 0 or 1 engender 2D regular grids where only the vertices at the boundary
carry any useful information about the source bit. However, since the boundaries of the 2D regular grid are ergodic
binary-state Markov chains (since δ ∈

(
0, 12
)
), broadcasting is clearly impossible for such constant processing

functions. The four 2-input Boolean processing functions that are actually 1-input functions, namely, the identity
maps for the first or second input and the inverters (or NOT gates) for the first or second input, beget 2D regular
grids that are actually trees. Moreover, these trees have branching number 1, and hence, the results of [4] (outlined
in section I) imply that broadcasting is impossible for such 1-input Boolean processing functions. The six remaining
symmetric Boolean processing functions are AND, NAND, OR, NOR, XOR, and XNOR. Due to the symmetry of
0’s and 1’s in our model (see subsection I-C), we need only prove the impossibility of broadcasting for the three
logic gates AND, XOR, and NAND (which are equivalent to OR, XNOR, and NOR, respectively). This leaves four
asymmetric 2-input Boolean processing functions out of the original 16. Once again, due to the symmetry of 0’s
and 1’s in our model, we need only consider two of these logic gates: the first gate outputs 1 when its two inputs
are equal, and outputs its first input when its two inputs are different, and the second gate outputs 1 when its two
inputs are equal, and outputs its second input when its two inputs are different. However, due to the symmetry
of the edge configuration in our 2D regular grid construction (see subsection I-C), it suffices to analyze only the
second gate. Since this second function is not commonly viewed as a logic gate, we write down its truth table for
the readers’ convenience:

x1 x2 x1 ⇒ x2
0 0 1
0 1 1
1 0 0
1 1 1

(6)

and recognize it as the implication relation, denoted as IMP. Therefore, to prove the 2D aspect of our conjecture
that broadcasting on 2D regular grids is impossible, we only have to analyze four nontrivial Boolean processing
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functions:
1) AND , 2) XOR , 3) NAND , 4) IMP . (7)

Clearly, Theorems 1 and 2 completely tackle the first two cases, and Theorem 3, the convincing computer simulations
for its sufficient condition in Table I, and the discussion in section V partially address the third case. So, only the
fourth case remains entirely open.

C. Related Results in the Literature

In this subsection, we present and discuss two complementary impossibility results from the literature regarding
broadcasting on general DAGs (not just 2D regular grids). To this end, consider any infinite DAG G with a single
source vertex at level k = 0 and Lk ∈ N\{0} vertices at level k ∈ N (where L0 = 1), and assume that G is in
topological ordering so that all its edges are directed from lower levels to higher levels. Suppose further that for
any level k ∈ N\{0}, each vertex of G at level k has indegree d ∈ N\{0} and the d incoming edges originate
from vertices at level k − 1.5 Much like subsection I-C, we define a Bayesian network on this infinite DAG by
letting each vertex be a Bernoulli random variable: For k ∈ N and j ∈ [Lk], let Xk,j ∈ {0, 1} be the random
variable corresponding to the jth vertex at level k, and let Xk = (Xk,0, . . . , Xk,Lk−1). As before, the edges of G
are independent BSC(δ)’s with common parameter δ ∈

(
0, 12
)
, and the vertices of G combine their inputs using

Boolean processing functions. We say that broadcasting is impossible on this DAG if and only if (5) holds.
The first impossibility result, which we proved in [2, Proposition 3], illustrates that if Lk is sub-logarithmic for

every sufficiently large k ∈ N, then broadcasting is impossible.

Proposition 1 (Slow Growth of Layers [2, Proposition 3]). For any δ ∈
(
0, 12
)

and any d ∈ N\{0}, if Lk ≤ log(k)/
(d log(1/(2δ))) for all sufficiently large k ∈ N, then for all choices of Boolean processing functions (which may
vary between vertices), broadcasting is impossible on G in the sense of (5):

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV

= 0

where log(·) denotes the natural logarithm, and P+
Xk

and P−Xk denote the conditional distributions of Xk given
X0,0 = 1 and X0,0 = 0, respectively.

For the 2D regular grid models that we consider, the underlying DAGs have Lk = k+1. Hence, the impossibility
of broadcasting in our models is not trivial, because this result does not apply to them. We further remark that an
analogous impossibility result to Proposition 1 for DAGs without the bounded indegree assumption is also proved
in [2, Proposition 4]: When each vertex at level k ∈ N\{0} of our DAG is connected to all Lk−1 vertices at level
k − 1, for any δ ∈

(
0, 12
)
, if Lk ≤

√
log(k)/log(1/(2δ)) for all sufficiently large k ∈ N, then broadcasting is

impossible in the sense of (5) for all choices of Boolean processing functions (which may vary between vertices).
The second impossibility result, which specializes a more general result proved by Evans and Schulman in

the context of von Neumann’s model of fault-tolerant computation using noisy circuits [21, Lemma 2 and p.2373],
portrays an upper bound on the mutual information between X0 and Xk for every k ∈ N which decays exponentially
under appropriate conditions (also see [2, Proposition 5]).

Proposition 2 (Decay of Mutual Information [21, Lemma 2]). The following are true:
1) For the Bayesian network defined on G, given any choices of Boolean processing functions (which may vary

between vertices), the mutual information (in natural units) between X0 and Xk, denoted I(X0;Xk), satisfies:

I(X0;Xk) ≤ log(2)Lk
(
(1− 2δ)2d

)k
where Lkdk bounds the number of paths from the source X0 to layer Xk, and (1 − 2δ)2k represents the
“aggregate contraction” of mutual information along each path.

2) For the Bayesian network defined on the 2D regular grid in subsection I-C, given any choices of Boolean
processing functions (which may vary between vertices), the mutual information between X0 and Xk satisfies:

I(X0;Xk) ≤ log(2)
(
2(1− 2δ)2

)k
5This implies that G is actually a multigraph since we permit multiple edges to exist between two vertices in successive levels. As explained

in [2, Section I-C], we can perceive the Bayesian network defined on this multigraph as a true DAG by constructing auxiliary vertices.
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where 2k denotes the number of paths from the source X0 to layer Xk, and (1 − 2δ)2k represents the
“aggregate contraction” of mutual information along each path.

Proposition 2 is discussed in far greater detail in [2, Section II-C], where several related references are also
provided.6 Note that for the Bayesian network on G, part 1 of Proposition 2 shows that if (1 − 2δ)2d < 1 (or
equivalently, δ > 1

2 −
1

2
√
d

) and Lk = o
(
1/((1 − 2δ)2d)k

)
, then for all choices of Boolean processing functions,

we have:
lim
k→∞

I(X0;Xk) = 0 (8)

which implies that broadcasting is impossible in the sense of (5) (due to Pinsker’s inequality). Likewise, for the
Bayesian network on the 2D regular grid, part 2 of Proposition 2 shows that if the “Evans-Schulman condition”
holds:

2(1− 2δ)2 < 1 ⇔ δ >
1

2
− 1

2
√

2
= 0.146446 . . . , (9)

then for all choices of Boolean processing functions, we get (8) and broadcasting is impossible in the sense of (5).

D. 3D Regular Grid Model and Toom’s NEC Rule

In view of our broader conjecture in subsection I-A that broadcasting should be possible in 3D regular grids,
in this subsection, we elucidate a connection between a 3D regular grid with all majority processing functions
and a 2D PCA with noise on the edges and boundary conditions that uses Toom’s NEC rule [36]. We first define
the 3D regular grid model (akin to subsection I-C). A 3D regular grid is an infinite DAG whose vertex set N3

is the intersection of the 3D integer lattice and the 3D non-negative orthant, and corresponding to each vertex
v ∈ N3, we associate a Bernoulli random variable Xv ∈ {0, 1}. Furthermore, a 3D regular grid contains the
directed edges (Xv, Xv+e1), (Xv, Xv+e2), and (Xv, Xv+e3) for every v ∈ N3, which are independent BSCs with
crossover probability δ ∈

(
0, 12
)
, where ei denotes the ith standard basis vector of appropriate dimension (which

has 1 in the ith position and 0 elsewhere). In this subsection, we set all the Boolean processing functions at the
vertices to be the majority rule. This implies that:

1) For any vertex v = (v1, v2, v3) ∈ N3\{0} on an axis of R3, i.e. there exists a unique i ∈ {1, 2, 3} such that
vi > 0, we have:

Xv = Xv−ei ⊕ Zv,i (10)

where 0 denotes the zero vector of appropriate dimension,
2) For any vertex v = (v1, v2, v3) ∈ N3\{0} in a plane spanned by two axes of R3, i.e. there exist distinct

i, j ∈ {1, 2, 3} such that vi, vj > 0 and vk = 0 for k ∈ {1, 2, 3}\{i, j}, we have:

Xv =

{
Xv−ei ⊕ Zv,i , with probability 1

2

Xv−ej ⊕ Zv,j , with probability 1
2

(11)

where one of the two noisy inputs of Xv is chosen randomly and independently of everything else,
3) For any vertex v = (v1, v2, v3) ∈ N3 in the interior of the 3D non-negative orthant, i.e. v1, v2, v3 > 0, we

have:
Xv = majority(Xv−e1 ⊕ Zv,1, Xv−e2 ⊕ Zv,2, Xv−e3 ⊕ Zv,3) , (12)

where {Zv,i : v ∈ N3\{0}, i ∈ {1, 2, 3}} are i.i.d. Bernoulli(δ) noise random variables that are independent of
everything else, and majority : {0, 1}3 → {0, 1} is the 3-input majority Boolean function. This defines the Bayesian
network corresponding to the majority 3D regular grid. In particular, for any k ∈ N, let the discretized 2-simplex
Sk , {v = (v1, v2, v3) ∈ N3 : v1 + v2 + v3 = k} denote the kth layer of vertices in the 3D regular grid at distance
k from the source (so that N3 = ∪k∈N Sk), and XSk , (Xv : v ∈ Sk) denote the corresponding collection of
random variables. Then, the majority 3D regular grid is completely characterized by the set of Markov transition
kernels

{
PXSk |X0

: k ∈ N
}

(which are defined by (10), (11), and (12)). (While the definitions of these Markov
kernels suffice for our purposes here, if we were to fully analyze the broadcasting question for majority 3D regular
grids, then we would also assume that the source bit is X0 ∼ Bernoulli

(
1
2

)
.)

We next recall a version of Toom’s 2D PCA which has noise on the edges rather than the vertices, cf. [36].
Consider the 2D integer lattice Z2 of sites, the binary state space {0, 1}, and the configuration space {0, 1}Z2

6We also refer interested readers to [42], [43], and the references therein for more on the related theory of strong data processing inequalities.
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of functions ξ : Z2 → {0, 1} (which map sites to their bit values). Moreover, fix the PCA’s transition function
to be majority, and let its interaction neighborhood be N = {−e1,0,−e2} ⊆ Z2, which together define Toom’s
NEC rule [36].7 With these building blocks in place, we now describe the dynamics of Toom’s 2D PCA with edge
noise. Suppose at time k ∈ N, the automaton has configuration ξk ∈ {0, 1}Z

2

. Then, its configuration ξk+1 ∈
{0, 1}Z2

at time k + 1 is determined as follows: Each site x ∈ Z2 simultaneously receives three noisy input bits
(ξk(x+ v)⊕ Zk,x,v : v ∈ N ) from its interaction neighborhood, and then computes its value at time k + 1 using
Toom’s NEC rule, i.e. ξk+1(x) = majority(ξk(x+ v)⊕ Zk,x,v : v ∈ N ), where {Zk,x,v : k ∈ N, x ∈ Z2, v ∈ N}
are i.i.d. Bernoulli(δ) noise random variables that are independent of everything else. This defines the transition
kernel of the Markov process corresponding to Toom’s 2D PCA with edge noise. (Note that if we seek to analyze
the ergodicity of this PCA, then we would have to additionally fix different initial configurations ξ0 ∈ {0, 1}Z

2

at
time k = 0.)

By modifying Toom’s 2D PCA with edge noise outlined above, we now introduce Toom’s 2D PCA with boundary
conditions. For any k ∈ N, consider the projected discretized 2-simplices Ŝk , {x = (x1, x2) ∈ N2 : x1 +x2 ≤ k}.
Using the notation introduced above, define the jointly distributed binary random variables {ξk(x) : x ∈ Ŝk, k ∈ N},
and let ξk , (ξk(x) : x ∈ Ŝk) be the values of the bits of this automaton at time k ∈ N. The dynamics of Toom’s
2D PCA with boundary conditions follows the dynamics of Toom’s 2D PCA explained above (mutatis mutandis).
Specifically, conditioned on ξk at time k ∈ N, the probability distribution of ξk+1 at time k+ 1 is characterized by:

1) For the site 0 ∈ Ŝk+1, we have:
ξk+1(0) = ξk(0)⊕ Zk,0,0 , (13)

and for the sites (k + 1)ei ∈ Ŝk+1 with i ∈ {1, 2}, we have:

ξk+1((k + 1)ei) = ξk(kei)⊕ Zk,(k+1)ei,−ei , (14)

2) For any site x = (x1, x2) ∈ Ŝk+1\{0, (k + 1)e1, (k + 1)e2} such that xi > 0 and xj = 0 for i, j ∈ {1, 2},
we have:

ξk+1(x) =

{
ξk(x)⊕ Zk,x,0 , with probability 1

2

ξk(x− ei)⊕ Zk,x,−ei , with probability 1
2

(15)

where one of the two noisy inputs of ξk+1(x) is chosen randomly and independently of everything else, and
for any site x = (x1, x2) ∈ Ŝk+1\{(k + 1)e1, (k + 1)e2} such that x1 + x2 = k + 1, we have:

ξk+1(x) =

{
ξk(x− e1)⊕ Zk,x,−e1 , with probability 1

2

ξk(x− e2)⊕ Zk,x,−e2 , with probability 1
2

(16)

where, once again, one of the two noisy inputs of ξk+1(x) is chosen randomly and independently of everything
else,

3) For any site x = (x1, x2) ∈ Ŝk+1 such that x1, x2 > 0, we have:

ξk+1(x) = majority(ξk(x− e1)⊕ Zk,x,−e1 , ξk(x)⊕ Zk,x,0, ξk(x− e2)⊕ Zk,x,−e2) , (17)

where, as before, {Zk,x,v : k ∈ N, x ∈ Ŝk+1, v ∈ N} are i.i.d. Bernoulli(δ) noise random variables that are
independent of everything else. This completely specifies the transition kernels

{
Pξk|ξ0(0) : k ∈ N

}
of the Markov

process corresponding to Toom’s 2D PCA with boundary conditions (which are defined by (13), (14), (15), (16),
and (17)). (To define a valid joint probability distribution of {ξk(x) : x ∈ Ŝk, k ∈ N}, we can additionally impose
the initial condition ξ0(0) ∼ Bernoulli

(
1
2

)
akin to the uniform source distribution for the majority 3D regular grid.)

It turns out that the majority 3D regular grid and Toom’s 2D PCA with boundary conditions are statistically
equivalent, i.e. their BSC noise random variables can be coupled so that the Markov processes {XSk : k ∈ N} and
{ξk : k ∈ N} are equal almost surely. This equivalence is presented in the ensuing proposition.

Proposition 3 (Majority 3D Regular Grid Equivalence). If X0 = ξ0(0) almost surely with any initial source
distribution, then we can couple the majority 3D regular grid and Toom’s 2D PCA with boundary conditions so
that almost surely:

∀v = (v1, v2, v3) ∈ N3, Xv = ξv1+v2+v3((v1, v2)) ,

7In this case, the transition function and interaction neighborhood really yield a South-West-Center (SWC) rule rather than Toom’s NEC rule,
but we will still use the historically inspired nomenclature.
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or equivalently:
∀k ∈ N, ∀x = (x1, x2) ∈ Ŝk, ξk(x) = X(x1,x2,k−x1−x2) .

Proposition 3 is proved in appendix A via a projection argument. The result implies that broadcasting is impossible
in the majority 3D regular grid if and only if reconstruction of ξ0(0) is impossible in Toom’s 2D PCA with boundary
conditions. Since the standard 2D PCA (with noise on the vertices) that uses Toom’s NEC rule is non-ergodic [36],
we believe that reconstruction should be possible in our variant of Toom’s 2D PCA with boundary conditions.
Toom’s proof of non-ergodicity in [36] is quite sophisticated, and a simpler combinatorial version of it has been
proposed in [44]. We feel that it is an interesting open problem to establish the feasibility of broadcasting in the
3D regular grid with majority processing functions by possibly modifying the simple version of Toom’s proof in
[44].

III. PERCOLATION ANALYSIS OF 2D REGULAR GRID WITH AND PROCESSING FUNCTIONS

In this section, we prove Theorem 1. Recall that we are given a 2D regular grid where all Boolean processing
functions with two inputs are the AND rule, and all Boolean processing functions with one input are the identity
rule, i.e. f2(x1, x2) = x1 ∧ x2 and f1(x) = x, where ∧ denotes the logical AND operation.

As in our proof of [2, Theorem 1], we begin by constructing a useful “monotone Markovian coupling” (see [45,
Chapter 5] for basic definitions of Markovian couplings). Let {X+

k : k ∈ N} and {X−k : k ∈ N} denote versions
of the Markov chain {Xk : k ∈ N} (i.e. with the same transition kernels) initialized at X+

0 = 1 and X−0 = 0,
respectively. Note that the marginal distributions of X+

k and X−k are P+
Xk

and P−Xk , respectively. Furthermore,
define the coupled 2D grid variables {Yk,j = (X−k,j , X

+
k,j) : k ∈ N, j ∈ [k + 1]}, so that our Markovian coupling

of the Markov chains {X+
k : k ∈ N} and {X−k : k ∈ N} is the Markov chain {Yk = (Yk,0, . . . , Yk,k) : k ∈ N}. We

will couple {X+
k : k ∈ N} and {X−k : k ∈ N} to “run” on a common underlying 2D regular grid with shared edge

BSCs.
Recall that each edge BSC(δ) either copies its input bit with probability 1 − 2δ, or generates an independent

Bernoulli
(
1
2

)
output bit with probability 2δ.8 This follows from appropriately interpreting the following decompo-

sition of the BSC transition matrix:[
1− δ δ

δ 1− δ

]
︸ ︷︷ ︸

BSC matrix

= (1− 2δ)

[
1 0

0 1

]
︸ ︷︷ ︸
copy matrix

+(2δ)

[
1
2

1
2

1
2

1
2

]
︸ ︷︷ ︸

random bit

. (18)

Since the underlying 2D regular grid is fixed, we couple {X+
k : k ∈ N} and {X−k : k ∈ N} so that along any edge

BSC of the grid, say (Xk,j , Xk+1,j), X+
k,j and X−k,j are either both copied with probability 1 − 2δ, or a shared

independent Bernoulli
(
1
2

)
bit is produced with probability 2δ that becomes the value of both X+

k+1,j and X−k+1,j .
The Markovian coupling {Yk : k ∈ N} exhibits the following properties:

1) The “marginal” Markov chains are {X+
k : k ∈ N} and {X−k : k ∈ N}.

2) For every k ∈ N, X+
k+1 is conditionally independent of X−k given X+

k , and X−k+1 is conditionally independent
of X+

k given X−k .
3) For every k ∈ N and every j ∈ [k + 1], X+

k,j ≥ X
−
k,j almost surely.

Here, the third (monotonicity) property of our coupling holds because 1 = X+
0,0 ≥ X

−
0,0 = 0 is true by assumption,

each edge BSC preserves monotonicity, and AND processing functions are symmetric and monotone non-decreasing.
In this section, probabilities of events that depend on the coupled 2D grid variables {Yk,j : k ∈ N, j ∈ [k+ 1]} are
defined with respect to this Markovian coupling.

Since the marginal Markov chains {X+
k : k ∈ N} and {X−k : k ∈ N} run on the same 2D regular grid with

common BSCs, we keep track of the Markov chain {Yk : k ∈ N} in a single coupled 2D regular grid. This 2D
regular grid has the same underlying graph as the 2D regular grid described in subsection I-C. Its vertices are the
coupled 2D grid variables {Yk,j = (X−k,j , X

+
k,j) : k ∈ N, j ∈ [k+1]}, and we relabel the alphabet of these variables

for simplicity. So, each Yk,j = (X−k,j , X
+
k,j) ∈ Y with:

Y , {0c, 1u, 1c} (19)

8This idea stems from the study of Fortuin-Kasteleyn random cluster representations of Ising models [46].
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where 0c = (0, 0), 1u = (0, 1), and 1c = (1, 1). (Note that we do not require a letter 0u = (1, 0) in this alphabet
due to the monotonicity in the coupling.) Furthermore, each edge of the coupled 2D regular grid is a channel
(conditional distribution) W between the alphabets Y and Y that captures the action of a shared BSC(δ)—we
describe W using the following row stochastic matrix:

W =


0c 1u 1c

0c 1− δ 0 δ
1u δ 1− 2δ δ
1c δ 0 1− δ

 (20)

where the (i, j)th entry gives the probability of output j given input i. It is straightforward to verify that W describes
the aforementioned Markovian coupling. Finally, the AND rule can be equivalently described on the alphabet Y as:

y1 y2 y1 ∧ y2
0c ? 0c
1u 1u 1u
1u 1c 1u
1c 1c 1c

(21)

where ? denotes any letter in Y , and the symmetry of the AND rule covers all other possible input combinations.
This coupled 2D regular grid model completely characterizes the Markov chain {Yk : k ∈ N}, which starts at
Y0 = 1u almost surely. We next prove Theorem 1 by further analyzing this model.

Proof of Theorem 1. We first bound the TV distance between P+
Xk

and P−Xk using Dobrushin’s maximal coupling
characterization of TV distance, cf. [45, Chapter 4.2]:∥∥P+

Xk
− P−Xk

∥∥
TV
≤ P

(
X+
k 6= X−k

)
= 1− P

(
X+
k = X−k

)
.

The events {X+
k = X−k } are non-decreasing in k, i.e. {X+

k = X−k } ⊆ {X
+
k+1 = X−k+1} for all k ∈ N. Indeed,

suppose for any k ∈ N, the event {X+
k = X−k } occurs. Since we have:{

X+
k = X−k

}
=
{
Yk ∈ {0c, 1c}k+1

}
= {there are no 1u’s in level k of the coupled 2D regular grid} ,

the channel (20) and the rule (21) imply that there are no 1u’s in level k + 1. Hence, the event {X+
k+1 = X−k+1}

occurs as well. Letting k →∞, we can use the continuity of P with the events {X+
k = X−k } to get:

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV
≤ 1− lim

k→∞
P
(
X+
k = X−k

)
= 1− P(A)

where we define:

A , {∃k ∈ N, there are no 1u’s in level k of the coupled 2D regular grid} .

Therefore, it suffices to prove that P(A) = 1.
To prove this, we recall a well-known result from [47, Section 3] on oriented bond percolation in 2D lattices.

Given the underlying DAG of our 2D regular grid from subsection I-C, suppose we independently keep each edge
“open” with some probability p ∈ [0, 1], and delete it (“closed”) with probability 1− p. Define the event:

Ω∞ , {there is an infinite open path starting at the root}

and the quantities:

Rk , sup{j ∈ [k + 1] : there is an open path from the root to the vertex (k, j)}

Lk , inf{j ∈ [k + 1] : there is an open path from the root to the vertex (k, j)}

which are the rightmost and leftmost vertices at level k ∈ N, respectively, that are connected to the root. (Here, we
refer to the vertex Xk,j using (k, j) as we do not associate a random variable to it.) It is proved in [47, Section 3]
that the occurrence of Ω∞ experiences a phase transition phenomenon as the open probability parameter p varies
from 0 to 1.
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Lemma 1 (Oriented Bond Percolation [47, Section 3]). For the aforementioned bond percolation process on the 2D
regular grid, there exists a critical threshold δperc ∈

(
1
2 , 1
)

around which we observe the following phase transition
phenomenon:

1) If p > δperc, then Pp(Ω∞) > 0 and:

Pp
(

lim
k→∞

Rk
k

=
1 + α(p)

2
and lim

k→∞

Lk
k

=
1− α(p)

2

∣∣∣∣Ω∞) = 1 (22)

for some constant α(p) > 0, where α(p) is defined in [47, Section 3, Equation (6)], and Pp is the probability
measure defined by the bond percolation process.

2) If p < δperc, then Pp(Ω∞) = 0.

We will use Lemma 1 to prove P(A) = 1 by considering two cases.
Case 1: Suppose 1 − 2δ < δperc (i.e. δ > (1 − δperc)/2) in our coupled 2D grid. The root of the coupled 2D

regular grid is Y0,0 = 1u almost surely, and we consider an oriented bond percolation process (as described above)
with p = 1 − 2δ. In particular, we say that each edge of the grid is open if and only if the corresponding BSC
copies its input (with probability 1 − 2δ). In this context, Ωc∞ is the event that there exists k ∈ N such that none
of the vertices at level k are connected to the root via a sequence of BSCs that are copies. Suppose the event Ωc∞
occurs. Since (20) and (21) portray that a 1u moves from level k to level k+ 1 only if one of its outgoing edges is
open (and the corresponding BSC is a copy), there exists k ∈ N such that none of the vertices at level k are 1u’s.
This proves that Ωc∞ ⊆ A. Therefore, using part 2 of Lemma 1, we get P(A) = 1.

Case 2: Suppose 1− δ > δperc (i.e. δ < 1− δperc) in our coupled 2D grid. Consider an oriented bond percolation
process (as described earlier) with p = 1− δ that runs on the 2D regular grid, where an edge is open if and only if
the corresponding BSC is either copying or generating a 0 as the new bit (i.e. this BSC takes a 0c to a 0c, which
happens with probability 1− δ as shown in (20)). Let Bk for k ∈ N\{0} be the event that the BSC from Yk−1,0 to
Yk,0 generates a new bit which equals 0. Then, P(Bk) = δ and {Bk : k ∈ N\{0}} are mutually independent. So,
the second Borel-Cantelli lemma tells us that infinitely many of the events {Bk : k ∈ N\{0}} occur almost surely.
Furthermore, Bk ⊆ {Yk,0 = 0c} for every k ∈ N\{0}.

We next define the following sequence of random variables for all i ∈ N\{0}:

Li , min{k ≥ Ti−1 + 1 : Bk occurs}

Ti , 1 + max{k ≥ Li : ∃j ∈ [k + 1], Yk,j is connected to YLi,0 by an open path}

where we set T0 , 0. Note that when Ti−1 = ∞, we let Li = ∞ almost surely. Furthermore, when Ti−1 < ∞,
Li < ∞ almost surely, because infinitely many of the events {Bk : k ∈ N{0}} occur almost surely. We also note
that when Li <∞, the set:

{k ≥ Li : ∃j ∈ [k + 1], Yk,j is connected to YLi,0 by an open path}

is non-empty since YLi,0 is always connected to itself, and Ti−Li− 1 denotes the length of the longest open path
connected to YLi,0 (which could be infinity). Lastly, when Li =∞, we let Ti =∞ almost surely.

Let Fk for every k ∈ N be the σ-algebra generated by the random variables (Y0, . . . , Yk) and all the BSCs before
level k (where we include all events determining whether these BSCs are copies, and all events determining the
independent bits they produce). Then, {Fk : k ∈ N} is a filtration. It is straightforward to verify that Li and Ti are
stopping times with respect to {Fk : k ∈ N} for all i ∈ N\{0}. We can show this inductively. T0 = 0 is trivially a
stopping time, and if Ti−1 is a stopping time, then Li is clearly a stopping time. So, it suffices to prove that Ti is a
stopping time given Li is a stopping time. For any finite m ∈ N\{0}, {Ti = m} is the event that Li ≤ m− 1 and
the length of the longest open path connected to YLi,0 is m− 1− Li. This event is contained in Fm because the
event {Li ≤ m− 1} is contained in Fm−1 ⊆ Fm (since Li is a stopping time), and the length of the longest open
path can be determined from Fm (rather than Fm−1). Hence, Ti is indeed a stopping time when Li is a stopping
time.

Now observe that:

P(∃k ∈ N\{0}, Tk =∞) = P(T1 =∞) +

∞∑
m=2

P(∃k ∈ N\{0, 1}, Tk =∞|T1 = m)P(T1 = m)

= P(T1 =∞) +

∞∑
m=2

P(∃k ∈ N\{0}, Tk +m =∞)P(T1 = m)
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= P(T1 =∞) + (1− P(T1 =∞))P(∃k ∈ N\{0}, Tk =∞) (23)

where the first equality uses the law of total probability, the third equality follows from straightforward calculations,
and the second equality follows from the fact that for all m ∈ N\{0, 1}:

P(∃k ∈ N\{0, 1}, Tk =∞|T1 = m) = P(∃k ∈ N\{0}, Tk +m =∞) .

This relation holds because the random variables {(Li, Ti) : i ∈ N\{0, 1}} given T1 = m have the same distribution
as the random variables {(Li−1 + m,Ti−1 + m) : i ∈ N\{0, 1}}. In particular, the conditional distribution of Li
given T1 = m corresponds to the distribution of Li−1 + m, and the conditional distribution of Ti given T1 = m
corresponds to the distribution of Ti−1+m. These distributional equivalences implicitly use the fact that {Ti : i ∈ N}
are stopping times. Indeed, the conditioning on {T1 = m} in these equivalences can be removed because the event
{T1 = m} is in Fm since T1 is a stopping time, and {T1 = m} is therefore independent of the events {Bk : k > m}
and the events that determine when the BSCs below level m are open.

Next, rearranging (23), we get:

P(∃k ∈ N\{0}, Tk =∞)P(T1 =∞) = P(T1 =∞) .

Since P(T1 =∞) = P(Ω∞) > 0 by part 1 of Lemma 1, we have:

P(∃k ∈ N\{0}, Tk =∞) = 1 . (24)

For every k ∈ N\{0}, define the events:

Ωleft
k , {there exists an infinite open path starting at the vertex Yk,0} ,

Ωright
k , {there exists an infinite open path starting at the vertex Yk,k} .

If the event {∃k ∈ N\{0}, Tk = ∞} occurs, we can choose the smallest m ∈ N\{0} such that Tm = ∞, and for
this m, there is an infinite open path starting at YLm,0 = 0c (where YLm,0 = 0c because BLm occurs). Hence, using
(24), we have:

P
(
∃k ∈ N, {Yk,0 = 0c} ∩ Ωleft

k

)
= 1 .

Likewise, we can also prove that:

P
(
∃k ∈ N, {Yk,k = 0c} ∩ Ωright

k

)
= 1

which implies that:
P
(
∃k ∈ N,∃m ∈ N, {Yk,0 = Ym,m = 0c} ∩ Ωleft

k ∩ Ωright
m

)
= 1 . (25)

To finish the proof, consider k,m ∈ N such that Yk,0 = Ym,m = 0c, and suppose Ωleft
k and Ωright

m both happen.
For every n > max{k,m}, define the quantities:

Rleft
n , sup{j ∈ [n+ 1] : there is an open path from Yk,0 to Yn,j}

Lright
n , inf{j ∈ [n+ 1] : there is an open path from Ym,m to Yn,j}

which are the rightmost and leftmost vertices at level n that are connected to Yk,0 and Ym,m, respectively, by open
paths. Using (22) from part 1 of Lemma 1, we know that almost surely:

lim
n→∞

Rleft
n

n
= lim
n→∞

Rleft
n

n− k
=

1 + α(1− δ)
2

,

lim
n→∞

Lright
n

n
= lim
n→∞

Lright
n −m
n−m

=
1− α(1− δ)

2
.

This implies that almost surely:

lim
n→∞

Rleft
n − Lright

n

n
= α(1− δ) > 0

which means that for some sufficiently large level n > max{k,m}, the rightmost open path from Yk,0 meets the
leftmost open path from Ym,m: ∣∣Rleft

n − Lright
n

∣∣ ≤ 1 .

By construction, all the vertices in these two open paths are equal to 0c. Furthermore, since (20) and (21) demonstrate
that AND gates and BSCs output 0c’s or 1c’s when their inputs are 0c’s or 1c’s, it is straightforward to inductively
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establish that all vertices at level n that are either to left of Rleft
n or to the right of Lright

n take values in {0c, 1c}.
This shows that every vertex at level n must be equal to 0c or 1c because the two aforementioned open paths meet.
Hence, there exists a level n ∈ N with no 1u’s, i.e. the event A occurs. Therefore, we get P(A) = 1 using (25).

Combining the two cases completes the proof as P(A) = 1 for any δ ∈
(
0, 12
)
. �

We remark that this proof can be perceived as using the technique presented in [45, Theorem 5.2]. Indeed, let
T , inf{k ∈ N : X+

k = X−k } be a stopping time (with respect to the filtration {Fk : k ∈ N} defined earlier)
denoting the first time that the marginal Markov chains {X+

k : k ∈ N} and {X−k : k ∈ N} meet. (Note that
{T =∞} corresponds to the event that these chains never meet.) Since the events {X+

k = X−k } for k ∈ N form a
non-decreasing sequence of sets, {T > k} = {X+

k 6= X−k }. We can use this relation to obtain the following bound
on the TV distance between P+

Xk
and P−Xk :∥∥P+

Xk
− P−Xk

∥∥
TV
≤ P

(
X+
k 6= X−k

)
= P(T > k) = 1− P(T ≤ k) (26)

where letting k →∞ and using the continuity of P produces:

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV
≤ 1− P(∃k ∈ N, T ≤ k) = 1− P(T <∞) . (27)

These bounds correspond to the ones shown in [45, Theorem 5.2]. Since the event A = {∃k ∈ N, T ≤ k} = {T <
∞}, our proof that A happens almost surely also demonstrates that the two marginal Markov chains meet after a
finite amount of time almost surely.

IV. CODING THEORETIC ANALYSIS OF 2D REGULAR GRID WITH XOR PROCESSING FUNCTIONS

We now turn to proving Theorem 2. We will use some rudimentary coding theory ideas in this section, and
refer readers to [48] for an introduction to the subject. We let F2 = {0, 1} denote the Galois field of order 2 (i.e.
integers with addition and multiplication modulo 2), Fn2 with n ∈ N\{0, 1} denote the vector space over F2 of
column vectors with n entries from F2, and Fm×n2 with m,n ∈ N\{0, 1} denote the space of m× n matrices with
entries in F2. (All matrix and vector operations in this section will be performed modulo 2.) Now fix some matrix
H ∈ Fm×n2 that has the following block structure:

H =

[
1 B1

0 B2

]
(28)

where 0 , [0 · · · 0]T ∈ Fm−12 denotes the zero vector (whose dimension will be understood from context in the
sequel), B1 ∈ F1×(n−1)

2 , and B2 ∈ F(m−1)×(n−1)
2 . Consider the following two problems:

1) Coding Problem: Let C , {x ∈ Fn2 : Hx = 0} be the linear code defined by the parity check matrix H .
Let X = [X1 XT

2 ]T with X1 ∈ F2 and X2 ∈ Fn−12 be a codeword drawn uniformly from C. Assume that
there exists a codeword x = [1 xT2 ]T ∈ C (i.e. B1x2 = 1 and B2x2 = 0). Then, since C 3 x′ 7→ x′ + x ∈ C
is a bijective map that flips the first bit of its input, X1 is a Bernoulli

(
1
2

)
random variable. We observe the

codeword X through an additive noise channel model and see Y1 ∈ F2 and Y2 ∈ Fn−12 :[
Y1
Y2

]
= X +

[
Z1

Z2

]
=

[
X1 + Z1

X2 + Z2

]
(29)

where Z1 ∈ F2 is a Bernoulli
(
1
2

)
random variable, Z2 ∈ Fn−12 is a vector of i.i.d. Bernoulli(δ) random

variables that are independent of Z1, and both Z1, Z2 are independent of X . Our problem is to decode X1

with minimum probability of error after observing Y1, Y2. This can be achieved by using the ML decoder for
X1 based on Y1, Y2.

2) Inference Problem: Let X ′ ∈ F2 be a Bernoulli
(
1
2

)
random variable, and Z ∈ Fn−12 be a vector of i.i.d.

Bernoulli(δ) random variables that are independent of X ′. Suppose we see the observations S′1 ∈ F2 and
S′2 ∈ Fm−12 through the model: [

S′1
S′2

]
= H

[
X ′

Z

]
=

[
X ′ +B1Z
B2Z

]
. (30)

Our problem is to decode X ′ with minimum probability of error after observing S′1, S
′
2. This can be achieved

by using the ML decoder for X ′ based on S′1, S
′
2.

As we will soon see, the inference problem above corresponds to our setting of reconstruction in the 2D regular
grid with XOR processing functions. The next lemma illustrates that this inference problem is in fact “equivalent”
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to the aforementioned coding problem, and this connection will turn out to be useful since the coding problem
admits simpler analysis.

Lemma 2 (Equivalence of Problems). For the coding problem in (29) and the inference problem in (30), the
following statements hold:

1) The minimum probabilities of error for the coding and inference problems are equal.
2) Suppose the random variables in the coding and inference problems are coupled so that X1 = X ′ and Z2 = Z

almost surely (i.e. these variables are shared by the two problems), X2 is generated from a conditional
distribution PX2|X1

such that X is uniform on C, Z1 is generated independently, (Y1, Y2) is defined by (29),
and (S′1, S

′
2) is defined by (30). Then, S′1 = B1Y2 and S′2 = B2Y2 almost surely.

3) Under the aforementioned coupling, (S′1, S
′
2) is a sufficient statistic of (Y1, Y2) for performing inference about

X1 (in the coding problem).

Proof.
Part 1: We first show that the minimum probabilities of error for the two problems are equal. The inference

problem has prior X ′ ∼ Bernoulli
(
1
2

)
, and the following likelihoods for every s′1 ∈ F2 and every s′2 ∈ Fm−12 :

PS′1,S′2|X′(s
′
1, s
′
2|0) =

∑
z∈Fn−1

2

PZ(z)1{B1z = s′1, B2z = s′2} , (31)

PS′1,S′2|X′(s
′
1, s
′
2|1) =

∑
z∈Fn−1

2

PZ(z)1{B1z = s′1 + 1, B2z = s′2} . (32)

On the other hand, the coding problem has prior X1 ∼ Bernoulli
(
1
2

)
, and the following likelihoods for every

y1 ∈ F2 and every y2 ∈ Fn−12 :

PY1,Y2|X1
(y1, y2|0) = PY1|X1

(y1|0)PY2|X1
(y2|0)

=
1

2

∑
x2∈Fn−1

2

PY2|X2
(y2|x2)PX2|X1

(x2|0)

=
1

2

∑
x2∈Fn−1

2

PZ2(y2 − x2)1{B1x2 = 0, B2x2 = 0} 2

|C|

=
1

|C|
∑

z2∈Fn−1
2

PZ2
(z2)1{B1z2 = B1y2, B2z2 = B2y2} , (33)

PY1,Y2|X1
(y1, y2|1) =

1

|C|
∑

z2∈Fn−1
2

PZ2
(z2)1{B1z2 = B1y2 + 1, B2z2 = B2y2} , (34)

where the third equality uses the fact that X2 is uniform over a set of cardinality |C|/2 given any value of X1,
because X1 ∼ Bernoulli

(
1
2

)
and X is uniform on C. For the coding problem, define S1 , B1Y2 and S2 , B2Y2.

Due to the Fisher-Neyman factorization theorem [49, Theorem 3.6], (33) and (34) demonstrate that (S1, S2) is a
sufficient statistic of (Y1, Y2) for performing inference about X1.

Continuing in the context of the coding problem, define the set:

C′ ,
{
x ∈ Fn−12 : B1x = 0, B2x = 0

}
,

which is also a linear code, and for any fixed s1 ∈ F2 and s2 ∈ Fm−12 , define the set:

S(s1, s2) ,
{

(y1, y2) ∈ F2 × Fn−12 : B1y2 = s1, B2y2 = s2
}
.

If there exists y′2 ∈ Fn−12 such that B1y
′
2 = s1 and B2y

′
2 = s2, then S(s1, s2) = {(y1, y2 + y′2) ∈ F2 × Fn−12 :

y2 ∈ C′}, which means that |S(s1, s2)| = 2|C′| = |C| (where the final equality holds because each vector in C′
corresponds to a codeword in C whose first letter is 0, and we have assumed that there are an equal number of
codewords in C with first letter 1). Hence, for every s1 ∈ F2 and every s2 ∈ Fm−12 , the likelihoods of (S1, S2)
given X1 can be computed from (33) and (34):

PS1,S2|X1
(s1, s2|0) =

∑
y1∈F2, y2∈Fn−1

2

PY1,Y2|X1
(y1, y2|0)1{B1y2 = s1, B2y2 = s2}
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=
|S(s1, s2)|
|C|

∑
z2∈Fn−1

2

PZ2
(z2)1{B1z2 = s1, B2z2 = s2}

=
∑

z2∈Fn−1
2

PZ2(z2)1{B1z2 = s1, B2z2 = s2} , (35)

PS1,S2|X1
(s1, s2|1) =

∑
z2∈Fn−1

2

PZ2
(z2)1{B1z2 = s1 + 1, B2z2 = s2} , (36)

where the second equality follows from (33) and the third equality clearly holds in the |S(s1, s2)| = 0 case as well.
The likelihoods (35) and (36) are exactly the same as the likelihoods (31) and (32), respectively, that we computed
earlier for the inference problem. Thus, the sufficient statistic (S1, S2) of (Y1, Y2) for X1 in the coding problem
is equivalent to the observation (S′1, S

′
2) in the inference problem in the sense that they are defined by the same

probability model. As a result, the minimum probabilities of error in these formulations must be equal.
Part 2: We now assume that the random variables in the two problems are coupled as in the lemma statement.

To prove that S′1 = S1 and S′2 = S2 almost surely, observe that:[
S1

S2

]
=

[
B1Y2
B2Y2

]
=

[
B1X2 +B1Z2

B2X2 +B2Z2

]
=

[
X1 +B1Z2

B2Z2

]
= H

[
X1

Z2

]
=

[
S′1
S′2

]
where the second equality uses (29), the third equality holds because B1X2 = X1 and B2X2 = 0 since X ∈ C is
a codeword, and the last equality uses (30) and the fact that X1 = X ′ and Z2 = Z almost surely. This proves part
2.

Part 3: Since (S1, S2) is a sufficient statistic of (Y1, Y2) for performing inference about X1 in the coding problem,
and S′1 = S1 and S′2 = S2 almost surely under the coupling in the lemma statement, (S′1, S

′
2) is also a sufficient

statistic of (Y1, Y2) for performing inference about X1 under this coupling. This completes the proof. �

Recall that we are given a 2D regular grid where all Boolean processing functions with two inputs are the XOR
rule, and all Boolean processing functions with one input are the identity rule, i.e. f2(x1, x2) = x1 ⊕ x2 and
f1(x) = x. We next prove Theorem 2 using Lemma 2.

Proof of Theorem 2. We first prove that the problem of decoding the root bit in the XOR 2D regular grid is
captured by the inference problem defined in (30). Let Ek denote the set of all directed edges in the 2D regular
grid above level k ∈ N. Furthermore, let us associate each edge e ∈ Ek with an independent Bernoulli(δ) random
variable Ze ∈ F2. Since a BSC(δ) can be modeled as addition of an independent Bernoulli(δ) bit (in F2), the
random variables {Ze : e ∈ Ek} define the BSCs of the 2D regular grid up to level k. Moreover, each vertex at
level k ∈ N\{0} of the XOR 2D regular grid is simply a sum (in F2) of its parent vertices and the random variables
on the edges between it and its parents:

∀j ∈ {1, . . . , k − 1}, Xk,j = Xk−1,j−1 ⊕Xk−1,j ⊕ Z(Xk−1,j−1,Xk,j) ⊕ Z(Xk−1,j ,Xk,j) ,

Xk,0 = Xk−1,0 ⊕ Z(Xk−1,0,Xk,0) ,

Xk,k = Xk−1,k−1 ⊕ Z(Xk−1,k−1,Xk,k) .

These recursive formulae for each vertex in terms of its parent vertices can be unwound so that each vertex is
represented as a linear combination (in F2) of the root bit and all the edge random variables:

∀k ∈ N\{0},∀j ∈ [k + 1], Xk,j =

((
k

j

)
(mod 2)

)
X0,0 +

∑
e∈Ek

bk,j,eZe (37)
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where the coefficient of X0,0 can be computed by realizing that the coefficients of the vertices in the “2D regular
grid above Xk,j” (with Xk,j as the root) are defined by the recursion of Pascal’s triangle, and {bk,j,e ∈ F2 : k ∈
N\{0}, j ∈ [k + 1], e ∈ Ek} are some fixed coefficients. We do not require detailed knowledge of the values of
{bk,j,e ∈ F2 : k ∈ N\{0}, j ∈ [k + 1], e ∈ Ek}, but they can also be evaluated via straightforward counting if
desired.

In the remainder of this proof, we will fix k to be a power of 2: k = 2m for m ∈ N\{0}. Then, we have:(
k

j

)
≡
(

2m

j

)
≡
{

1 , j ∈ {0, k}
0 , j ∈ {1, . . . , k − 1} (mod 2) (38)

since by Lucas’ theorem (see [50]), the parity of
(
k
j

)
is 0 if and only if at least one of the digits of j in base 2

is strictly greater than the corresponding digit of k in base 2, and the base 2 representation of k = 2m is 10 · · · 0
(with m 0’s). So, for each k, we can define a binary matrix Hk ∈ F(k+1)×(|Ek|+1)

2 whose rows are indexed by
the vertices at level k and columns are indexed by 1 (first index corresponding to X0,0) followed by the edges in
Ek, and whose rows are made up of the coefficients in (37) (where the first entry of each row is given by (38)).
Clearly, we can write (37) in matrix-vector form using Hk for every k:

Xk,0

Xk,1

...
Xk,k−1
Xk,k

 =


1 — bk,0,e —
0 — bk,1,e —
...

...
0 — bk,k−1,e —
1 — bk,k,e —


︸ ︷︷ ︸

, Hk


X0,0

|
Ze
|

 (39)

where the vector on the right hand side of (39) has first element X0,0 followed by the random variables {Ze : e ∈ Ek}
(indexed consistently with Hk). Our XOR 2D regular grid reconstruction problem is to decode X0,0 from the
observations (Xk,0, . . . , Xk,k) with minimum probability of error. Note that we can apply a row operation to
Hk that replaces the last row of Hk with the sum of the first and last rows of Hk to get the binary matrix
H ′k ∈ F(k+1)×(|Ek|+1)

2 , and correspondingly, we can replace Xk,k with Xk,0 +Xk,k in (39) to get the “equivalent”
formulation: 

Xk,0

Xk,1

...
Xk,k−1

Xk,0 +Xk,k

 = H ′k


X0,0

|
Ze
|

 (40)

for every k. Indeed, since we only perform invertible operations to obtain (40) from (39), the minimum probability of
error for ML decoding X0,0 from the observations (Xk,0, . . . , Xk,k) under the model (39) is equal to the minimum
probability of error for ML decoding X0,0 from the observations (Xk,0, . . . , Xk,k−1, Xk,0 +Xk,k) under the model
(40). Furthermore, since H ′k is of the form (28), the equivalent XOR 2D regular grid reconstruction problem in
(40) is exactly of the form of the inference problem in (30).

We next transform the XOR 2D regular grid reconstruction problem in (39), or equivalently, (40), into a coding
problem. By Lemma 2, the inference problem in (40) is “equivalent” to a coupled coding problem analogous to
(29). To describe this coupled coding problem, consider the linear code defined by the parity check matrix H ′k:

Ck ,
{
w ∈ F|Ek|+1

2 : H ′kw = 0
}

=
{
w ∈ F|Ek|+1

2 : Hkw = 0
}

where the second equality shows that the parity check matrix Hk also generates Ck (because row operations do not
change the nullspace of a matrix). As required by the coding problem, this linear code contains a codeword of the
form [1 wT

2 ]T ∈ Ck for some w2 ∈ F|Ek|2 . To prove this, notice that such a codeword exists if and only if the first
column [1 0 · · · 0]T of H ′k is in the span of the remaining columns of H ′k. Assume for the sake of contradiction
that such a codeword does not exist. Then, we can decode X0,0 in the setting of (40) with zero probability of error,
because the observation vector on the left hand side of (40) is in the span of the second to last columns of H ′k
if and only if X0,0 = 0.9 This leads to a contradiction since it is clear that we cannot decode the root bit with

9It is worth mentioning that in the ensuing coding problem in (41), if such a codeword does not exist, we can also decode the first codeword
bit with zero probability of error because all codewords must have the first bit equal to 0.
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zero probability of error in the XOR 2D regular grid. Hence, a codeword of the form
[
1 wT

2

]T ∈ Ck for some
w2 ∈ F|Ek|2 always exists. Next, we let Wk = [X0,0 —Wk,e — ]T ∈ Ck be a codeword that is drawn uniformly
from Ck, where the first element of Wk is X0,0 and the remaining elements of Wk are {Wk,e : e ∈ Ek}. In the
coupled coding problem, we observe Wk through the additive noise channel model:

Yk ,


Y k0,0
|

Yk,e
|

 = Wk +


Zk0,0
|
Ze
|

 (41)

where {Ze : e ∈ Ek} are the BSC random variables that are independent of Wk, Zk0,0 is a completely independent
Bernoulli

(
1
2

)
random variable, Y k0,0 = X0,0 ⊕ Zk0,0, and Yk,e = Wk,e ⊕ Ze for e ∈ Ek. Our goal is to decode the

first bit of the codeword, X0,0, with minimum probability of error from the observation Yk. Since we have coupled
the coding problem (41) and the inference problem (40) according to the coupling in part 2 of Lemma 2, part 3 of
Lemma 2 shows that (Xk,0, . . . , Xk,k−1, Xk,0 +Xk,k), or equivalently:

 Xk,0

...
Xk,k

 =



∑
e∈Ek

bk,0,eYk,e

...∑
e∈Ek

bk,k,eYk,e

 , (42)

is a sufficient statistic of Yk for performing inference about X0,0 in the coding problem (41). Hence, the ML
decoder for X0,0 based on the sufficient statistic (Xk,0, . . . , Xk,k−1, Xk,0 + Xk,k) (without loss of generality),
which achieves the minimum probability of error in the coding problem (41), makes an error if and only if the
ML decision rule for X0,0 based on (Xk,0, . . . , Xk,k−1, Xk,0 + Xk,k), which achieves the minimum probability
of error in the inference problem (40), makes an error. Therefore, as shown in part 1 of Lemma 2, the minimum
probabilities of error in the XOR 2D regular grid reconstruction problem (39) and the coding problem (41) are
equal, and it suffices to analyze the coding problem (41).

In the coding problem (41), we observe the codeword Wk after passing it through memoryless BSCs. We now
establish a “cleaner” model where Wk is passed through memoryless BECs. Recall that each BSC(δ) copies its
input bit with probability 1−2δ and generates an independent Bernoulli

(
1
2

)
output bit with probability 2δ (as shown

in (18) in section III), i.e. for any e ∈ Ek, instead of setting Ze ∼ Bernoulli(δ), we can generate Ze as follows:

Ze =

{
0 , with probability 1− 2δ

Bernoulli
(
1
2

)
, with probability 2δ

where Bernoulli
(
1
2

)
denotes an independent uniform bit. Suppose we know which BSCs among {Ze : e ∈ Ek}

generate independent bits in (41). Then, we can perceive each BSC in {Ze : e ∈ Ek} as an independent binary
erasure channel (BEC) with erasure probability 2δ, denoted BEC(2δ), which erases its input with probability
2δ and produces the erasure symbol e if and only if the corresponding BSC(δ) generates an independent bit,
and copies its input with probability 1 − 2δ otherwise. (Note that the BSC defined by Zk0,0 corresponds to a
BEC(1) which always erases its input.) Consider observing the codeword Wk under this BEC model, where X0,0

is erased almost surely, and the remaining bits of Wk are erased independently with probability 2δ, i.e. we observe
Y ′k = [e —Y ′k,e — ]T ∈ {0, 1, e}|Ek|+1, where the first entry corresponds to the erased value of X0,0, and for every
e ∈ Ek, Y ′k,e = Wk,e with probability 1 − 2δ and Y ′k,e = e with probability 2δ. Clearly, we can obtain Yk from
Y ′k by replacing every instance of e in Y ′k with an independent Bernoulli

(
1
2

)
bit. Since the BECs reveal additional

information about which BSCs generate independent bits, the minimum probability of error in ML decoding X0,0

based on Y ′k under the BEC model lower bounds the minimum probability of error in ML decoding X0,0 based
on Yk under the BSC model (41).10 In the rest of the proof, we establish conditions under which the minimum
probability of error for the BEC model is 1

2 , and then show as a consequence that the minimum probability of error
in the XOR 2D regular grid reconstruction problem in (39) tends to 1

2 as k →∞.

10Indeed, the ML decoder for X0,0 based on Y ′k has a smaller (or equal) probability of error than the decoder which first translates Y ′k
into Yk by replacing every e with an independent Bernoulli

(
1
2

)
bit, and then applies the ML decoder for X0,0 based on Yk as in the coding

problem (41). We also remark that the fact that a BEC(2δ) is “less noisy” than a BSC(δ) is well-known in information theory, cf. [43, Section
6, Equation (16)].
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Let Ik ⊆ Ek denote the set of indices where the corresponding elements of Wk are not erased in the BEC model:

Ik ,
{
e ∈ Ek : Y ′k,e = Wk,e

}
.

The ensuing lemma is a standard exercise in coding theory which shows that the ML decoder for X0,0 only fails
under the BEC model when a special codeword exists in Ck; see the discussion in [48, Section 3.2].

Lemma 3 (Bit-wise ML Decoding [48, Section 3.2]). Suppose we condition on some realization of Y ′k (in the BEC
model), which determines a corresponding realization of the set of indices Ik. Then, the ML decoder for X0,0 based
on Y ′k (with codomain F2) makes an error with probability 1

2 if and only if there exists a codeword w ∈ Ck with
first element w1 = 1 and we = 0 for all e ∈ Ik.

We next illustrate that such a special codeword exists whenever two particular erasures occur. Let e1 ∈ Ek and
e2 ∈ Ek denote the edges (Xk−1,0, Xk,0) and (Xk−1,k−1, Xk,k) in the 2D regular grid, respectively. Consider the
vector ωk ∈ F|Ek|+1

2 such that ωk1 = 1 (i.e. the first bit is 1), ωke1 = ωke2 = 1, and all other elements of ωk are 0.
Then, ωk ∈ Ck because:

Hk ω
k =


1 — bk,0,e —
0 — bk,1,e —
...

...
0 — bk,k−1,e —
1 — bk,k,e —

ωk

=


1⊕ bk,0,e1 ⊕ bk,0,e2
bk,1,e1 ⊕ bk,1,e2

...
bk,k−1,e1 ⊕ bk,k−1,e2
1⊕ bk,k,e1 ⊕ bk,k,e2


= 0

where we use the facts that bk,0,e1 = 1, bk,0,e2 = 0, bk,k,e1 = 0, bk,k,e2 = 1, and for any j ∈ {1, . . . , k − 1},
bk,j,e1 = 0 and bk,j,e2 = 0. (Note that the value of bk,j,ei for i ∈ {0, 1} and j ∈ [k+ 1] is determined by checking
the dependence of vertex Xk,j on the variable Zei in (37), which is straightforward because ei is an edge between
the last two layers at the side of the 2D regular grid up to level k). Since ωk has two 1’s at the indices e1 and e2
(besides the first bit), if the BECs corresponding to the indices e1 and e2 erase their inputs, i.e. e1, e2 /∈ Ik, then
ωk ∈ Ck satisfies the conditions of Lemma 3 and the ML decoder for X0,0 based on Y ′k under the BEC model
makes an error with probability 1

2 . Hence, we define the event:

Bk ,
{
Y ′k,e1 = Y ′k,e2 = e

}
= {BECs corresponding to edges e1 ∈ Ek and e2 ∈ Ek erase their inputs}
= {BSCs corresponding to edges e1 ∈ Ek and e2 ∈ Ek generate independent bits} .

As the ML decoder for X0,0 based on Y ′k under the BEC model makes an error with probability 1
2 conditioned on

Bk, we must have:
PY ′k|X0,0

(y′|0) = PY ′k|X0,0
(y′|1)

for all realizations y′ ∈ {0, 1, e}|Ek|+1 of Y ′k such that Bk occurs, i.e. y′1 = y′e1 = y′e2 = e. This implies that
Y ′k is conditionally independent of X0,0 given Bk (where we also use the fact that X0,0 is independent of Bk).
Furthermore, it is straightforward to verify that Yk is also conditionally independent of X0,0 given Bk, because Yk
can be obtained from Y ′k by replacing e’s with completely independent Bernoulli

(
1
2

)
bits. Thus, since (42) shows

that Xk is a deterministic function of Yk, Xk is conditionally independent of X0,0 given Bk.
To finish the proof, notice that P(Bk) = (2δ)2 for every k, and the events {Bk : k = 2m, m ∈ N\{0}} are

mutually independent because the BSCs in the 2D regular grid are all independent. So, infinitely many of the events
{Bk : k = 2m, m ∈ N\{0}} occur almost surely by the second Borel-Cantelli lemma. Let us define:

∀n ∈ N\{0}, An ,
n⋃

m=1

B2m
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Fig. 2. A high-level schematic of the proposed martingale-based approach for establishing the impossibility of broadcasting on 2D regular grids
with NAND processing functions.

where the continuity of the underlying probability measure P yields limn→∞ P(An) = 1. Then, since Xk is
conditionally independent of X0,0 given Bk, and Xr is conditionally independent of X0,0 and Bk given Xk for
any r > k, we have that X2m is conditionally independent of X0,0 given Am for every m ∈ N\{0}. Hence, we
obtain:

∀m ∈ N\{0}, P
(
h2

m

ML(X2m) 6= X0,0

∣∣∣Am) =
1

2

where hkML : Fk+1
2 → F2 denotes the ML decoder for X0,0 based on Xk for the XOR 2D regular grid reconstruction

problem in (39). Finally, observe that:

lim
m→∞

P
(
h2

m

ML(X2m) 6= X0,0

)
= lim
m→∞

P
(
h2

m

ML(X2m) 6= X0,0

∣∣∣Am)P(Am)

+ P
(
h2

m

ML(X2m) 6= X0,0

∣∣∣Acm)P(Acm)

= lim
m→∞

P
(
h2

m

ML(X2m) 6= X0,0

∣∣∣Am)
=

1

2
.

This completes the proof since the above condition establishes (5). �

V. MARTINGALE APPROACH FOR 2D REGULAR GRID WITH NAND PROCESSING FUNCTIONS

Finally, we consider the 2D regular grid where all Boolean processing functions with two inputs are the NAND
rule, and all Boolean processing functions with one input are the identity rule, i.e. f2(x1, x2) = ¬(x1 ∧ x2) and
f1(x) = x, where ¬ denotes the logical NOT operation. In this section, we will illustrate a promising program for
proving Conjecture 1 (which is generalizable to other Boolean processing functions). In particular, we will establish
Theorem 3, derive results required to generate the accompanying numerical evidence in Table I, and in the process,
present several peripheral results for completeness.

To guide the readers, we briefly outline the ensuing subsections. In subsection V-A, we will describe the Markovian
coupling setup of subsection II-B, and then show that the existence of certain structured supermartingales implies
Conjecture 1. In subsection V-B, inspired by [39], we will introduce counting forms and elucidate how they
define the structured superharmonic potential functions that produce the aforementioned supermartingales. Then,
to efficiently test the desired structural properties of counting forms, we will develop cyclic evaluation of counting
forms and derive corresponding graph theoretic characterizations in subsection V-C. With these required pieces in
place, we will prove Theorem 3 in subsection V-D. Lastly, we will transform the graph theoretic tests for the desired
superharmonic potential functions in subsection V-C into simple LPs in subsection V-E. These LPs are then solved
to generate Table I. This chain of ideas is illustrated in Figure 2 so that readers may refer back to it as they proceed
through this section.
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A. Existence of Supermartingale

As mentioned in subsection II-B, similar to our proof of Theorem 1 in section III, we begin by constructing
a Markovian coupling. Let {X+

k : k ∈ N} and {X−k : k ∈ N} denote versions of the Markov chain {Xk : k ∈
N} initialized at X+

0 = 1 and X−0 = 0, respectively. Moreover, define the coupled 2D grid variables {Yk,j =
(X−k,j , X

+
k,j) : k ∈ N, j ∈ [k + 1]}, which yield the Markovian coupling {Yk = (Yk,0, . . . , Yk,k) : k ∈ N}. Recall

from (18) that each edge BSC(δ) either copies its input bit with probability 1 − 2δ, or generates an independent
Bernoulli

(
1
2

)
output bit with probability 2δ. As before, the Markovian coupling {Yk : k ∈ N} “runs” its “marginal”

Markov chains {X+
k : k ∈ N} and {X−k : k ∈ N} on a common underlying 2D regular grid so that along any

edge BSC, either both inputs are copied with probability 1− 2δ, or a shared independent Bernoulli
(
1
2

)
output bit

is produced with probability 2δ. We will analyze the Markov chain {Yk : k ∈ N} in the remainder of this section.
To simplify our analysis, we will again keep track of {Yk : k ∈ N} in a single coupled 2D regular grid. The

edge configuration of the underlying graph of the coupled 2D regular grid is exactly as described in subsection I-C.
The vertices of the coupled 2D regular grid are indexed by the coupled 2D regular grid variables {Yk,j ∈ Y : k ∈
N, j ∈ [k + 1]}, where we simplify the alphabet set of these variables from {(0, 0), (0, 1), (1, 0), (1, 1)} to:

Y , {0, 1, u} (43)

such that for any k ∈ N and any j ∈ [k + 1], Yk,j = 0 if and only if X−k,j = X+
k,j = 0, Yk,j = 1 if and only if

X−k,j = X+
k,j = 1, and Yk,j = u if and only if X−k,j 6= X+

k,j .
11 So, Yk,j = u represents that the variables X−k,j

and X+
k,j are uncoupled; in particular, we do not distinguish between the two possible values the pair (X−k,j , X

+
k,j)

might have. Furthermore, much like (20), each shared edge BSC(δ) of the coupled 2D regular grid is described by
a row stochastic matrix, or channel, on the alphabet Y:

W =


0 u 1

0 1− δ 0 δ
u δ 1− 2δ δ
1 δ 0 1− δ

, (44)

and W appropriately captures the aforementioned Markovian coupling. Lastly, the NAND rule can be equivalently
described on the alphabet Y as:12

y1 y2 ¬(y1 ∧ y2)
0 ? 1
u u u
u 1 u
1 1 0

(45)

where ? denotes any letter in Y as before, and the symmetry of the NAND rule covers all other possible input
combinations. This coupled 2D regular grid model completely characterizes the Markov chain {Yk : k ∈ N}, which
starts at Y0 = u almost surely.

For every k ∈ N, define the random variable:

Nk ,
k∑
j=0

1{Yk,j = u} (46)

which gives the number of u’s at level k in the coupled 2D regular grid, where 1{·} denotes the indicator function
which equals 1 if its input proposition is true, and 0 otherwise. The next lemma illustrates that the almost sure
convergence of {Nk : k ∈ N} to zero implies Conjecture 1.

Lemma 4 (Vanishing u’s Condition). For any noise level δ ∈
(
0, 12
)
, if we have limk→∞Nk = 0 almost surely,

then Conjecture 1 is true, i.e. limk→∞ ‖P+
Xk
− P−Xk‖TV = 0.

Proof. Define the event:

A , {∃k ∈ N, ∀j ∈ [k + 1], Yk,j ∈ {0, 1}}

11Equivalently, we let 0 = (0, 0) and 1 = (1, 1) with abuse of notation, and we let u = {(0, 1), (1, 0)}.
12Note that the NAND of two u’s could be 1, e.g. (1, 0) and (0, 1) pass through a NAND gate to produce (1, 1). However, we conservatively

treat the NAND of two u’s as unknown, i.e. u.
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= {∃k ∈ N, there are no u’s in level k of the coupled 2D regular grid} ,

and observe that, as shown at the outset of the proof of Theorem 1 in section III, we have:

lim
k→∞

∥∥P+
Xk
− P−Xk

∥∥
TV
≤ 1− lim

k→∞
P
(
X+
k = X−k

)
= 1− P(A)

where we use (44), (45), and the continuity of probability measures. Therefore, similar to section III, it suffices
to prove that if P(limk→∞Nk = 0) = 1, then P(A) = 1. To establish this implication, we next show that{

limk→∞Nk = 0
}

= A.
Indeed, suppose limk→∞Nk = 0. Then, there exists K ∈ N such that for all k ∈ N\[K + 1], Nk ≤ 1

2 . However,
since Nm ∈ N for all m ∈ N, we must have Nk = 0 for all k ∈ N\[K+1]. This implies that A occurs. Conversely,
suppose A occurs, i.e. there exists a level k ∈ N with no u’s. Then, Nk = 0, and due to (44) and (45), Nm = 0
for all m ≥ k. Hence, limk→∞Nk = 0. This completes the proof. �

Due to Lemma 4, we now focus our attention on establishing the almost sure convergence of {Nk : k ∈ N}
to zero. A general approach to establishing such almost sure convergence of random variables is via Doob’s
martingale convergence theorem, cf. [51, Chapter V, Theorem 4.1]. However, since we do not have a martingale in
our problem, we need to construct one from our Markov chain {Yk : k ∈ N}. It is well-known in probability theory
that ergodicity and related properties of discrete-time time-homogeneous Markov chains with countable state spaces
can be analyzed using tools from the intimately related fields of martingale theory, Lyapunov theory, and potential
theory (see e.g. [52, Chapter 5]). For example, Foster’s theorem, cf. [52, Theorem 1.1, Chapter 5], characterizes
the positive recurrence of Markov chains via the existence of Lyapunov functions with certain properties. It is also
closely related to martingale convergence based criteria for recurrence of Markov chains. Indeed, such martingale
arguments typically construct a martingale from the Markov chain under consideration. The canonical approach of
doing this is to apply a harmonic function, which is an eigen-function of the Markov chain’s conditional expectation
operator with eigenvalue 1, to the random variables defining the Markov chain—this is a specialization of the so
called Dynkin martingale (or Lévy’s martingale). Likewise, a supermartingale can be constructed by applying a
superharmonic function to the Markov chain. The study of (super)harmonic functions in classical analysis is known
as potential theory, and variants of harmonic functions turn out to be precisely the desired Lyapunov functions of
Foster’s theorem.

The ensuing conjecture presents a particularly useful family of superharmonic functions with special properties
that can be used to construct a supermartingale from {Yk : k ∈ N}.

Conjecture 2 (Existence of Supermartingale). Let Y∗ = ∪k∈N\{0}Yk denote the set of all non-empty finite-length
strings with letters in Y , and as in the proof of Theorem 1 in section III, let {Fk : k ∈ N} denote a filtration such
that each Fk is the σ-algebra generated by the random variables (Y0, . . . , Yk) and all the BSCs before level k (where
we include all events determining whether these BSCs are copies, and all events determining the independent bits
they produce) for k ∈ N. Then, there exists a parametrized family of Borel measurable superharmonic functions{
fδ : Y∗ → R

∣∣ δ ∈ (0, 12)} with parameter δ such that the discrete-time stochastic process {fδ(Yk) : k ∈ N}
satisfies the following properties for every δ ∈

(
0, 12
)
:

1) {fδ(Yk) : k ∈ N} is a supermartingale adapted to {Fk : k ∈ N}, which implies that:

∀k ∈ N, E[fδ(Yk+1)|Fk] = E[fδ(Yk+1)|Yk] ≤ fδ(Yk) (47)

since {Yk : k ∈ N} forms a Markov chain.
2) There exists a constant C = C(δ) > 0 (which may depend on δ) such that:

∀k ∈ N, fδ(Yk) ≥ CNk almost surely . (48)

The aforementioned properties should be reminiscent of the conditions in Theorem 3. If existence of the super-
martingale in Conjecture 2 can be rigorously established, then the impossibility of broadcasting on 2D regular grids
with NAND processing functions follows as a consequence. The next proposition justifies this implication.

Proposition 4 (Supermartingale Sufficient Condition). If Conjecture 2 is true, then Conjecture 1 is true. Equivalently,
if δ ∈

(
0, 12
)
, and there exists a Borel measurable superharmonic function fδ : Y∗ → R such that {fδ(Yk) : k ∈ N}

is a supermartingale adapted to {Fk : k ∈ N} and (48) holds for some constant C = C(δ) > 0, then broadcasting
is impossible on the 2D regular grid with NAND processing functions in the sense of (5).
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Proof. Fix any noise level δ ∈
(
0, 12
)
, and consider the supermartingale {fδ(Yk) : k ∈ N} (see property (47)).

Letting X− , −min{X, 0} denote the “negative part” of a random variable X , observe that:

0 = sup
k∈N

E
[
fδ(Yk)−

]
< +∞

because (48) implies that for all k ∈ N, fδ(Yk) ≥ 0 almost surely since Nk ≥ 0 almost surely. Hence, applying
Doob’s martingale convergence theorem, cf. [51, Chapter V, Theorem 4.1], we have that the limiting random
variable:

Fδ , lim
k→∞

fδ(Yk) ≥ 0

exists (almost surely) and is integrable, i.e. E[Fδ] < +∞. Define the limiting random variable:

N∞ , lim sup
k→∞

Nk ≥ 0

(almost surely). Then, taking limits in (48), we have that:

Fδ ≥ CN∞ almost surely

which in turn produces:
E[Fδ] ≥ C E[N∞] .

Thus, we get that E[N∞] < +∞. Now notice that it suffices to prove that N∞ = 0 almost surely, since we can
then employ Lemma 4 to establish Conjecture 1, and hence, this proposition.

We next prove that N∞ = 0 almost surely. Observe that if E[N∞] = 0, then N∞ = 0 almost surely, because the
expectation of a non-negative random variable is zero when the random variable itself is zero. Thus, we assume,
for the sake of contradiction, that E[N∞] > 0. Using Markov’s inequality and the definition of superior limits, we
obtain that for all t > 0:

P(∃K = K(t) ∈ N,∀k ∈ N\[K + 1], Nk ≤ 2t) ≥ P(N∞ ≤ t) ≥ 1− E[N∞]

t
.

Fix any (small) ε ∈ (0, 1), and let t = E[N∞]/ε. Then, the previous inequality can be written as:

P
(
∃K = K(ε) ∈ N,∀k ∈ N\[K + 1], Nk ≤

2E[N∞]

ε

)
≥ 1− ε . (49)

Now, for every k ∈ N\{0}, define the stopping time (with respect to the filtration {Fk : k ∈ N}):

Tk , inf

{
m ∈ N : ∃m1 < · · · < mk = m, ∀i ∈ {1, . . . , k}, Nmi ≤

2E[N∞]

ε

}
which denotes the level index of the kth occasion when the number of u’s is bounded by 2E[N∞]/ε. Note that
Tk = +∞ for outcomes in the sample space where there do not exist k levels m1 < · · · < mk such that
Nmi ≤ 2E[N∞]/ε for all i ∈ {1, . . . , k}. Moreover, for i ∈ {0, 1}, define the corresponding sequences of events
{Ak,i : k ∈ N\{0}} as follows:

Ak,i , {Tk = +∞} ∪
{

every BSC(δ) on an outgoing edge starting at a vertex at
level Tk + i < +∞ that equals u outputs an independent bit

}
which contains all outcomes of the sample space where there are no u’s at level Tk + i. Observe that for every
k ∈ N\{0}, Ak,0 ⊆ Ak+1,0. Indeed, if Ak,0 occurs, then either Tk = +∞ or there are no u’s at level Tk + 1 due
to (44) and (45). In the former case, we have Tk+1 = +∞, and in the latter case, there are no u’s at level Tk+1

due to (44) and (45). So, Ak+1,0 must occur.
It is straightforward to verify that for every k ∈ N\{0}:

P
(
Ak+1,0

∣∣Ack,0) ≥ P
(
Ak+1,0 ∩ {Tk+1 < +∞}

∣∣Ack,0)
= P

(
Ak+1,0

∣∣{Tk+1 < +∞} ∩Ack,0
)
P
(
Tk+1 < +∞

∣∣Ack,0)
≥ (2δ)4E[N∞]/ε P

(
Tk+1 < +∞

∣∣Ack,0) (50)

where to obtain (50), we argue that if Ack,0 occurs (which means that Tk is finite and the collection of outgoing BSCs
from level Tk output at least one u) and Tk+1 is finite, then P(Ak+1,0 | {Tk+1 < +∞} ∩ Ack,0) is the probability
that the BSCs on the pairs of outgoing edges of u’s at level Tk+1 produce independent bits. Since there are at
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most 2E[N∞]/ε u’s at level Tk+1, and the outgoing BSCs from these u’s are conditionally independent given Ack,0
and {Tk+1 < +∞}, we obtain the bound in (50). Next, notice that for every k ∈ N\{0}, conditioned on Ack,0
happening, we have the inclusion relation Ak,1 ⊆ {Tk+1 < +∞}. Indeed, if Ack,0 occurs, then Tk must be finite.
Suppose Ak,1 also occurs. Then, either there are no u’s at level Tk + 1, or there are u’s at level Tk + 1 whose
outgoing BSCs generate independent bits. In both cases, there are no u’s at level Tk + 2 (due to (44) and (45)).
Hence, Tk+1 must be finite. Using this conditional inclusion relation, continuing from (50), we have that for every
k ∈ N\{0}:13

P
(
Ak+1,0

∣∣Ack,0) ≥ (2δ)4E[N∞]/ε P
(
Ak,1

∣∣Ack,0)
≥ (2δ)4E[N∞]/ε (2δ)8E[N∞]/ε

= (2δ)12E[N∞]/ε (51)

where to obtain (51), we argue akin to (50) that if Ack,0 occurs, then P(Ak,1|Ack,0) is the probability that the BSCs
on the pairs of outgoing edges of u’s at level Tk + 1 produce independent bits. Since there are at most 4E[N∞]/ε
u’s at level Tk + 1 due to (44) and (45) (because there are at most 2E[N∞]/ε u’s at level Tk that can propagate to
the next level via two outgoing edges each), and the outgoing BSCs from these u’s are conditionally independent
given Ack,0, we obtain the bound in (51).

To conclude the proof, we will employ the “counterpart of the Borel-Cantelli lemma,” cf. [53, Lemma 1]. To
this end, notice using (51) that:

∞∑
k=1

P
(
Ak+1,0

∣∣Ack,0) ≥ ∞∑
k=1

(2δ)12E[N∞]/ε = +∞ .

Then, since {Ak,0 : k ∈ N\{0}} is a non-decreasing sequence of sets, the counterpart of the Borel-Cantelli lemma
yields:

P

( ∞⋃
k=1

Ak,0

)
= 1 . (52)

(Note that if there exists some k ∈ N\{0} such that P(Ack,0) = 0 and P(Ak+1,0|Ack,0) is not well-defined, then
P(Ak,0) = 1, and the above equality trivially holds.) On the other hand, (49) yields the following inequality:

P(∀k ∈ N\{0}, Tk < +∞) ≥ P
(
∃K = K(ε) ∈ N,∀k ∈ N\[K + 1], Nk ≤

2E[N∞]

ε

)
≥ 1− ε . (53)

Finally, using both (52) and (53), we get that:

P(N∞ = 0) ≥ P

(( ∞⋃
k=1

Ak,0

)
∩

( ∞⋂
k=1

{Tk < +∞}

))
≥ 1− ε

where the first inequality holds because if there exists a finite level Tk such that all outgoing BSCs from this level
do not output u’s, then we must have NTk+1 = 0, and therefore, N∞ = 0 (due to (44) and (45)). Letting ε → 0
produces:

P(N∞ = 0) = 1 ,

which implies that E[N∞] = 0. This contradicts the assumption that E[N∞] > 0. Hence, N∞ = 0 almost surely,
which completes the proof. �

Although Proposition 4 shows that it suffices to prove Conjecture 2 in order to establish the impossibility of
broadcasting on 2D regular grids with NAND processing functions, constructing the supermartingales in Conjecture
2 turns out to be nontrivial. Therefore, in the ensuing subsections, we propose an approach for constructing the
structured supermartingales outlined in Conjecture 2, and bolster this proposal by demonstrating how to compute
them efficiently.

13As shown later in (53), it is easy to use (49) to lower bound P(Tk+1 < +∞), but this does not immediately lower bound the term
P(Tk+1 < +∞|Ac

k,0) in (50). So, we must apply a different approach here.
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B. Counting Forms and Potential Functions

In this subsection, we will explain an extended version of the potential function technique in [39] that offers
an avenue to construct the superharmonic functions delineated in Conjecture 2. In particular, we will consider
superharmonic potential functions composed of so called “counting forms.” To this end, we begin with a simple
motivating example. Consider the potential function w : Y∗ → R given by:

∀y ∈ Y∗, w(y) =
[
number of (u)’s in y

]
−
[
number of (01u)’s in y

]
. (54)

This function counts the number of u’s that appear in an input string y and subtracts the number of times the sub-
string (01u) appears in y. So, for example, if the input string is y = (0010uu01101u0), then w(y) = 3 − 1 = 2.
Since computing w requires a count of sub-strings of length (at most) 3, w can only be meaningfully evaluated for
strings of length at least 3, and we say that w has “rank” 3. Potential functions obtained by such linear combinations
of counts will be the subject of much of our discussion from hereon. The ensuing definition formally generalizes
the aforementioned example.

Definition 2 (Basis Clauses and Counting Forms). For every finite string v ∈ Y∗ with length r ∈ N\{0}, we define
an associated basis clause {v} : Y∗ → R via:

∀k ∈ N\{0}, ∀y = (y1 · · · yk) ∈ Yk, {v}(y) ,


k−r+1∑
i=1

1{(yi · · · yi+r−1) = v} , r ≤ k

0 , r > k

which is a map that counts the number of sub-strings v that can be found in the input string y. (Note that when
explicitly writing out the letters of a string v, we will often use parentheses for clarity, e.g. v = (01u) ∈ Y3.
On the other hand, curly braces will be used to distinguish the string v from its associated basis clause {v}, e.g.
{01u} denotes the basis clause associated with the string (01u). Moreover, throughout this paper, we will identify
a basis clause {v} with the string v.) The length of such a basis clause {v} is called its rank, which we denote
as rank({v}) = r. For any finite set of basis clauses {v1}, . . . , {vm} : Y∗ → R and coefficients α1, . . . , αm ∈ R
(with m ∈ N\{0}), the formal sum w = α1{v1}+ · · ·+ αm{vm} is said to be a counting form, and w : Y∗ → R
is a potential function defined by:

∀y ∈ Y∗, w(y) ,
m∑
j=1

αj{vj}(y) .

(Note that we omit the curly braces notation for general counting forms since there is no cause for confusion
between strings and counting forms.) The rank of a counting form w is defined as the maximal rank of its basis
clauses:

rank(w) , max
i∈{1,...,m}:

αi 6=0

rank({vi}) ,

and we say that w has pure rank if rank(w) = rank({vi}) for every i ∈ {1, . . . ,m} such that αi 6= 0. Furthermore,
we define a counting form w to be u-only if all the strings v1, . . . , vm defining its basis clauses contain a u, i.e. w
is not u-only if:

∃ i ∈ {1, . . . ,m}, vi ∈ {0, 1}rank({vi}) .

As another concrete illustration of the concepts in Definition 2, consider the u-only counting form:

w∗ , 2{u}+ {u1}+ {1u}+ {u10}+ {01u} − 2{0u0} . (55)

This counting form has rank(w∗) = 3, and basis clauses {u}, {u1}, {1u}, {u10}, {01u}, {0u0} with coefficients
2, 1, 1, 1, 1, −2, respectively. Moreover, the potential of the string y = (01uu1u001u1) is w∗(y) = 2(4) + (2) +
(3) + (0) + (2)− 2(0) = 15.

As mentioned earlier, we will restrict our search for superharmonic functions satisfying conditions (47) and
(48) in Conjecture 2 to the class of u-only potential functions defined above. This restriction to u-only counting
forms is intuitively sound, because our goal is to show that (48) is satisfied and the number of u’s per layer of
the coupled NAND 2D regular grid vanishes almost surely as the depth tends to infinity—see Lemma 4. Let us
fix a rank r ∈ N\{0}, and only consider u-only counting forms with at most this rank. Moreover, define the set
of finite strings Y∗r ⊂ ∪k≥rYk such that for any y ∈ Y∗r , the first and last r letters of y do not contain u’s, or
equivalently, y = (y1 · · · yk) ∈ Y∗r with k ≥ r if and only if y1, . . . , yr, yk−r+1, . . . , yk ∈ {0, 1}. Since the BSCs in
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the coupled NAND 2D regular grid are independent, a simple second Borel-Cantelli lemma argument can be used
to show that with probability 1, there exists a level t ∈ N such that Yt,0, . . . , Yt,r−1, Yt,t−r+1, . . . , Yt,t ∈ {0, 1} in
the coupled 2D regular grid. (This is because Yt,0, . . . , Yt,r−1, Yt,t−r+1, . . . , Yt,t ∈ {0, 1} if the BSCs above these
vertices generate independent bits.) Define the event:

A , {∃ t ∈ N, ∀ l ≥ t, Yl,0, . . . , Yl,r−1, Yl,l−r+1, . . . , Yl,l ∈ {0, 1}} . (56)

Then, due to (44) and (45), we have that P(A) = 1, i.e. A occurs almost surely. For convenience in our ensuing
exposition, we will “condition the event A” and make the simplifying assumption that our u-only counting forms
are potential functions with domain Y∗r (instead of Y∗). We will rigorize what we mean by “conditioning on A”
during the proof of Theorem 3 in subsection V-D.

Therefore, we seek a u-only counting form wδ = α1(δ){v1} + · · · + αm(δ){vm} with m ∈ N\{0} basis
clauses {v1}, . . . , {vm} which contain u’s, and corresponding δ-dependent coefficients α1(δ), . . . , αm(δ) ∈ R\{0},
respectively, such that for all δ ∈

(
0, 12
)
, the potential function wδ : Y∗r → R satisfies:

1) The supermartingale conditions:

∀k ∈ N, E[|wδ(Yk)|] < +∞ , (57)

∀k ≥ r − 1, ∀y ∈ Yk+1 ∩ Y∗r , E[wδ(Yk+1)|Yk = y] ≤ wδ(y) . (58)

2) There exists a constant C = C(δ) > 0 such that:

∀y ∈ Y∗r , wδ(y) ≥ C {u}(y) (59)

where {u} is a basis clause with rank 1.
The condition (57) holds trivially, because for all k ∈ N:

E[|wδ(Yk)|] ≤
m∑
i=1

|αi(δ)|E[|{vi}(Yk)|] ≤ (k + 1)

m∑
i=1

|αi(δ)| < +∞ (60)

using the triangle inequality and the fact that 0 ≤ {vi}(y) ≤ k+1 for all i ∈ {1, . . . ,m} and all y ∈ Yk+1. Moreover,
it is intuitively clear that akin to the supermartingale depicted in (47), conditions (57) and (58) essentially define
a supermartingale {wδ(Yk) : k ≥ r − 1} “conditioned on A.” Likewise, (59) is essentially equivalently to (48)
“conditioned on A.” Hence, by extending the argument in Proposition 4, the impossibility of broadcasting on the
NAND 2D regular grid can be established from conditions (57), (58), and (59) (as we will explain in subsection
V-D).

The discussion heretofore reveals that to prove the impossibility of broadcasting on the NAND 2D regular grid,
it suffices to prove the existence of a u-only counting form wδ (with rank at most r) such that (58) and (59) are
satisfied. Naturally, one approach towards proving the existence of such a wδ is to construct an explicit example.
In the remainder of this section, we will make some partial progress on this important problem of constructing an
example.

Both the constraints (58) and (59) require us to verify inequalities between certain potentials of strings in Y∗r . To
state these constraints directly in terms of counting forms, we will transform them using the next two definitions.
The first of these is an equivalent linear operator on counting forms that captures the action of the conditional
expectation operators in (58).

Definition 3 (Conditional Expectation Operator). For any input basis clause {v} with rank s ∈ N\{0}, the
conditional expectation operator E outputs the following counting form which has pure rank s+ 1:

E({v}) ,
∑

z∈Ys+1

P((Ys+1,1, . . . , Ys+1,s) = v |Ys = z) {z}

where the coefficients
{
P((Ys+1,1, . . . , Ys+1,s) = v |Ys = z) : z ∈ Ys+1

}
in the above formal sum of basis

clauses are given by the Markov transition probabilities of the coupled NAND 2D regular grid (see (44) and (45)).
Furthermore, for any input counting form w = α1{v1} + · · · + αm{vm} with basis clauses {v1}, . . . , {vm} and
coefficients α1, . . . , αm ∈ R\{0} (with m ∈ N\{0}), E outputs the following counting form:

E(w) , α1E({v1}) + · · ·+ αmE({vm})

which has rank(E(w)) = rank(w) + 1.
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We note that the set of all counting forms is a vector space over R, and the sets of all u-only counting forms and
all counting forms with rank at most r are linear subspaces of this larger vector space. Specifically, the intersection
of these two linear subspaces, namely, the set of all u-only counting forms with rank at most r, is also a linear
subspace. In particular, for any real scalar γ ∈ R and any pair of counting forms w1 = α1{v1} + · · · + αm{vm}
and w2 = β1{v1} + · · · + βm{vm}, which have a common set of basis clauses {v1}, . . . , {vm} without loss of
generality, and coefficients α1, . . . , αm and β1, . . . , βm, respectively, we define vector addition by w1 + w2 =
(α1 + β1){v1} + · · · + (αm + βm){vm} and scalar multiplication by γw1 = γα1{v1} + · · · + γαm{vm}. It
is straightforward to verify that rank(w1 + w2) ≤ max{rank(w1), rank(w2)} and rank(γw1) = rank(w1) (for
γ 6= 0). Moreover, we will use the notation w1 − w2 to mean w1 − w2 = w1 + (−1)w2 in the sequel.

In Definition 3, if the basis clause {v} contains u’s, then the coefficient P((Ys+1,1, . . . , Ys+1,s) = v |Ys = z) = 0
when z ∈ {0, 1}s+1 (due to (44) and (45)). Thus, the conditional expectation operator E maps the vector space of
u-only counting forms with rank at most r to the vector space of u-only counting forms with rank at most r + 1.
The ensuing proposition illustrates that the action of the conditional expectations in (58) is equivalent to the action
of E in Definition 3.

Proposition 5 (Equivalence of E). Consider any u-only counting form wδ with rank at most r. Then, for all
k ≥ r − 1 and for every y ∈ Yk+1 ∩ Y∗r , we have:(

E(wδ)
)
(y) = E[wδ(Yk+1)|Yk = y] .

Proof. First, consider any basis clause {v} that contains u’s and has rank({v}) = s ≤ r, and fix any k ≥ r − 1
and any y = (y0 · · · yk) ∈ Yk+1 ∩ Y∗r . Then, observe that:

E[{v}(Yk+1)|Yk = y] =

k−s+2∑
i=0

P((Yk+1,i, . . . , Yk+1,i+s−1) = v |Yk = y)

=

k−s+1∑
i=1

P((Yk+1,i, . . . , Yk+1,i+s−1) = v |Yk,i−1 = yi−1, . . . , Yk,i+s−1 = yi+s−1)

=

k−s+1∑
i=1

P((Ys+1,1, . . . , Ys+1,s) = v |Ys = (yi−1 · · · yi+s−1))

=

k−s+1∑
i=1

∑
z∈Ys+1

P((Ys+1,1, . . . , Ys+1,s) = v |Ys = z)1{(yi−1 · · · yi+s−1) = z}

=
∑

z∈Ys+1

P((Ys+1,1, . . . , Ys+1,s) = v |Ys = z) {z}(y)

=
(
E({v})

)
(y)

where the first equality follows from Definition 2, the second equality holds because the coupled 2D grid vari-
ables Yk+1,i, . . . , Yk+1,i+s−1 only depend on the variables Yk,i−1, . . . , Yk,i+s−1 in the previous layer, and be-
cause P((Yk+1,0, . . . , Yk+1,s−1) = v |Yk,0 = y0, . . . , Yk,s−1 = ys−1) = 0 and P((Yk+1,k−s+2, . . . , Yk+1,k+1) =
v |Yk,k−s+1 = yk−s+1, . . . , Yk,k = yk) = 0 since v contains u’s and y ∈ Y∗r , the third equality holds because (44)
and (45) determine the Markov transition kernels between all pairs of consecutive layers in the coupled NAND 2D
regular grid, the fifth equality follows from Definition 2 (where we treat the string z as a basis clause {z}), and
the final equality follows from Definitions 2 and 3.

This implies that for all k ≥ r − 1 and for every y = (y0 · · · yk) ∈ Yk+1 ∩ Y∗r , we also have:

E[wδ(Yk+1)|Yk = y] =

m∑
i=1

αi(δ)E[{vi}(Yk+1)|Yk = y]

=

m∑
i=1

αi(δ)
(
E({vi})

)
(y)

=
(
E(wδ)

)
(y)
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where we use Definitions 2 and 3, and we let wδ = α1(δ){v1} + · · · + αm(δ){vm} (without loss of generality)
with m ∈ N\{0} basis clauses {v1}, . . . , {vm} which contain u’s, and corresponding δ-dependent coefficients
α1(δ), . . . , αm(δ) ∈ R, respectively. This completes the proof. �

The second definition we require to transform the constraints (58) and (59) into inequalities in terms of counting
forms is that of a partial order over counting forms.

Definition 4 (Equivalence Classes and Partial Order). Let 0 denote the zero counting form with no basis clauses and
rank(0) = 0 (with abuse of notation), which outputs 0 on every input string. Define the equivalence relation ' over
u-only counting forms as follows. For any pair of u-only counting forms w1 and w2 with max{rank(w1), rank(w2)}
≤ r, w1 ' w2 if we have:

∀y ∈ Y∗r , w1(y) = w2(y) .

Due to this equivalence relation, the aforementioned vector space of u-only counting forms with rank at most r is
actually a vector space of equivalence classes of such counting forms, where any specific u-only counting form w
with rank at most r corresponds to the equivalence class {w + z : z is u-only, rank(z) ≤ r, z ' 0}. Furthermore,
we define the partial order � over u-only counting forms as follows. For any pair of u-only counting forms w1

and w2 with max{rank(w1), rank(w2)} ≤ r, w1 � w2 if we have:

∀y ∈ Y∗r , w1(y) ≥ w2(y) .

This makes the set of equivalence classes of u-only counting forms with rank at most r a partially ordered vector
space. Lastly, we say that a u-only counting form w with rank at most r is non-negative if w � 0, and we will
often write w1 � w2 equivalently as w1 − w2 � 0.

We remark that Definition 4 illustrates that the rank of a u-only counting form is a property of the counting form
itself, and not the corresponding equivalence class. For example, when r ≥ 2, the basis clause {u} has unit rank,
and is equivalent to the following u-only counting forms with pure rank 2:

{u} ' {0u}+ {1u}+ {uu} , (61)

{u} ' {u0}+ {u1}+ {uu} . (62)

In fact, given a u-only counting form w1 with rank s ≤ r, these equations exemplify a more general and rather
useful trick for constructing an equivalent u-only counting form w2 with pure rank t such that w1 ' w2 and
s ≤ t ≤ r. The next lemma formally presents this trick.

Lemma 5 (Purification of Counting Forms). Consider any u-only counting form w1 = α1{v1} + · · · + αm{vm}
with basis clauses {v1}, . . . , {vm} and coefficients α1, . . . , αm ∈ R\{0} for some m ∈ N\{0}, and rank s ≤ r. For
any integer t ∈ [s, r], construct the u-only counting forms:

w2 =

m∑
i=1

αi
∑

z∈Yt−rank({vi})

{vi, z} , (63)

w3 =

m∑
i=1

αi
∑

z∈Yt−rank({vi})

{z, vi} , (64)

where {vi, z}, {z, vi} ∈ Yt denote the basis clauses obtained by concatenating the strings vi ∈ Yrank({vi}) and
z ∈ Yt−rank({vi}), and the inner summations equal {vi} when rank({vi}) = t. Then, w1 ' w2 ' w3, and w2, w3

have pure rank t.

Proof. It is obvious that w2, w3 have pure rank t. Moreover, the proof of w1 ' w3 is the same as the proof of
w1 ' w2 by symmetry. So, we only need to establish that w1 ' w2. To prove this, it suffices to show that for any
basis clause {vi} of w1 with rank({vi}) < t:

{vi} '
∑

z∈Yt−rank({vi})

{vi, z} . (65)
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To this end, consider any basis clause {vi} with s′ = rank({vi}) < t. Then, for any k ≥ r and any string
y = (y1 · · · yk) ∈ Yk ∩ Y∗r , we have:

∑
z∈Yt−s′

{vi, z}(y) =
∑

z∈Yt−s′

k−t+1∑
j=1

1{(yj · · · yj+t−1) = (vi, z)}

=

k−t+1∑
j=1

1{(yj · · · yj+s′−1) = vi}
∑

z∈Yt−s′
1{(yj+s′ · · · yj+t−1) = z}

︸ ︷︷ ︸
=1

=

k−s′+1∑
j=1

1{(yj · · · yj+s′−1) = vi} −
k−s′+1∑
j=k−t+2

1{(yj · · · yj+s′−1) = vi}︸ ︷︷ ︸
=0

= {vi}(y)

where (vi, z) denotes the concatenation of the strings vi and z, the first and final equalities follow from Definition 2,
the second equality follows from swapping the order of summations, and the second summation in the third equality
equals zero, because it only depends on the sub-string (yk−t+2 · · · yk) with length k− (k− t+ 2) + 1 = t− 1 ≤ r,
and (yk−t+2 · · · yk) contains no u’s since y ∈ Y∗r while vi contains u’s since w1 is u-only. This establishes (65),
and therefore, completes the proof. �

Returning to our main discussion, with Definitions 3 and 4 in place, we can recast the constraints (58) and (59)
as follows. We seek to construct a u-only counting form wδ with rank at most r such that for all δ ∈

(
0, 12
)
:

wδ − E(wδ) � 0 (66)

∃C = C(δ) > 0, wδ − C{u} � 0 (67)

where (66) is equivalent to (58) using Proposition 5, and (67) is equivalent to (59). In order to verify (66) and (67)
using a computer program, we need to choose an appropriate value of r, and develop an efficient algorithm to test
the partial order �. We conclude this subsection by doing the former, and leave the development of the latter for
ensuing subsections.

Observe using Definition 3 that the conditional expectation operator E evidently depends on δ (because the
coefficients of the counting form E({v}) for a basis clause {v} depend on the transition probabilities of the coupled
NAND 2D regular grid). Thus, it is instructive to consider the noiseless setting where δ = 0. In this case, (66) is
clearly satisfied if we find a u-only counting form w that is a fixed point of E , i.e. w ' E(w). Inspired by the
“weight function” used in [39, Equation (2.3)], we consider the u-only harmonic counting form w∗ defined in (55)
(which is an adjusted and symmetrized version of [39, Equation (2.3)]). The next proposition establishes that w∗
is a fixed point of E when δ = 0.

Proposition 6 (Harmonic Counting Form). If δ = 0 and r ≥ 3, then the harmonic counting form w∗ in (55)
satisfies:

w∗ ' E(w∗) .

Proof. Using (55) and Definition 3, we have:

E(w∗) = 2E({u}) + E({u1}) + E({1u}) + E({u10}) + E({01u})− 2E({0u0})
= 2({uu}+ {1u}+ {u1}) + ({u10}+ {uu0}+ {1u0})

+ ({01u}+ {0uu}+ {0u1}) + 0 + 0− 2(0)

' ({uu}+ {1u}+ {0u}︸ ︷︷ ︸
'{u}

)− {0u}+ ({uu}+ {u1}+ {u0}︸ ︷︷ ︸
'{u}

)− {u0}+ {1u}+ {u1}

+ {u10}+ ({uu0}+ {1u0}+ {0u0}︸ ︷︷ ︸
'{u0}

) + {01u}+ ({0uu}+ {0u1}+ {0u0}︸ ︷︷ ︸
'{0u}

)

− 2{0u0}
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' 2{u}+ {u1}+ {1u}+ {u10}+ {01u} − 2{0u0}
= w∗

where to obtain the second equality, for each basis clause {v1} of w∗, we find all basis clauses {v2} with
rank({v2}) = rank({v1}) + 1 such that consecutive noiseless NAND gates map v2 to v1 (e.g. (u10), (uu0),
and (1u0) form the set of strings that are mapped to (u1) via (45)), and when there are no such {v2}’s, E outputs
the zero counting form 0, and to obtain the third equivalence, we utilize Lemma 5. This completes the proof. �

Propelled by the elegant fixed point property of w∗ in Proposition 6, since rank(w∗) = 3, we will try to construct
u-only counting forms wδ with rank 3 such that (66) and (67) hold for all δ ∈

(
0, 12
)
. Specifically, when performing

computer simulations, e.g. for Table I, we will choose r = 4 to ensure all our calculations are correct, because
E(wδ) has rank at most 4 when rank(wδ) = 3. However, we continue our development for general fixed r for now.

C. Cyclic Evaluation and Graph Theoretic Characterizations

In order to efficiently test ' and � computationally, we introduce the notion of cyclic evaluation of counting
forms in this subsection.

Definition 5 (Cyclic Evaluation). In addition to the standard (acyclic) evaluation over strings presented in Definition
2, a basis clause {v} with rank s ∈ N\{0} can be also evaluated cyclically over strings, i.e. it can operate on input
strings in a periodic fashion:

∀k ∈ N\{0}, ∀y = (y0 · · · yk−1) ∈ Yk, {v}[y] ,


k−1∑
i=0

1
{(
y(i)k · · · y(i+s−1)k

)
= v
}
, s ≤ k

0 , s > k

where (i)k ≡ i (mod k) for every i ∈ N. In particular, we utilize the square bracket notation [·] to represent
such cyclic evaluation, as opposed to the usual parentheses (·) used to represent acyclic evaluation. Furthermore, a
counting form w = α1{v1}+ · · ·+ αm{vm} with rank s ∈ N\{0}, basis clauses {v1}, . . . , {vm}, and coefficients
α1, . . . , αm ∈ R (with m ∈ N\{0}) can also be evaluated cyclically over strings, and in this case, we say that w is
a cyclic potential function w : Y∗ → R which operates on input strings as follows:

∀y ∈ Y∗, w[y] ,
m∑
j=1

αj{vj}[y] .

For any counting form w with rank at most r, we will assume that the domain of its corresponding cyclic potential
function is ∪k≥rYr. This is in contrast to standard (acyclic) potential functions, where the domain is Y∗r . We will
see that allowing strings which contain u’s in the first and last r positions to remain in the domain will lead to lucid
algebraic conditions in the sequel. The next definition presents analogs of ' and � for cyclic evaluation of counting
forms w : ∪k≥rYr → R with rank at most r. (Although we will primarily be concerned with the vector space of
u-only counting forms with rank at most r, unlike Definition 4, it is convenient to state the ensuing definition for
general counting forms with rank at most r.)

Definition 6 (Cyclic Equivalence Classes and Partial Order). As before, let 0 denote the zero counting form,
which outputs 0 on every input string after cyclic evaluation. We define the cyclic equivalence relation 'c and
the cyclic partial order �c over counting forms as follows. For any pair of counting forms w1 and w2 with
max{rank(w1), rank(w2)} ≤ r, we write w1'c w2 if we have:

∀y ∈
⋃
k≥r

Yk, w1[y] = w2[y] ,

and we write w1�c w2 if we have:
∀y ∈

⋃
k≥r

Yk, w1[y] ≥ w2[y] .

Hence, the aforementioned vector space of counting forms with rank at most r is also a partially ordered vector
space of cyclic equivalence classes

{
{w+z : rank(z) ≤ r, z'c 0} : rank(w) ≤ r

}
. Finally, we say that a counting

form w with rank at most r is cyclically non-negative if w�c 0, and we will often write w1�c w2 equivalently as
w1 − w2�c 0.
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The proposition below illustrates that for the special case of u-only counting forms, the relations ' and � can
be deduced from the (stronger) relations 'c and �c , respectively.

Proposition 7 (Sufficient Conditions for ' and �). For any pair of u-only counting forms w1 and w2 with rank
at most r, we have:

1) w1'c w2 implies w1 ' w2,
2) w1�c w2 implies w1 � w2.

Proof. Using Definitions 4 and 6, it suffices to prove this proposition for w2 = 0. So, given a u-only counting
form w = α1{v1} + · · · + αm{vm} with rank at most r, m ∈ N\{0}, basis clauses {v1}, . . . , {vm} that contain
u’s, and coefficients α1, . . . , αm ∈ R, we will show that:

1) w'c 0 implies w ' 0,
2) w�c 0 implies w � 0.
Part 1: Observe that for any basis clause {v} that contains u’s and has rank s ≤ r, and any string y =

(y0 · · · yk−1) ∈ Yk ∩ Y∗r with k ≥ r, we have:

{v}[y] =

k−1∑
i=0

1
{(
y(i)k · · · y(i+s−1)k

)
= v
}

=

k−s∑
i=0

1{(yi · · · yi+s−1) = v}+

k−1∑
i=k−s+1

1
{(
y(i)k · · · y(i+s−1)k

)
= v
}︸ ︷︷ ︸

=0

= {v}(y)

where the first equality follows from Definition 5, and the third equality follows from Definition 2 and the fact that
v contains u’s and y ∈ Y∗r . Hence, using Definitions 2 and 5, we obtain:

∀y ∈ Y∗r , w(y) = w[y] . (68)

Since w'c 0, we have w[y] = 0 for all y ∈ ∪k≥rYk using Definition 6. This implies that w(y) = 0 for all y ∈ Y∗r
via (68). This yields w ' 0 using Definition 4.

Part 2: Since w�c 0, we have w[y] ≥ 0 for all y ∈ ∪k≥rYk using Definition 6. This implies that w(y) ≥ 0 for
all y ∈ Y∗r via (68). This yields w � 0 using Definition 4. �

With Proposition 7 at our disposal, we can write down the ensuing sufficient conditions for (66) and (67);
specifically, we seek to construct a u-only counting form wδ such that for all δ ∈

(
0, 12
)
, the following cyclic

non-negativity constraints are satisfied:

wδ − E(wδ)�c 0 (69)

∃C = C(δ) > 0, wδ − C{u}�c 0 (70)

where (69) implies (66), and (70) implies (67). (At this stage, we already have all we need to prove Theorem
3, but we defer the proof to subsection V-D.) As we mentioned earlier, these new constraints are easy to test
computationally. Indeed, we will develop graph theoretic methods to exactly verify the cyclic equivalence relation
and partial order in due course.

However, before presenting these graph theoretic characterizations, we briefly digress and present an equivalent
characterization of the cyclic equivalence relation. Our condition is inspired by the notion of “purification” introduced
in Lemma 5. Indeed, notice that Lemma 5 also holds for 'c : For any counting form w1 with rank s ≤ r, the counting
forms w2 and w3, defined in (63) and (64), respectively, satisfy w1'c w2'c w3, and have pure rank t ∈ [s, r]. (We
omit an explicit proof of this fact since it follows the argument for Lemma 5 mutatis mutandis.) Hence, for any basis
clause {v} with rank less than r, we clearly have 0'c {v}−{v}'c {v, 0}+{v, 1}+{v, u}−{0, v}−{1, v}−{u, v}
via purification, where {v, z}, {z, v} denote basis clauses that are obtained by concatenating v and z ∈ Y . The
next theorem shows that linear combinations of counting forms of this kind form a nontrivial linear subspace of
counting forms that are equivalent to 0 in the cyclic sense.

Theorem 4 (Equivalent Characterization of 'c ). Consider any counting form w with pure rank s ∈ {2, . . . , r}.
Then, w'c 0 if and only if w ∈ span

({
ρv : v ∈ Ys−1

})
, where span(·) denotes the linear span of its input
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counting forms, and for any basis clause {v} that has rank s − 1, ρv denotes the following counting form with
pure rank s:

ρv ,
∑
z∈Y
{v, z} − {z, v} . (71)

Furthermore, the linear subspace span
({
ρv : v ∈ Ys−1

})
has dimension 3s−1 − 1.

Theorem 4 is established in appendix B using algebraic topological ideas that are more involved than the graph
theoretic notions utilized in this section. (Note that we state this result as a theorem because it demonstrates the
significance of the counting forms {ρv : v ∈ Ys−1} as elucidated by the development in appendix B.) Using
Theorem 4, we see that to verify whether a counting form w with rank s ∈ {2, . . . , r} satisfies w'c 0, we can first
purify it to obtain an equivalent counting form w̃ with pure rank s, and then test whether w̃'c 0 using the condition
in Theorem 4. This latter test simply involves solving a linear programming feasibility problem. Moreover, to verify
whether w1'c w2 for two counting forms with rank at most r, we can simply test for w1 − w2'c 0 using the
aforementioned procedure. Note that a specialization of the converse direction of Theorem 4 states that: If a u-only
counting form w with pure rank s ∈ {2, . . . , r} satisfies w ∈ span({ρv : v ∈ Ys−1\{0, 1}s−1}), then w'c 0.
We present some numerical simulations based on this special case of Theorem 4 in appendix C, which provide
evidence for the existence of u-only counting forms satisfying (69) for sufficiently small values of δ > 0. On a
related but separate note, we believe that any counting form w with pure rank s ∈ {2, . . . , r} satisfies w�c 0 if
and only if w = w′ +w0 for some counting form w′ with pure rank s and all non-negative coefficients, and some
counting form w0 ∈ span({ρv : v ∈ Ys−1}). The converse direction of this statement holds due to Theorem 4, but
the forward direction is an open problem.

Finally, we turn to presenting our graph theoretic characterizations of the cyclic equivalence relation and partial
order. To this end, consider any counting form w with pure rank r defined by the formal sum:

w =
∑
v∈Yr

αv{v} (72)

with coefficients {αv ∈ R : v ∈ Yr}. Corresponding to w, construct the weighted directed graph Gr(w) with vertex
set Yr (of strings with length r, or equivalently, basis clauses with rank r), directed edge set:14

E , {(v, z) ∈ Yr × Yr : (v2 · · · vr) = (z1 · · · zr−1)} , (73)

where v = (v1 · · · vr) ∈ Yr and z = (z1 · · · zr) ∈ Yr, and weight function W : E → R given by:

∀(v, z) ∈ E, W((v, z)) , αv . (74)

This graph encodes all the information required to compute the cyclic potential of any given string. For instance,
each vertex of Gr(w) has outdegree 3, and transitioning between these vertices via the directed edges can be
equivalently construed as sliding an r-length window along a string. Indeed, any path v1 → v2 → · · · → vk−1 →
vk on this graph corresponds to successively visiting all possible r-length sub-strings of the associated string
((v1)1 (v2)1 · · · (vk−1)1 (vk)1 · · · (vk)r) ∈ Yr+k−1, where (vi)j ∈ Y denotes the jth letter in the ith sub-string
vi ∈ Yr for i ∈ {1, . . . , k} and j ∈ {1, . . . , r}. In fact, it is straightforward to verify that Gr(w) is strongly connected,
because we can reach any vertex (or basis clause) from any other vertex via some sequence of intermediate letters
in Y . Furthermore, the coefficients of w inherently assign weights to each vertex of Gr(w), and we let each directed
edge of Gr(w) inherit the weight associated with its source vertex. So, for example, for the aforementioned path
v1 → v2 → · · · → vk−1 → vk, the sum of the weights along the edges of this path is equal to αv1 + · · ·+ αvk−1

.
This equivalence can be used to capture the cyclic potentials of general strings. The proposition below rigorizes
these intuitions, and conveys equivalent characterizations of w'c 0 and w�c 0.

Proposition 8 (Graph Theoretic Characterizations of 'c and �c ). For any counting form w with pure rank r, the
following are true:

1) w'c 0 if and only if all cycles in the corresponding graph Gr(w) have zero total weight, where the total
weight of any path in Gr(w) is given by the sum of the weights of the edges on the path.

14Here, the notation for an edge (v, z) ∈ Yr×Yr should not be confused with the notation for concatenation of the strings v and z; indeed,
the correct meaning of (v, z) should be clear from context in the sequel.
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2) w�c 0 (i.e. w is cyclically non-negative) if and only if the corresponding graph Gr(w) does not contain any
negative cycles (i.e. cycles with negative total weight).15

Proof.
We only prove part 2, because the proof of part 1 follows mutatis mutandis. To prove the forward direction of part
2, assume that w�c 0. Suppose further for the sake of contradiction that there exists a negative cycle v0 → v1 →
· · · → vm−1 → v0 in Gr(w), which has m ∈ N\{0} edges. (Note that the vertices v1, . . . , vm−1 are distinct and not
equal to v0, and the case m = 1 corresponds to a self-loop v0 → v0). Let ỹ =

(
(v0)0 · · · (vm−1)0

)
∈ Ym, where

(vi)0 is the first letter of vi for all i ∈ [k], and construct the associated string:

y = (ỹ, . . . , ỹ)︸ ︷︷ ︸
r times

∈ Yrm

which concatenates ỹ with itself r times. (This concatenation process ensures that the length of y is at least r, so
that its cyclic potential can be non-zero.) The non-negative cyclic potential of y, w[y], is given by:

0 ≤ w[y] =
∑
v∈Yr

αv

m−1∑
i=0

r1{vi = v}

= r
m−1∑
i=0

αvi

= r

m−1∑
i=0

W
((
vi, v(i+1)m

))
︸ ︷︷ ︸

total weight of cycle
v0→v1→···→vm−1→v0

where the first equality uses (72), Definition 5, and the construction of y, the second equality follows from swapping
the order of summations, and the third equality uses (74). This contradicts our assumption that v0 → v1 → · · · →
vm−1 → v0 is a negative cycle. Hence, Gr(w) does not contain any negative cycles.

To prove the converse direction of part 2, assume that Gr(w) does not contain any negative cycles. This implies
that Gr(w) does not contain any negative circuits. To prove this, suppose for the sake of contradiction that Gr(w)
contains a circuit starting and ending at the vertex v1 with negative total weight. Then, there exists a vertex v2 6= v1
in this circuit that is visited at least twice. (If no such v2 exists, then this circuit must be a cycle and its total weight
cannot be negative.) So, we can decompose this circuit into a path from v1 to v2, followed by a circuit from v2
to itself, followed by another path from v2 back to v1. This decomposition yields two shorter circuits, namely, one
circuit from v1 to itself via v2, and another circuit from v2 to itself. Moreover, at least one of these shorter circuits
must have negative total weight (since the larger circuit has negative total weight). By recursively decomposing
negative circuits and obtaining smaller negative circuits, we will eventually obtain a negative cycle. This yields a
contradiction, and Gr(w) must not have had any negative circuits.

Now consider any string y = (y0 · · · yk−1) ∈ Yk for any fixed k ≥ r, and construct the associated circuit
v0 → v1 → · · · → vk−1 → v0, where vi =

(
y(i)k · · · y(i+r−1)k

)
for all i ∈ [k]. It is straightforward to verify that

the edges of this circuit exist in Gr(w). Then, using essentially the same argument as before, the cyclic potential
of y, w[y], is non-negative, because:

w[y] =
∑
v∈Yr

αv

k−1∑
i=0

1
{(
y(i)k · · · y(i+r−1)k

)
= v
}

=

k−1∑
i=0

αvi

=

k−1∑
i=0

W
((
vi, v(i+1)k

))
︸ ︷︷ ︸

total weight of circuit
v0→v1→···→vk−1→v0

15In this paper, we refer to directed paths that begin and end at the same vertex as (directed) circuits, and we refer to circuits with no repeated
vertices or edges as (directed) cycles.
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≥ 0

where, as before, the first equality uses (72) and Definition 5, the second equality follows from swapping the order
of summations, the third equality uses (74), and the final inequality holds because Gr(w) does not contain any
negative circuits. Therefore, we obtain that w�c 0 using Definition 6. This completes the proof. �

Several remarks are in order at this point. Firstly, as explained after Theorem 4, to check whether a general
counting form w with rank s ≤ r satisfies w�c 0 or w'c 0, we can first construct an equivalent purified counting
form w̃ with pure rank r, and then apply Proposition 8 to w̃. Furthermore, to test whether w1�c w2 (respectively
w1'c w2) for two counting forms with rank at most r, we can simply test for w1 − w2�c 0 (respectively w1 −
w2'c 0).

Secondly, it is worth mentioning that the graph Gr(w) has three vertices with self-loops: all zeros (0 · · · 0), all
ones (1 · · · 1), and all u’s (u · · ·u). Since we will only test cyclic non-negativity of u-only counting forms w, the
self-loop edges on (0 · · · 0) and (1 · · · 1) always get weights of 0, and can never contribute to negative cycles. On
the other hand, part 2 of Proposition 8 illustrates that a necessary condition for w�c 0 is that the weight of the
self-loop edge on (u · · ·u) is non-negative, i.e. if the weight of the self-loop edge on (u · · ·u) is negative, then w is
not cyclically non-negative. Hence, when verifying whether a candidate u-only counting form wδ with rank r − 1
satisfies (69) and (70) for fixed values of δ ∈

(
0, 12
)
, the coefficients associated with the basis clause {u · · ·u} in

purified versions of both wδ−E(wδ) and wδ−C{u} must be non-negative (where wδ−E(wδ) is also u-only—see
the discussion after Definition 3).

Lastly, we remark that the condition in part 2 of Proposition 8, which is the more important part of the proposition
since we seek to verify (69) and (70), can be tested using several well-known graph shortest path algorithms. For
example, we can utilize the Bellman-Ford algorithm to detect negative cycles in Gr(w) that are reachable from a
certain fixed source vertex, cf. [54, Section 24.1]. In fact, since Gr(w) is a strongly connected graph, we can choose
to compute shortest paths from any initial vertex of Gr(w) in order to detect negative cycles in the entire graph.16 For
completeness, we refer readers to Algorithm 1 in appendix D, which provides pseudocode for a Bellman-Ford-based
algorithm to determine the cyclic non-negativity of u-only counting forms.

D. Proof of Theorem 3

At noted earlier, we are ready to establish Theorem 3 by tracing back through some of the results and arguments
in this section. Since most of the arguments have already been carried out rigorously, we will omit many details.

Proof of Theorem 3. Fix any noise level δ ∈
(
0, 12
)
, and assume that there exists r ≥ 2 (with respect to which

both � and �c are defined) and a u-only counting form wδ with rank r − 1 that satisfies (69) and (70). Then,
using Proposition 7, this u-only counting form wδ also satisfies (66) and (67) (where we also utilize the fact that
E(wδ) is a u-only counting form with rank r).

Now construct the stopping time:

T , inf{k ∈ N\[r − 1] : Yk,0, . . . , Yk,r−1, Yk−r+1, . . . , Yk,k ∈ {0, 1}}

with respect to the filtration {Fk : k ∈ N}. It is straightforward to verify that P(T < +∞) = 1 because, as discussed
after Definition 2 in subsection V-B, the event A in (56) occurs with probability 1 due to the second Borel-Cantelli
lemma, and A ⊆ {T < +∞}. Hence, the events {T = m} for m ≥ r − 1 partition the underlying sample space
(without loss of generality). Let us condition on any one such event {T = m} ∈ Fm, i.e., if the underlying
probability space is (Ω,F ,P), let us operate in the smaller conditional probability space ({T = m},F ′,Pm)
with sample space {T = m}, σ-algebra F ′ = {A ∩ {T = m} : A ∈ F}, and conditional probability measure
Pm(·) = P(·∩{T = m})/P(T = m). This means that for all k ≥ m, Yk,0, . . . , Yk,r−1, Yk,k−r+1, . . . , Yk,k ∈ {0, 1}
Pm-almost surely (due to (44) and (45)). Furthermore, define the filtration {F ′k : k ≥ m} with σ-algebras F ′k =
{A ∩ {T = m} : A ∈ Fk} ⊆ F ′.

Then, as explained after Definition 2 and Lemma 5 in subsection V-B, we obtain that wδ : Y∗ → R is a
superharmonic potential function that satisfies the conditions in (57), (58), and (59) mutatis mutandis:

∀k ≥ m, Em[|wδ(Yk)|] < +∞ ,

16For directed graphs that are not strongly connected, one could either run the Bellman-Ford algorithm several times with different choices
of source vertices, or run the Floyd-Warshall algorithm, which can detect negative cycles reachable from any source vertex in the graph, cf.
[54, Section 25.2].
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∀k ≥ m, ∀y ∈ Yk+1 ∩ Y∗r , Em[wδ(Yk+1)|Yk = y] ≤ wδ(y) ,

∀y ∈ Y∗r , wδ(y) ≥ C {u}(y) ,

where Em[·] denotes the expectation with respect to Pm, and the second inequality uses Proposition 5, whose proof
holds for Em in place of E, because Yk+1 is conditionally independent of the event {T = m} given Yk for k ≥ m
(in the original probability space). Moreover, since {Yk : k ≥ m} remains a Markov chain adapted to {F ′k : k ≥ m}
in the conditional probability space, we have:

∀k ≥ m, Em[wδ(Yk+1)|F ′k] = Em[wδ(Yk+1)|Yk] ≤ wδ(Yk) Pm-almost surely ,

i.e. {wδ(Yk) : k ≥ m} is a supermartingale adapted to {F ′k : k ≥ m}. Equivalently, within our conditional
probability space, we have shown that wδ : Y∗ → R is a superharmonic function that fulfills the two requirements
delineated in Conjecture 2 (mutatis mutandis) for the fixed value of δ under consideration.

Therefore, using the argument in the proof of Proposition 4 mutatis mutandis, we get:

Pm
(

lim
k→∞

Nk = 0

)
= P

(
lim
k→∞

Nk = 0

∣∣∣∣T = m

)
= 1

where the random variables Nk are defined in (46). Since m ≥ r−1 was arbitrary, taking expectations with respect
to the law of T yields that limk→∞Nk = 0 P-almost surely. Finally, employing Lemma 4 shows that Conjecture
1 is true for the noise level δ. This completes the proof. �

E. Linear Programming Criteria

Returning back to our discussion of counting forms, it is well-known that the graph theoretic task of computing
shortest paths from a single source vertex, or detecting negative cycles reachable from this vertex, can also be
solved using linear programming feasibility problems, cf. [54, Sections 24.4 and 29]. Therefore, in this subsection,
we will present an efficient linear programming formulation that ensures cyclic non-negativity. This formulation
can be employed to numerically compute u-only counting forms wδ (e.g. with rank r − 1 = 3) that satisfy (69)
and (70) for different values of δ ∈

(
0, 12
)

as in Table I.
Consider any counting form w with pure rank r defined by the formal sum (72), and let Gr(w) be its corresponding

weighted directed graph with vertex set Yr, edge set E given by (73), and weight function W : E → R given by
(74). Define the input and output incidence matrices, Bin ∈ {0, 1}3

r×3r+1

and Bout ∈ {0, 1}3
r×3r+1

, respectively,
of Gr(w) entry-wise as follows:

∀v ∈ Yr, ∀e ∈ E, [Bin]v,e , 1{v has incoming edge e} (75)

∀v ∈ Yr, ∀e ∈ E, [Bout]v,e , 1{v has outgoing edge e} (76)

where the rows are indexed by vertices in Yr, and the columns are indexed by edges in E. (Note that a self-loop
is considered both an incoming and an outgoing edge.) Using Bin and Bout, we can define the oriented incidence
matrix B ∈ {0, 1}3r×3r+1

of Gr(w) as:
B , Bout −Bin (77)

which is a fundamental matrix utilized in algebraic graph theory to study the homology of graphs.17 The kernel (or
nullspace) of B, denoted ker(B) ⊆ R3r+1

, is the so called flow space of the graph Gr(w), which is (informally)
the linear span of all cycles of Gr(w), cf. [55, Section 14.2]. Indeed, let us encode any path in Gr(w) as a column
vector x ∈ N3r+1

(indexed by edges in E) whose eth element xe ≥ 0 denotes the number of times the edge e ∈ E
was traversed by the path. Then, we have the following lemma from [55, Section 14.2].

Lemma 6 (Circuits and Flow Space [55, Theorem 14.2.2]). If a vector x ∈ N3r+1

encodes a circuit in Gr(w), then
x ∈ ker(B), i.e. x is a flow vector.

Using Lemma 6 and Proposition 8, we will present sufficient conditions for cyclic equivalence and non-negativity
in terms of matrix relations and linear programming. To this end, as shown in appendix C, let us represent the
counting form w using its column vector of coefficients α = (αv : v ∈ Yr) = ζr(w) ∈ R3r akin to (94). Note

17Indeed, such matrices define boundary operators in the study of abstract simplicial complices in algebraic topology. Moreover, the dual
Gramian matrix corresponding to the oriented incidence matrix of a directed simple graph is equal to the unnormalized Laplacian matrix of the
associated undirected graph obtained by removing edge orientations (see e.g. [55, Section 8.3]).
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that α is indexed by the vertices of Gr(w) consistently with B. The next proposition states our matrix and linear
programming based criteria.

Proposition 9 (Matrix and Linear Programming Criteria for 'c and �c ). Given any counting form w with pure
rank r and coefficients α = (αv : v ∈ Yr) ∈ R3r , the following are true:

1) If there exists a vector z ∈ R3r such that BTz = BT
outα, then w'c 0.

2) If there exists a vector z ∈ R3r such that BTz ≤ BT
outα entry-wise, then w�c 0.

Proof.
Part 1: First, observe that for any flow vector x ∈ N3r+1

that encodes a circuit in Gr(w), the bilinear form
αTBoutx is equal to the total weight of the circuit corresponding to x due to (74). (Note that there may be multiple
circuits with the same encoding x, but these circuits have the same total weight.) Now, suppose the edge weights
αTBout of Gr(w) live in the row space of B, or equivalently, suppose there exists z ∈ R3r such that BTz = BT

outα.
Then, for any circuit in Gr(w) encoded by the flow vector x ∈ N3r+1

, since x ∈ ker(B) by Lemma 6, the total
weight of the circuit is αTBoutx = zTBx = 0. So, using part 1 of Proposition 8, we have w'c 0. This proves
part 1.

Part 2: To prove part 2, consider the feasible integer LP:

L1 = min
x∈Z3r+1

:
Bx=0, x≥0

αTBoutx

where inequalities among vectors hold entry-wise. Note that the constraints of this integer LP ensure that the
minimization is over all non-negative integer-valued flow vectors x, which includes all flow vectors that encode
circuits in Gr(w) by Lemma 6. Moreover, when the flow vector x encodes a circuit, the objective function αTBoutx
is equal to the total weight of this encoded circuit. Thus, using part 2 of Proposition 8, if L1 = 0 then w�c 0
(where we use the fact that Gr(w) has no negative cycles if and only if it has no negative circuits—see the proof
of Proposition 8).18

We next relax the integer constraints of this integer LP and obtain the following feasible LP:

L2 = min
x∈R3r+1

:
Bx=0, x≥0

αTBoutx

which obviously satisfies L2 ≤ L1. It is straightforward to verify that the dual LP of this (primal) LP is the
feasibility problem (cf. [54, Section 29.4], [56, Chapter 1, Section 2]):

L3 = max
z∈R3r :

BTz≤BT
outα

0

where the dual variables z are indexed by the vertices in Yr. Using the duality theorem (see e.g. [56, Chapter 1,
Section 8], there are only two possibilities:

1) If there exists z ∈ R3r such that BTz ≤ BT
outα, then we have L1 = L2 = L3 = 0 (via strong duality).

2) Otherwise, we have L2 = −∞, i.e. the primal LP is unbounded.
This proves that if there exists z ∈ R3r such that BTz ≤ BT

outα, then w�c 0 as desired. �

It is worth briefly interpreting the sufficient condition in part 2 of Proposition 9. The result says that the counting
form w is cyclically non-negative, or equivalently, all circuits in Gr(w) have non-negative total weight, if the set
of edge weights BT

outα of Gr(w) can be decomposed as follows:

∃z ∈ R3r , ∃β ∈ R3r+1

, BT
outα = BTz + β and β ≥ 0 (78)

where the set of edge weights BTz lead to all circuits in Gr(w) having zero total weight (see part 1 of Proposition
9), and the set of edge weights β are entry-wise non-negative. On a separate note, it is also worth comparing part
1 of Proposition 9 with the converse direction of Theorem 4, because the two results are closely related.

18Notice further that, since the constraint set is invariant to scaling with non-negative integers, L1 < 0 implies L1 = −∞, i.e. if there exists
x ∈ Z3r+1

satisfying Bx = 0 and x ≥ 0 such that αTBoutx < 0, then the integer LP is unbounded. Similarly, L1 ≥ 0 implies L1 = 0,
because the zero vector is a feasible solution of the integer LP. Thus, there are only two possible values of L1, viz. L1 ∈ {0,−∞}.
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Using part 2 of Proposition 9, we now illustrate sufficient conditions for (69) and (70). Let us represent the
conditional expectation operator E from Definition 3 as the 3r × 3r−1 matrix Cr−1(δ) (for δ ∈

[
0, 12
]
) defined in

(98) in appendix C, and let Pr−1 be the 3r × 3r−1 “purification matrix” defined in (101) in appendix C. Note that
each u-only counting form with pure rank s ≤ r can be represented by a column vector of coefficients in R3s using
the map ζs(·) as shown in (94). So, Cr−1(δ) and Pr−1 map coefficient vectors of u-only counting forms with pure
rank r− 1 into coefficient vectors of u-only counting forms with pure rank r (see e.g. (96) in appendix C). In fact,
the output vectors of Pr−1 are cyclically equivalent to the corresponding input vectors (as discussed in appendix
C). We obviously assume that the entries of different coefficient vectors, and the rows and columns of Cr−1(δ)
and Pr−1, are all indexed consistently by the sets Ys for appropriate choices of s. (We remark that the indexing
in (95) in appendix C endows the strings in Ys for any s ≤ r with a lexicographic ordering,19 which is useful for
computing purposes.) Furthermore, define the vector of coefficients ψ = (ψv : v ∈ Yr) ∈ R3r of a purified version
of the basis clause {u}:

∀v = (v1 · · · vr) ∈ Yr, ψv , 1{v1 = u} . (79)

It is straightforward to verify that {u}'c

∑
v∈Yr ψv{v} (see Lemma 5 and the discussion preceding Theorem 4).

The ensuing proposition portrays sufficient conditions for (69) and (70) that can be tested using an LP.

Proposition 10 (Linear Programming Criterion for Satisfying (69) and (70)). Fix any δ ∈
(
0, 12
)
, and construct

the partitioned matrices:

ξ ,
[
0T
∣∣ψTBout

]T ∈ R2(3r+1) (80)

A(δ) ,

[
BT

out (Pr−1 −Cr−1(δ)) BT 0

BT
outPr−1 0 BT

]
∈ R2(3r+1)×(3r−1+2(3r)) (81)

where 0 denotes the zero vector or matrix of appropriate dimension (with abuse of notation). Consider the following
linear programming feasibility problem:

∃φ(δ) =
[
α(δ)T

∣∣ z(δ)T]T ∈R3r−1+2(3r) with α(δ) =
(
αv(δ) : v ∈ Yr−1

)
∈ R3r−1

such that A(δ)φ(δ) ≥ ξ
and αv(δ) = 0 for all v ∈ {0, 1}r−1 .

(82)

If this LP in (82) has a feasible solution φ(δ) = φ∗(δ) =
[
α∗(δ)T

∣∣ z∗(δ)T]T ∈ R3r−1+2(3r), then the corresponding
u-only counting form w∗δ with pure rank r − 1:

w∗δ =
∑

v∈Yr−1

α∗v(δ){v} (83)

satisfies both (69) and (70) with C = C(δ) = 1. Furthermore, the u-only counting form w∗δ satisfies both (66) and
(67) with C = 1.

Proof. We seek to construct a u-only counting form wδ with pure rank r − 1 such that (69) and (70) hold, i.e.
wδ − E(wδ)�c 0 and wδ −C{u}�c 0 for some constant C = C(δ) > 0. Let α(δ) = (αv(δ) : v ∈ Yr−1) ∈ R3r−1

denote the vector of coefficients of wδ . Using part 2 of Proposition 9, a sufficient condition for (69) is:

∃ z1(δ) ∈ R3r , BTz1(δ) ≤ BT
out (Pr−1 −Cr−1(δ))α(δ) (84)

because
(
Pr−1−Cr−1(δ)

)
α(δ) ∈ R3r is the vector of coefficients corresponding to a purified version of wδ−E(wδ).

Similarly, using part 2 of Proposition 9, a sufficient condition for (70) is:

∃C = C(δ) > 0, ∃ z2(δ) ∈ R3r , BTz2(δ) ≤ BT
out (Pr−1α(δ)− Cψ) (85)

because Pr−1α(δ) − Cψ ∈ R3r is the vector of coefficients corresponding to a purified version of wδ − C{u}.
Since our goal is to find a u-only counting form wδ , or equivalently, a vector of coefficients α(δ), that satisfies (84)
and (85), the vector α(δ) is also unknown in (84) and (85). Hence, we can set C = 1 without loss of generality in

19Specifically, we index the entries of vectors in R3s , or the rows and columns of appropriately sized matrices, using [3s] and assume the
following bijective correspondence between [3s] and strings (or basis clauses) in Ys: For each v′ ∈ [3s], we first write v′ in its s-length ternary
representation, and then replace each 2 in this representation with a u. The resulting string v belongs to Ys, and defines the correspondence
[3s] 3 v′ ↔ v ∈ Ys.
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(85), because we can multiply both sides of (84) and (85) by C−1 and absorb this multiplicative constant into the
unknown vectors z1(δ), z2(δ), and α(δ).

Next, construct the block vector:

φ(δ) ,
[
α(δ)T

∣∣−z1(δ)T
∣∣−z2(δ)T

]T ∈ R3r−1+2(3r) ,

the block vector ξ ∈ R2(3r+1) in (80), and the block matrix A(δ) ∈ R2(3r+1)×(3r−1+2(3r)) in (81). Then, it is
straightforward to verify that for any fixed vector α(δ), the sufficient conditions (84) and (85) with C = 1 can be
simultaneously expressed as:

∃ z1(δ), z2(δ) ∈ R3r , A(δ)φ(δ) ≥ ξ .

Moreover, since we seek to construct an α(δ) satisfying this condition, our true objective is to verify the following
sufficient condition:

∃α(δ) ∈ R3r−1

, ∃ z1(δ), z2(δ) ∈ R3r , A(δ)φ(δ) ≥ ξ

where α(δ) additionally satisfies the constraints:

∀v ∈ {0, 1}r−1, αv(δ) = 0

because it must correspond to a u-only counting form wδ . If these two sets of constraints hold for some feasible
α(δ) = α∗(δ) ∈ R3r−1

, then the u-only counting form w∗δ defined by the coefficients α∗(δ) satisfies both (69) and
(70) with C = 1, which implies, via Proposition 7, that w∗δ also satisfies both (66) and (67) with C = 1 (see the
discussion following Proposition 7). This completes the proof. �

Proposition 10 can be exploited to computationally find counting forms that satisfy the conditions of Theorem
3. As noted in subsection II-B, the MATLAB and CVX based simulation results in Table I solve the LP in (82)
of Proposition 10 to numerically construct u-only counting forms w∗δ with pure rank 3 that satisfy (69) and (70)
with C = 1. In particular, for any noise level δ ∈

(
0, 12
)
, the constraint matrices (80) and (81) can be explicitly

written out (as expounded earlier), and the corresponding feasible vectors of coefficients α∗(δ) ∈ R27 that solve
the LP in (82) (with reasonably small `1-norm), depicted in Table I, define u-only counting forms w∗δ with pure
rank 3 via (83). Furthermore, inspired by the reasons outlined at the end of subsection V-B, we set r = 4 for these
simulations; indeed, the proof of ergodicity of the 1D PCA with NAND gates also uses counting forms with rank
3 [39, Section 2.2].

To conclude this section, we make a few other noteworthy remarks. As we indicated earlier in subsection II-B,
Theorem 3 and simulations based on the other arguments in this section yield non-rigorous computer-assisted proofs
of the impossibility of broadcasting on NAND 2D regular grids. Indeed, for every fixed noise level δ ∈

(
0, 12
)

where
we can compute a feasible solution α∗(δ) of the LP in (82), such as the values of δ that feature in Table I, Proposition
10 portrays that we can obtain a u-only counting form w∗δ with pure rank 3 that satisfies both (69) and (70) with
C = 1, and Theorem 3 then implies that Conjecture 1 is true for this δ. We emphasize that the computer-assisted
part of this argument is not rigorous without further careful analysis, because we use floating-point arithmetic to
solve the LP in (82). If we could instead solve an integer LP akin to (82) (when δ is rational) or utilize interval
arithmetic, then our feasible solution α∗(δ) would be deemed rigorous, and the discussion in section V would truly
yield a computer-assisted proof.

Nevertheless, even with a rigorous computational technique, the above approach only demonstrates the im-
possibility of broadcasting for specific values of δ. So, while this approach lends credence to our development of
counting forms as a framework for constructing superharmonic potential functions, it does not enable us to establish
Conjecture 1 for all δ ∈

(
0, 12
)
. A promising future direction to remedy this issue is to develop a more sophisticated

semidefinite programming formulation for the problem of constructing u-only counting forms satisfying (69) and
(70) for all δ ∈

(
0, 12
)
. For instance, consider the key constraint A(δ)φ(δ) ≥ ξ in the LP in (82) without fixing δ.

Let us restrict the vector φ(δ) in (82) to be a polynomial vector in δ with some (sufficiently large) fixed degree and
unknown coefficients. Then, since Cr−1(δ) is a known polynomial matrix in δ with degree 2(r − 1) (see (99) in
appendix C), the constraint A(δ)φ(δ) ≥ ξ is equivalent to simultaneously ensuring the non-negativity of a collection
of univariate polynomials in δ, whose coefficients are affine functions of the unknown coefficients of φ(δ), over the
interval

[
0, 12
]
. Since the Markov-Lukács theorem provides well-known necessary and sufficient conditions for the

non-negativity of univariate polynomials in terms of sum of squares (SOS) characterizations [57], [58] (also see [59,
Theorems 1.21.1 and 1.21.2]), we can represent the aforementioned simultaneous non-negativity of polynomials in
δ over

[
0, 12
]

using an SOS program. Such SOS programs can be reformulated as semidefinite programs (SDPs)
and computationally solved using standard optimization tools, cf. [60], [61]. Hence, one could computationally
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establish the existence of u-only counting forms satisfying (69) and (70) for all δ ∈
(
0, 12
)

using a single SDP.
This, in conjunction with rigorous interval arithmetic analysis, could be an avenue for proving Conjecture 1 in its
entirety. (Additionally, we remark that this connection between SDPs and the existence of pertinent counting forms
is somewhat natural, because SDPs have been very useful in constructing Lyapunov functions in many control
theoretic problems, and there are limpid parallels between superharmonic functions and Lyapunov functions as
discussed earlier.)

Lastly, we reiterate that while subsection II-B and section V present a detailed martingale-based approach to
prove the impossibility of broadcasting on the NAND 2D regular grid, they also provide a general program for
establishing the impossibility of broadcasting on 2D regular grids with other Boolean processing functions. Indeed,
the arguments in section V can be easily carried out for other processing functions, such as AND or XOR, with
minor cosmetic changes, e.g. the elements of the matrix Cr−1(δ) representing E need to be modified accordingly.

VI. CONCLUSION

In closing, we briefly summarize the main contributions of this paper. Propelled by the positive rates conjecture
for 1D PCA, we conjectured in subsection I-A that broadcasting is impossible on 2D regular grids when all vertices
with two inputs use a common Boolean processing function. We made considerable progress towards establishing
this conjecture, and proved impossibility results for 2D regular grids with all AND and all XOR processing functions
in Theorems 1 and 2, respectively. Specifically, our proof for the AND 2D regular grid utilized phase transition
results concerning oriented bond percolation in 2D lattices, and our proof for the XOR 2D regular grid relied on
analyzing the equivalent problem of decoding the first bit of a codeword drawn uniformly from of a linear code.
Then, we showed in Theorem 3 that an impossibility result for 2D regular grids with all NAND processing functions
follows from the existence of certain structured supermartingales. Moreover, in much of section V, we developed
the notion of counting forms and elucidated graph theoretic and linear programming based criteria to help construct
the desired superharmonic potential functions of Theorem 3. These ideas were utilized to depict several numerical
examples of such potential functions in Table I. Finally, we list some fruitful directions of future research below:

1) The program in subsection II-B and section V can be rigorously executed to prove the impossibility of
broadcasting on the NAND 2D regular grid for all δ ∈

(
0, 12
)
. In particular, our suggestion in subsection V-E

of using SDPs to obtain a computer-assisted proof could be pursued.
2) In order to completely resolve the 2D version of our conjecture in subsection I-A, the impossibility of

broadcasting on 2D regular grids with IMP processing functions must also be established (see (6) in subsection
II-B). This is another salient open problem.

3) In order to prove the 3D part of our broader conjecture in subsection I-A that broadcasting is feasible in 3
or more dimensions for sufficiently low noise levels δ, broadcasting on the majority 3D regular grid can be
examined. As indicated by Proposition 3 and discussed in subsection II-D, it may be possible to draw on
ideas from the analysis of Toom’s NEC rule in [36] and [44] to establish the possibility of broadcasting on
the majority 3D regular grid.

4) Much like the correspondence between our 2D regular grid model with NAND processing functions and the
1D PCA with NAND gates in [39], we can define a 2D 45◦ grid model with 3-input majority processing
functions corresponding to Gray’s 1D PCA with 3-input majority gates [25, Example 5]. In particular, a 2D
45◦ grid model has Lk = 2k + 1 vertices at each level k ∈ N, and every vertex has three outgoing edges
that have 45◦ separation between them.20 Furthermore, all vertices in the 2D 45◦ grid model which are at
least two positions away from the boundary have three incoming edges. Although Gray’s proof sketch of the
ergodicity of the 1D PCA with 3-input majority gates in [25, Section 3] shows exponentially fast convergence
for sufficiently small noise levels, it includes noise on the vertices (rather than the edges) and obviously
does not account for the boundary effects of 2D grid models. It is therefore an interesting future endeavor
to study broadcasting in the 2D 45◦ grid model with 3-input majority processing functions by building upon
the reasoning in [25, Section 3].

APPENDIX A
PROOF OF PROPOSITION 3

Proof. To prove this proposition, we will perform a simple projection argument. Specifically, for any k ∈ N, we
will project any vertex v = (v1, v2, v3) ∈ Sk of the majority 3D regular grid onto its first two coordinates to obtain

20In contrast, every vertex in the 2D regular grid model has two outgoing edges that have 90◦ separation between them (see Figure 1).
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a site v 7→ (v1, v2) ∈ Ŝk at time k of Toom’s 2D PCA with boundary conditions. (Note that this projection map is
bijective, because for any site x = (x1, x2) ∈ Ŝk at time k ∈ N of Toom’s 2D PCA with boundary conditions, we can
recover the corresponding vertex of the majority 3D regular grid via the affine map x 7→ (x1, x2, k−x1−x2) ∈ Sk.)

To this end, let us first couple the i.i.d. Bernoulli(δ) random variables {Zv,i : v ∈ N3\{0}, i ∈ {1, 2, 3}} with
the i.i.d. Bernoulli(δ) random variables {Zk,x,v : k ∈ N, x ∈ Ŝk+1, v ∈ N} such that:

∀v = (v1, v2, v3) ∈ N3\{0}, Zv,i = Zv1+v2+v3−1,(v1,v2),−ei for i ∈ {1, 2} ,
and Zv,3 = Zv1+v2+v3−1,(v1,v2),0 ,

(86)

or equivalently:

∀k ∈ N, ∀x = (x1, x2) ∈ Ŝk+1, Zk,x,−ei = Z(x1,x2,k+1−x2−x2),i for i ∈ {1, 2} ,
and Zk,x,0 = Z(x1,x2,k+1−x2−x2),3 ,

almost surely. The rest of the proof proceeds by strong induction.
Notice that the base case, X0 = ξ0(0) almost surely, holds by assumption. Suppose further that the inductive

hypothesis:

∀v = (v1, v2, v3) ∈
k⋃

m=0

Sm, Xv = ξv1+v2+v3((v1, v2)) almost surely (87)

holds for some k ∈ N. Now consider any vertex v = (v1, v2, v3) ∈ Sk+1. There are several cases for us to verify:

1) If v1 = v2 = 0 and v3 = k + 1, then we have almost surely:

Xv = Xv−e3 ⊕ Zv,3 = ξk(0)⊕ Zk,0,0 = ξk+1(0)

using (10), (87), (86), and (13).
2) If there exists i ∈ {1, 2} such that vi = k + 1, then we have almost surely:

Xv = Xv−ei ⊕ Zv,i = ξk(kei)⊕ Zk,(k+1)ei,−ei = ξk+1((v1, v2))

using (10), (87), (86), and (14).
3) If there exists i ∈ {1, 2} such that vi + v3 = k + 1, then we have almost surely:

Xv =

{
Xv−e3 ⊕ Zv,3 = ξk((v1, v2))⊕ Zk,(v1,v2),0 , with probability 1

2

Xv−ei ⊕ Zv,i = ξk((v1, v2)− ei)⊕ Zk,(v1,v2),−ei , with probability 1
2

= ξk+1((v1, v2))

using (11), (87), (86), and (15).
4) If v1 + v2 = k + 1 and v3 = 0, then we have almost surely:

Xv =

{
Xv−e1 ⊕ Zv,1 = ξk((v1 − 1, v2))⊕ Zk,(v1,v2),−e1 , with probability 1

2

Xv−e2 ⊕ Zv,2 = ξk((v1, v2 − 1))⊕ Zk,(v1,v2),−e2 , with probability 1
2

= ξk+1((v1, v2))

using (11), (87), (86), and (16).
5) If v1, v2, v3 > 0, then we have almost surely:

Xv = majority(Xv−e1 ⊕ Zv,1, Xv−e2 ⊕ Zv,2, Xv−e3 ⊕ Zv,3)

= majority
(
ξk((v1 − 1, v2))⊕ Zk,(v1,v2),−e1 , ξk((v1, v2 − 1))⊕ Zk,(v1,v2),−e2 ,
ξk((v1, v2))⊕ Zk,(v1,v2),0

)
= ξk+1((v1, v2))

using (12), (87), (86), and (17).

This shows that for every v = (v1, v2, v3) ∈ Sk+1, we have Xv = ξk+1((v1, v2)) almost surely. Therefore, our
coupling of the i.i.d. Bernoulli(δ) random variables in (86) establishes the proposition statement by induction. �
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APPENDIX B
PROOF OF THEOREM 4

We will prove Theorem 4 in this appendix. Throughout section V, we intentionally circumvented an exposition of
the algebraic topological perspective of counting forms since it does not help us establish Theorem 3 or perform the
simulations illustrated in Table I. However, in order to derive Theorem 4 and elucidate the elegant intuition behind
the counting forms {ρv : v ∈ Ys−1} in (71), we have to introduce some basic ideas from algebraic graph theory.
Although some of these ideas can be found in or derived from standard expositions, cf. [55], [62], we develop the
details here in a manner that is directly relevant to us.

Consider a strongly connected finite directed graph G = (V, E) with vertex set V and edge set E. (Note that G
has no isolated vertices, but G may contain self-loop edges.) Given G, we begin with a list of useful definitions:

1) For any codomain S ⊆ R, we refer to a map f : E → S as an S-edge function. Moreover, we refer to R-edge
functions as simply edge functions.

2) An edge function f is said to be closed if for every directed circuit (e1, . . . , en) ∈ En in G,21 we have:
n∑
k=1

f(ek) = 0 , (88)

where the length n ∈ N of the circuit is arbitrary.
3) For the fields S = R and S = Q, the set of all S-edge functions forms an inner product space over S with

inner product given by:
〈f, g〉 ,

∑
e∈E

f(e)g(e) (89)

for all pairs of S-edge functions f, g.
4) The divergence of an edge function f at a vertex v ∈ V is defined as:

(div f)(v) ,
∑
e∈E:

v has incoming edge e

f(e) −
∑
e′∈E:

v has outgoing edge e′

f(e′) . (90)

Furthermore, we write div f = 0 to denote that (div f)(v) = 0 for all vertices v ∈ V .
5) For every vertex v ∈ V , we define an associated Z-edge function %v as follows:

∀e ∈ E, %v(e) , 1{v has incoming edge e} − 1{v has outgoing edge e} . (91)

These edge functions are actually gradients of characteristic (or indicator) functions of vertices in V . They
can also be perceived as rows of an oriented incidence matrix of G.

6) Lastly, for every directed circuit H = (e1, . . . , en) ∈ En in G (where n ∈ N is arbitrary), we define an
associated N-edge function fH as follows:

∀e ∈ E, fH(e) ,
n∑
k=1

1{ek = e} . (92)

fH encodes the circuit H by counting the number of times each edge is traversed. (This parallels the encoding
used in Lemma 6.) Moreover, since the number of incoming edges equals the number of outgoing edges for
every vertex in a circuit, it is straightforward to verify that div fH = 0.

We will now state the result that includes Theorem 4 as a special case (the reduction is given at the end of this
appendix).

Theorem 4B (Closed R-Edge Functions). Given any strongly connected finite directed graph G, an edge function
f is closed if and only if there exist coefficients αv ∈ R for v ∈ V such that:

f =
∑
v∈V

αv%v .

The dimension of the set of closed edge functions equals |V| − 1.

21Note that the source vertex of ei+1 is equal to the destination vertex of ei for all i ∈ {1, . . . , n− 1}, and the source vertex of e1 is equal
to the destination vertex of en.
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Proof. We are trying to prove that the image of the linear map G : RV → RE given by:

G(α) ,
∑
v∈V

αv%v

coincides with the kernel of the map H : RE → Rm mapping an edge function to its evaluation on each of (finitely
many, m) circuits in G. Since R can be seen as an (infinite dimensional) Q-vector space, it is a flat Q-module over
Q. Thus, by tensoring the exact sequence formed by G,H with R, we see that equality of image of G with the
kernel of H can be checked over Q. From now on we restrict to Q-edge functions.

Denote:
V1 = span({%v : v ∈ V }) , V2 = {f : div f = 0} .

We claim that:
V ⊥1 = V2 , (93)

or f ∈ V1 if and only if 〈f, g〉 = 0 for all g ∈ V2. Indeed, from the definition:

(div g)(v) = 0 ⇐⇒ 〈%v, g〉 = 0 .

In view of (93) we see that the statement of the theorem (over Q) is equivalent to the following claim: A Q-edge
function g satisfies div g = 0 if and only if g is a finite linear combination of {fH : H is a circuit in G} with
rational coefficients. One direction is clear: div fH = 0 for any circuit H in G since every vertex has the same
number of incoming and outgoing edges in a circuit.

For the converse direction, first we consider a non-zero N-edge function g satisfying div g = 0. Take any edge
e1 ∈ E such that g(e1) > 0, and let e1 have destination vertex v ∈ V . Then, since (div g)(v) = 0, there exists an
edge e2 ∈ E with source vertex v such that g(e2) > 0. We can repeatedly generate new edges e ∈ E with g(e) > 0
using this argument until we revisit an already visited vertex. (This must happen because G is finite.) This yields a
directed cycle H = (e′1, . . . , e

′
n) ∈ En with some length n ∈ N such that g(e′i) > 0 for all i ∈ {1, . . . , n}. Notice

that g − fH is also an N-edge function. So, we can iterate this procedure. This shows that any N-edge function g
satisfies div g = 0 if and only if g can be written as:

g =
∑

directed cycles H

βHfH

for some choice of coefficients βH ∈ N, where the sum is over all directed cycles of G.22

Now suppose that g is a Q-edge function satisfying div g = 0 (as in the above claim). Let J be a directed circuit
passing through every edge of G, which exists because G is strongly connected, and let fJ be its corresponding N-
edge function. Then, since div fJ = 0 and fJ(e) > 0 for all e ∈ E, for some sufficiently large integers k1, k2 ∈ N,
g′ = k1g + k2fJ is an N-edge function satisfying div g′ = 0. Thus, g′ can be represented as:

k1g + k2fJ = g′ =
∑

directed cycles H

βHfH

for some choice of coefficients βH ∈ N, as argued above. This implies that g is a finite linear combination of
{fH : H is a circuit in G} with rational coefficients. This establishes the claim.

The statement about dimension follows from [55, Theorem 8.3.1], which shows dimV1 = |V| − 1, after we use
the facts that G is strongly connected and that {%v : v ∈ V} define the rows of the oriented incidence matrix of G.
This completes the proof. �

Proof of Theorem 4. Akin to (72), consider any counting form w with pure rank s defined by the formal sum:

w =
∑
e∈Ys

αe{e}

with coefficients {αe ∈ R : e ∈ Ys}. Let G be the strongly connected directed graph with vertex set Ys−1
and directed edge set Ys, where any edge (v1 · · · vs) ∈ Ys has source vertex (v1 · · · vs−1) and destination vertex
(v2 · · · vs). Note that G has the same underlying structure as the graph constructed in subsection V-C, but it identifies

22This representation of g can be construed as the converse of Lemma 6, cf. [55, Theorem 14.2.2, Corollary 14.2.3].
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edges (rather than vertices) with basis clauses of rank s.23 Define the edge function f : Ys → R corresponding to
w such that:

∀e ∈ Ys, f(e) = αe .

By treating f as a weight function on the edges of G, the proof of Proposition 8 in subsection V-C, mutatis mutandis,
shows that w'c 0 if and only if f is closed. (We omit the details of this argument for brevity.) Hence, applying
Theorem 4B yields that w'c 0 if and only if f ∈ span({%v : v ∈ Ys−1}). Now, using the structure of G and the
definitions in (71) and (91), it is easy to see that for all v ∈ Ys−1, the Z-edge function −%v defines the coefficients
of the counting form ρv:

ρv = −
∑
e∈Ys

%v(e){e} .

Therefore, since f encodes the coefficients of w, w'c 0 if and only if w ∈ span({ρv : v ∈ Ys−1}). Lastly, by
Theorem 4B, we get that span({ρv : v ∈ Ys−1}) has dimension |Ys−1|−1 = 3s−1−1 (using (43)). This completes
the proof. �

APPENDIX C
NECESSARY CONDITIONS TO SATISFY (69) FOR SUFFICIENTLY SMALL NOISE

In this appendix, we consider the setting of sufficiently small noise δ > 0, which is intuitively the most challenging
regime to establish the impossibility of broadcasting in. In particular, we will computationally construct a u-only
counting form with rank 3 which provides evidence for the existence of u-only counting forms that satisfy the
supermartingale condition (69) for all sufficiently small δ > 0. (Note that we do not consider the constraint (70) in
this appendix.)

To present our computer-assisted construction, define the function T : Y → {0, 1, 2}, T (y) = 21{y = u} +
y1{y ∈ {0, 1}}, which changes u’s into 2’s. Moreover, for the linear subspaces of counting forms with pure rank
s ∈ N\{0}, define the ensuing maps that equivalently represent these counting forms as column vectors in R3s :

w =
∑
v∈Ys

αv{v} 7→ ζs(w) , [α̃(0) · · · α̃(3s − 1)]
T ∈ R3s (94)

∀v = (vs−1 · · · v0) ∈ Ys, α̃

(
s−1∑
i=0

T (vi) 3i

)
= αv (95)

where {αv ∈ R : v ∈ Ys} denote the coefficients of the counting form w with pure rank s, and we write these
coefficients as column vectors whose indices are the lexicographically ordered s-length strings interpreted as ternary
representations of non-negative integers.

Now consider the conditional expectation operator E in Definition 3 acting on the linear subspace of all counting
forms with pure rank s. Then, since the codomain of E is the linear subspace of all counting forms with pure rank
s+ 1, we can equivalently represent E using a 3s+1 × 3s matrix Cs(δ) such that for every counting form w with
pure rank s, we have:

ζs+1(E(w)) = Cs(δ) ζs(w) . (96)

Note that when s = 1, the matrix C1(δ) is given by:

∀δ ∈
[
0,

1

2

]
, C1(δ) ,



0 1 u

(0, 0) δ2 1− δ2 0
(0, 1) δ(1− δ) δ + (1− δ)2 0
(0, u) δ2 δ + (1− δ)2 δ(1− 2δ)
(1, 0) δ(1− δ) δ + (1− δ)2 0
(1, 1) (1− δ)2 2δ − δ2 0
(1, u) δ(1− δ) 2δ − δ2 (1− δ)(1− 2δ)
(u, 0) δ2 δ + (1− δ)2 δ(1− 2δ)
(u, 1) δ(1− δ) 2δ − δ2 (1− δ)(1− 2δ)
(u, u) δ2 2δ − δ2 1− 2δ


(97)

23We used an alternative graph construction in our development in subsections V-C and V-E since it was arguably more natural.
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where we label the indices of the rows and columns using Y2 and Y , respectively, for illustrative purposes. (Note,
for example, that the rows are actually indexed by [9] since each (v1 v0) ∈ Y2 corresponds to a non-negative
integer T (v0) + 3T (v1) using (95).) Furthermore, when s ≥ 2, for every v = (vs · · · v0) ∈ Ys+1 and every
y = (ys−1 · · · y0) ∈ Ys, the (a, b)th element of the matrix Cs(δ), with a =

∑s
i=0 T (vi)3

i and b =
∑s−1
j=0 T (yj)3

j ,
is given by:

∀δ ∈
[
0,

1

2

]
, [Cs(δ)]a,b ,

s−1∏
k=0

[C1(δ)]T (vk)+3T (vk+1),T (yk)
= P((Ys+1,1, . . . , Ys+1,s) = v |Ys = y) (98)

according to Definition 3. Since C1(δ) is a quadratic polynomial matrix in δ (see (97)), it follows that Cs(δ) is a
polynomial matrix in δ with degree 2s, and we may write it as:

∀δ ∈
[
0,

1

2

]
, Cs(δ) =

2s∑
k=0

C(k)
s δk (99)

where each 3s+1 × 3s coefficient matrix C
(k)
s does not depend on δ (and is explicitly known).

Next, suppose we seek to find a u-only counting form wδ with pure rank s satisfying (69) that can be represented
as a linear polynomial vector:

∀δ ∈
[
0,

1

2

]
, ζs(wδ) = ŵ0 + ŵ1δ (100)

where ŵ0, ŵ1 ∈ R3s do not depend on δ. Define the 3s+1 × 3s “purification matrix” Ps via (see Lemma 5 and the
discussion preceding Theorem 4):

Ps , Is ⊗ [1 1 1]T (101)

where Is denotes the 3s × 3s identity matrix, and ⊗ denotes the Kronecker product of matrices. Note that for any
u-only counting form w with pure rank s, Psζs(w) produces the coefficients of a u-only counting form with pure
rank s+1 that is cyclically equivalent to w. To satisfy the supermartingale condition (69), wδ−E(wδ)�c 0, observe
that it suffices to ensure that:

∃ zδ ∈ span({ρv : v ∈ Ys\{0, 1}s}) , Psζs(wδ)︸ ︷︷ ︸
'c wδ

−Cs(δ)ζs(wδ)︸ ︷︷ ︸
= ζs+1(E(wδ))

+ ζs+1(zδ)︸ ︷︷ ︸
does not change
wδ−E(wδ)

≥ 0 (102)

for all δ ∈
[
0, 12
]
, where we utilize the special case of the converse direction of Theorem 4 for u-only counting

forms (and (96)), and the ≥ relation holds entry-wise. Indeed, if all the coefficients of a counting form that is
cyclically equivalent to wδ −E(wδ) are non-negative, then wδ −E(wδ)�c 0 using Definitions 5 and 6. To simplify
(102) further, observe using (96), (99), and (100) that:

ζs+1(E(wδ)) =

(
2s∑
k=0

C(k)
s δk

)
(ŵ0 + ŵ1δ) = C(0)

s ŵ0 +
(
C(0)
s ŵ1 + C(1)

s ŵ0

)
δ +O

(
δ2
)
, (103)

Psζs(wδ) = Psŵ0 + Psŵ1δ , (104)

where O(δ2) is the standard big-O asymptotic notation (as δ → 0+). This implies that:

Psζs(wδ)− ζs+1(E(wδ)) =
(
Ps −C(0)

s

)
ŵ0 +

((
Ps −C(0)

s

)
ŵ1 −C(1)

s ŵ0

)
δ +O

(
δ2
)
. (105)

Furthermore, every u-only counting form zδ ∈ span
({
ρv : v ∈ Ys\{0, 1}s

})
can be represented as ζs+1(zδ) =

Dsx̃δ for some δ-dependent vector x̃δ ∈ R3s−2s , where Ds denotes the (explicitly known and δ-independent)
3s+1 × (3s − 2s) matrix whose columns are given by:

Ds = [ζs+1(ρv) : v ∈ Ys\{0, 1}s] . (106)

Suppose x̃δ = x0 +x1δ for x0, x1 ∈ R3s−2s that do not depend on δ. Then, in the limit when δ → 0+, using (105)
and (106), (102) can be written as:

∃x0, x1 ∈ R3s−2s ,
((
Ps −C(0)

s

)
ŵ0 + Dsx0

)
+
((
Ps −C(0)

s

)
ŵ1 −C(1)

s ŵ0 + Dsx1

)
δ ≥ 0 (107)

where we neglect the O(δ2) terms.
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To simplify (107) further, let us set s = 3. So, we seek to find a u-only counting form wδ of the form (100) with
pure rank 3, that satisfies (69) up to first order in the limit as δ → 0+. Recall the u-only harmonic counting form
w∗ with rank 3 defined in (55), and notice that the proof of Proposition 6 can be easily modified (using purification
with respect to 'c —see the discussion preceding Theorem 4) to yield w∗'c E(w∗) when δ = 0. Hence, let us
restrict ourselves to u-only counting forms wδ with some fixed w0 = w∗0 'c w∗ so that w∗0 'c E(w∗0), where w∗0 is
u-only and has pure rank 3. Specifically, we use:

ŵ0 = ŵ∗0 , ζ3(w∗0) = [0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 1 1 2 2 2 4 3 3 2 2 2]
T ∈ R27 . (108)

With this choice of ŵ0 = ŵ∗0 , since w∗0 'c E(w∗0), we know that the counting form corresponding to
(
P3−C(0)

3

)
ŵ∗0+

D3x0 is 'c 0 in (107). Therefore, in the limit when δ → 0+, the problem of finding ŵ1 such that (107) is satisfied
can be recast as:

Find ŵ1 ∈ R27 and x1 ∈ R19 such that:(
P3 −C

(0)
3

)
ŵ1 −C

(1)
3 ŵ∗0 + D3x1 ≥ 0 ,

∀(v2 v1 v0) ∈ {0, 1}3,
(
ŵ1

)
v0+3v1+9v2

= 0

(109)

where (ŵ1)i denotes the ith entry of ŵ1 for i ∈ [27], the matrices P3−C
(0)
3 ∈ R81×27, D3 ∈ R81×19 and the vector

C
(1)
3 ŵ∗0 ∈ R81 are known, and the equality constraints in (109) ensure that ŵ1 corresponds to a u-only counting

form.
The problem in (109) is a linear programming feasibility problem. Using MATLAB, we can solve (109) (with

additional constraints) to obtain the following integer-valued solution:

ŵ1 = ŵ∗1 , [0 0 2 0 0 4 4 4 3 0 0 4 0 0 4 4 4 4 2 4 4 4 4 4 3 4 2]
T ∈ N27 (110)

which has a corresponding integer-valued solution x1 = x∗1 ∈ Z19 that we do not reproduce here. Therefore, the
u-only counting form w∗δ , ζ

−1
3 (ŵ∗0 + ŵ∗1δ) with pure rank 3 has the property that it satisfies (69) up to first order

as δ → 0+. This provides numerical evidence for the existence of u-only counting forms with rank 3 satisfying
(69) for all values of δ in a sufficiently small neighborhood of 0. Indeed, if we could construct solutions ŵ∗1 and
x∗1 that satisfied the entry-wise strict inequality:(

P3 −C
(0)
3

)
ŵ∗1 −C

(1)
3 ŵ∗0 + D3x

∗
1 > 0 , (111)

then we would obtain that for all sufficiently small δ > 0:((
P3 −C

(0)
3

)
ŵ∗1 −C

(1)
3 ŵ∗0 + D3x

∗
1

)
δ +O

(
δ2
)
≥ 0 , (112)

which includes all the higher order terms in (105). This would in turn prove that w∗δ satisfies (69) for all sufficiently
small δ > 0. Since our solution (110) does not satisfy (111), it only suggests the existence of u-only counting
forms with rank 3 that satisfy (69) for all sufficiently small δ > 0.

APPENDIX D
ALGORITHM TO DETECT CYCLICALLY NON-NEGATIVE COUNTING FORMS

In this appendix, we present some pseudocode in Algorithm 1 for an algorithm that computes whether a given
u-only counting form with pure rank r is cyclically non-negative in the sense of Definition 6. Specifically, given the
coefficients of a u-only counting form w with pure rank r as input, Algorithm 1 first constructs the directed graph
Gr(w) by adding three outgoing edges to each vertex in Yr, even if the coefficient corresponding to the vertex (or
basis clause) is zero, i.e. even if the outgoing edges are assigned zero weight. (Indeed, edges with zero weight are
not equivalent to non-existent edges, because the latter kind of edges can be construed as having infinite weight.)
Then, Algorithm 1 executes the Bellman-Ford algorithm, cf. [54, Section 24.1], to find negative cycles in Gr(w)
with edge weights given by the relation (74) and source vertex chosen as (u · · ·u) (all u’s), which is a reasonable
choice since we only consider u-only counting forms w. The correctness of this algorithm follows from part 2 of
Proposition 8 and the correctness of the Bellman-Ford algorithm (in detecting the existence of negative cycles). We
also remark that it is straightforward to modify Algorithm 1 to return an explicit negative cycle in Gr(w) when
such cycles exist.

Since the correctness of the Bellman-Ford algorithm is typically proved for directed simple graphs, it is worth
explicitly mentioning that the self-loops on the vertices (0 · · · 0), (1 · · · 1), and (u · · ·u) in Gr(w) do not affect the
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Algorithm 1 Algorithm to determine whether a u-only counting form with pure rank is cyclically non-negative.
Input 1: A rank r ∈ N\{0}
Input 2: An array of coefficients (α[v] ∈ R : v ∈ Yr) corresponding to a u-only counting form w with pure rank

r, where α[v] = 0 if v ∈ {0, 1}r . α[v] is the coefficient of the basis clause {v} for w
Boolean Output: true (if w�c 0) or false (otherwise)

Stage 1 . Construct edge set E of the directed graph Gr(w)
1: Initialization: E = {}
2: for all source vertices v = (v1 · · · vr) ∈ Yr do
3: for all letters y ∈ Y do
4: v(y) = (v2 · · · vr y) . Construct destination vertex
5: E.INSERT

{(
v, v(y)

)}
. Insert directed edge into E

6: end for
7: end for

Stage 2 . Bellman-Ford algorithm to detect negative cycles reachable from (u · · ·u)
8: Initialization: distances[v] ← +∞ for all v ∈ Yr . Shortest path lengths from (u · · ·u) to v
9: Initialization: distances[(u · · ·u)] ← 0 . (u · · ·u) is the source vertex

10: for i = 1 to 3r − 1 do . Loop to relax edges
11: for all edges (v1, v2) ∈ E do
12: if distances[v1] + α[v1] < distances[v2] then . Edge weights are given by the relation (74)
13: distances[v2] ← distances[v1] + α[v1]
14: end if
15: end for
16: end for
17: for all edges (v1, v2) ∈ E do . Loop to detect negative cycles reachable from (u · · ·u)
18: if distances[v1] + α[v1] < distances[v2] then
19: return false . Negative cycle found!
20: end if
21: end for
22: return true . No negative cycles found

correctness of this algorithm. As mentioned earlier in subsection V-C, the self-loop edges on (0 · · · 0) and (1 · · · 1)
have weight 0, and never satisfy the if clause conditions in steps 12 and 18 of Algorithm 1. Likewise, when the
self-loop edge on (u · · ·u) has non-negative weight, it also never satisfies the if clause conditions in steps 12 and
18. Hence, the algorithm runs correctly in this scenario. On the other hand, if the self-loop edge on (u · · ·u) has
negative weight, then it does satisfy the if clause condition in step 18, and the algorithm correctly discovers a
negative cycle.
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