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Abstract
In this thesis we consider the problem of decentralized control of linear systems. We em-
ploy the theory of partially ordered sets (posets) to model and analyze a class of decen-
tralized control problems. Posets have attractive combinatorial and algebraic properties;
the combinatorial structure enables us to model a rich class of communication structures in
systems, and the algebraic structure allows us to reparametrize optimal control problems to
convex problems.

Building on this approach, we develop a state-space solution to the problem of design-
ingH2-optimal controllers. Our solution is based on the exploitation of a key separability
property of the problem that enables an efficient computation of the optimal controller by
solving a small number of uncoupled standard Riccati equations. Our approach gives im-
portant insight into the structure of optimal controllers, such as controller degree bounds
that depend on the structure of the poset. A novel element in our state-space characteriza-
tion of the controller is a pair of transfer functions, that belong to the incidence algebra of
the poset, are inverses of each other, and are intimately related to estimation of the state
along the different paths in the poset.

We then view the control design problem from an architectural viewpoint. We propose
a natural architecture for poset-causal controllers. In the process, we establish interesting
connections between concepts from order theory such as Möbius inversion and control-
theoretic concepts such as state estimation, innovation, and separability principles. Finally,
we prove that the H2-optimal controller in fact posseses the proposed controller structure,
thereby proving the optimality of the architecture.

Thesis Supervisor: Pablo A. Parrilo
Title: Professor
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Chapter 1

Introduction

1.1 Decentralized versus Centralized Control

The advent of large-scale engineering systems has created a paradigm shift in the way

systems are analyzed, designed, and built. Consider some typical examples of such large

scale systems: the internet, vehicle platoons, satellite arrays, smart power grids, and sensor

networks to name a few. These systems are diverse in their detailed physical behavior,

but when viewed through the lens of systems theory exhibit an important common feature.

From a systems-theoretic perspective, all these examples consist of an interconnection of a

large number of subsystems, each of which individually is benign and amenable to standard

analysis and design techniques. Indeed, these individual subsystems can all be analyzed via

well-understood centralized systems theory. However, understanding the systems theory of

these interconnected systems is a far more complex task.

This complexity creates interesting tension between theory and practice. Since many

large scale systems require a decision-making/control layer (which requires information

about the system), the notion of information exchange between subsystems plays a crit-

ical role. In practice, the systems engineer would like to keep information exchange to

a minimum. Exchanging information between subsystems involves building communica-
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tion channels which is often expensive. Even in cases where it may not be prohibitively

expensive (for example wireless links), the network aspect of the problem may create sig-

nificant challenges (such as interference). Establishing all-to-all communication (or alter-

natively a global centralized control center), even if feasible from a physical standpoint,

presents the daunting challenge of collecting and processing all the information in one cen-

tralized location. Thus, the system designer has every incentive to keep communication

among subsystems at a minimum. On the other hand, the theoretical underpinnings for

such communication-constrained systems need to be better understood.

Thus, on the one end of the spectrum is the fully centralized systems and control theory,

a classical and well understood area. On the other extreme of the spectrum are large-

scale systems that demand decentralization, but where little theoretical understanding, and

consequently knowledge of sound design principles, is available. This gulf between theory

and practice compels us to develop a theory of decentralized control. Some of the critical

questions that must be addressed include:

• “What kinds of communication constraints between subsystems should be enforced?”

• “Given a communication architecture, what is the optimal controller? How does the

designer compute it?”

• “What are the broad architectural principles involved in such controller design?”

These are the motivating questions driving our work [47, 44, 48, 49] in this thesis. Indeed,

these three questions serve as a broad outline of this thesis. We study these questions in a

linear systems setup and devote a chapter to each of the above questions.

1.2 Information Flow in Systems

As emphasized earlier, a critical feature of large scale systems is the ability of different

subsystems to communicate with each other. This communication may more abstractly be

16



viewed as a flow of information. Interestingly, the flow of information between subsystems

is an important source of complexity. Understanding how to design controllers for systems

with arbitrary communication is not always an easy task.

In a seminal paper, Witsenhausen [62] presented the now famous Witsenhausen coun-

terexample. This example consisted of a seemingly simple two-step decision making prob-

lem with linear dynamics, quadratic cost function and Gaussian noise (a so-called “LQG”

problem). He showed that optimal controllers for this simple problem were nonlinear, a

surprising result at the time. In later work Mitter and Sahai [32] proved that in fact linear

controllers could be “arbitrarily suboptimal” for this problem. At the heart of the com-

plexity in this example is a tension between communication and control, or more broadly,

the flow of information. In subsequent work [63, 37] the question of when optimal con-

trollers are linear was addressed. Fundamental to this question, unsurprisingly, is the type

of information flow, namely classical versus nonclassical information flow in systems.

From a computational standpoint, Papadimitriou and Tsitsiklis [36] showed that a prob-

lem related to the Witsenhausen counterexample was NP-hard. Indeed, several classes

of decentralized control problems are now understood to be computationally intractable

[36, 35, 54, 10, 9]. On the positive side, several authors have shown classes of problems

to be computationally tractable [44, 47, 25, 5, 18, 58, 38]. The important distinction that

seems to separate the tractable classes of problems from the intractable ones is the flow of

information among subsystems. Developing the right language and set of tools to describe

information flow and characterize tractable information flows is vital. In this thesis, we

present partially ordered sets (posets) as a crucial tool that enables us to (a) describe infor-

mation flows of a specific type, and (b) characterize a large class of tractable decentralized

control problems.
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1.2.1 Poset-Causal Information Flows

We mention two important notions that motivate this poset-based information structure.

The first notion is that of acyclic information flow. In many areas of engineering and

computer science problems have a natural underlying graph structure. In a large num-

ber of cases, it is known that “tree-like” or “acyclic” graph structures are more tractable

than general graphs. We mention statistical inference on graphical models as an impor-

tant motivating example [27, 2]. Another important notion in the context of decentralized

decision-making is the notion of transitivity of information flow, which we clarify below.

As a motivating example consider (abstractly) a system consisting of three subsystems

as shown in Fig.1-1. Each subsystem has a decision-maker, that makes certain choices

based on the information available to him. The arrows indicate the flow of information.

Subsystem 1’s decision is a function of the information (formally captured by the notion of

a state) available only at subsystem 1. Subsystem 1 communicates its state information to

subsystem 2, so that subsystem 2’s decision is a function of the state information of subsys-

tem 2 as well as subsystem 1. Similarly, subsystem 2 communicates its state information

to subsystem 3 so that the decision at subsystem 3 is a function of the state information

of subsystems 2 and 3. (A subtle but significant clarification needs to be made regarding

whether subsystem 3 has access to information about subsystem 1, which we discuss mo-

mentarily). In this sense the diagram in Fig. 1-1 describes a decision-making scenario

where the available information at different subsystems is hierarchical in nature. It is con-

venient to view the available state information as an “information flow” with subsystems

communicating local state information to other subsystems. In our setup, communication

among subsystems is one-directional, comprising an acyclic information flow.

Another important feature in this setup, is whether or not subsystem 3 is allowed to

access information about subsystem 1 or not. Suppose that subsystem 3 is not allowed to

see this information. Since subsystem 2 is allowed to communicate its own information (in

particular its own decisions) to subsystem 3, this may encourage subsystem 2 to engage
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2

3

Figure 1-1: An example of a decentralized system.

in complicated protocols whereby it chooses decisions which are seemingly suboptimal,

but via which it can signal information about subsystem 1 to subsystem 3, thereby making

the decision globally optimal. It turns out [25, 22] that understanding such phenomena

can be enormously complicated, and it is first important to understand the “no-signalling-

incentive” situations. To do away with this complication, we assume that subsystem 3 has

access to all the information about subsystem 1 that subsystem 2 has. Viewed more gener-

ally, this is a transitivity property about the information flow. As we will see, posets provide

a natural abstraction to describe and generalize such acyclic, transitive information flows.

The high-level problem described in this chapter will be made precise in later chapters. In

Chapter 3 (Section 3.1) the notion of poset-causal systems is introduced. The notions of in-

formation flow, hierarchical information and distributed decision making are all formalized

in a control-theoretic setup.

1.3 Computational Considerations

While understanding classes of tractable information flows is an important conceptual task,

developing efficient algorithms for computing optimal controllers within these classes is

equally critical. More classical treatments of control theory have developed an algebraic

approach for solving control problems via the Youla parametrization [57, 20]. In the con-

text of decentralized control, Youla-based approaches have been well-studied as well [44].
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These approaches have the attractive feature that they are able to reduce optimal control

problems to convex optimization problems in the Youla parameter. However these tech-

niques have drawbacks.

The main problem with Youla based techniques is that this parametrization is infinite-

dimensional. There is no way to a priori bound the degree of the controller being designed.

Moreover, even if the degree were bounded, one is still left with the problem of optimizing

over the locations of the poles and the residues. Techniques do exist whereby one designs

a sequence of controllers which approach optimality, but the degrees of the controllers in

the sequence are not necessarily well-behaved. To compound these issues, these methods

suffer from numerical instability.

In the centralized setting, researchers have found ways around these issues in the case

of both H2 and H∞ performance metric. This involves the construction of a state space

solution to the problem. State space solutions have several nice features: (a) There is an

optimal centralized controller of bounded degree (the degree needs to be at most the degree

of the plant) (b) the approach provides insight into the structure of the optimal controller (c)

efficient algorithms exist to construct the state space solutions, and (d) an extensive body of

theoretical work exists that addresses many different aspects of these problems. While there

is a considerable body of work dealing with state-space solutions for centralized control

problems [16, 21], in this thesis we present novel state-space solutions for decentralized

control problems.

1.4 Main Contributions

The preceding discussion regarding decentralization, tractability, information flows and

computation sets the agenda for our thesis. Broadly, there are two themes in this thesis.

The first theme is the development of the notion of poset-causality as a notion of infor-

mation flow in systems. The second theme is related to computational and architectural
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issues related to design of decentralized control of such poset-causal systems. The main

contributions in this thesis are the following:

1. We introduce the notion of a partially ordered sets (posets) as a means of model-

ing causality-like communication constraints between subsystems in a decentralized

control setting.

2. We exploit algebraic properties of posets to show that optimal control problems over

poset-causal systems can be convexified.

3. We show that a number of seemingly disparate examples studied in the decentralized

control literature are specific instances of this poset-causality paradigm, so that posets

in fact form a unifying theme in decentralized control.

4. We consider the problem of designingH2 optimal decentralized controllers for poset-

causal systems using state-space techniques. We show a certain crucial separability

property of the problem under consideration. This separability makes it possible to

decompose the decentralized control problem over posets into a collection of stan-

dard centralized control problems.

5. We give an explicit state-space solution procedure. To construct the solution, one

needs to solve standard Riccati equations (corresponding to the different sub-problems).

Using the solutions of these Riccati equations, one constructs certain block matrices

and provides a state-space realization of the controller.

6. We provide bounds on the degree of the optimal controller in terms of a parameter

σP that depends only on the order-theoretic structure of the poset.

7. We describe the structural form of the optimal controller. We introduce a novel pair

of transfer functions (Φ, Γ) which are inverses of each other, and which capture the

prediction structure in the optimal controller. We call Φ the propagation filter, it

corresponds to propagation of certain signals upstream. We call Γ the differential
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filter, it corresponds to computation of differential improvement in the prediction of

the state at different subsystems.

8. We state a new and intuitive decomposition of the structure of the optimal controller

into certain local control laws.

9. We then address the question: “What is a reasonable architecture of controllers for

poset-causal systems? What should be the role of controller states, and what com-

putations should be involved in the controller?” We propose a controller architec-

ture that involves natural concepts from order theory and control theory as building

blocks. In the process we establish a new and significant connection between Möbius

inversion on posets (a concept with deep connections with many diverse areas) and

decentralized control. As a consequence, we gain further understanding into the

structure of the optimal controller, the roles of the filters Φ and Γ (mentioned in item

7) in terms of state prediction and Möbius inversion.

10. We show that a natural coordinate transformation of the state variables yields a novel

separation principle within this architecture.

11. We show that the optimalH2 controller (with state-feedback) has precisely the pro-

posed architecture.

1.5 Related Work

This thesis connects two different mathematical themes, namely partially ordered sets, and

decentralized control. Both these themes (individually) have a rich literature, and in this

section we cite some pertinent pieces of work in these two areas.

The first theme, namely posets, are very well studied objects in combinatorics. The

associated notions of incidence algebras, Möbius inversion and Galois connections were

studied in generality by Rota [39] in a combinatorics setting. Since then, order-theoretic
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concepts have been used in engineering and computer science; we mention a few specific

works below. Cousot and Cousot used these ideas to develop tools for formal verification of

computer programs in their seminal paper [14]. In control theory too, these ideas have been

used by some authors in the past, albeit in somewhat different settings. Ho and Chu used

posets to study team theory problems [25]. They were interested in sequential decision

making problems where agents must make decisions at different time steps. They study

the form of optimal decision-makers when the problems have poset structure. Mullans and

Elliot [34] use posets to generalize the notion of time and causality, and study evolution of

systems on locally finite posets. Del Vecchio and Murray [56] have used ideas from lattice

and order theory to construct estimators for discrete states in hybrid systems. Poset-causal

systems are also related to the class of systems studied more classically in the context of

hierarchical systems [31, 19], where abstract notions of hierarchical organization of large-

scale systems were introduced and their merits were argued for.

The second theme, namely that of decentralized control also has a rich literature dating

back to the 1970s, we mention the classical survey of Sandell et. al [45], the work of Wang

and Davison [61], and the books by Gündes and Desoer [24] and S̆iljak [55]. In more

recent work, Blondel and Tsitsiklis [9] have shown that in certain instances, decentralized

control problems are computationally intractable, in particular they show that the problem

of finding bounded-norm, block-diagonal stabilizing controllers in the presence of output-

feedback is NP-hard. In other recent work, several authors including Voulgaris [58, 59, 60],

Bamieh and Voulgaris [5] and Fan et. al [18] presented cases where decentralized control

problems are computationally tractable. Lall and Rotkowitz generalize these ideas in a

framework of a property called quadratic invariance [44], we discuss connections to their

work later. In past work [47], Shah and Parrilo have shown that posets provide a unifying

umbrella to describe these tractable examples under an appealing theoretical framework.

Related also is the literature on team theory which may be viewed as distributed decision-

making over a finite time horizon. Important contributions were made in the classical work
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of Radner [37] and Ho and Chu [25]. More recently team theory problems have also been

studied by Gattami and Bernhardson [22] and Rantzer [38].

While the above-mentioned literature deals with understanding tractable classes of con-

trol problems, finding computationally efficient algorithms for the same is equally crucial.

Without a doubt, a major advance in this area has been the advent of state-space techniques.

In the context of centralized control, we mention the influential work of Doyle et. al [16].

In the context of decentralized control, state-space methodologies have been proposed in

[28, 46, 64, 52, 44]. Our state-space solution procedure is perhaps the closest in spirit to

the work of Rotkowitz and Lall [44] and Swigart and Lall [52], but significantly more com-

putationally efficient and insightful than [44], and applicable to a much more general class

of problems than studied in [52]. More detailed comparisons to these works will be made

in later chapters.

1.6 Organization of Thesis

This thesis is organized as follows. In Chapter 2 we introduce some of the necessary back-

ground, including concepts from order theory and control theory that will be used through-

out the thesis. In Chapter 3, we introduce the notion of poset-causal systems. We establish

connections between poset-causality, convexity and the Youla parametrization. We also

demonstrate that many examples studied in the decentralized control literature may be uni-

fied in the poset causality framework. In Chapter 4 we consider the problem of computing

the H2-optimal poset-causal controller for a poset-causal system. By exploiting certain

separability properties of the problem we develop a state-space solution for the optimal

control problem. We also describe the structure of the optimal controller. In Chapter 5, we

study the control design problem over posets from a broader architectural viewpoint. We

describe an intuitive controller architecture and establish some important related proper-

ties such as optimality and separation principles. In Chapter 6 we conclude the thesis and
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outline directions of future research.
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Chapter 2

Background

In this chapter we establish the necessary background that will be used throughout this

thesis. Broadly, this thesis draws ideas from two areas: order theory and control theory.

In the first section we establish the order theoretic background including concepts such as

partially ordered sets, incidence algebras and related algebraic properties. In the second

section we establish the necessary control theoretic background.

2.1 Order Theoretic Background

In this section we introduce some of the order-theoretic preliminaries that will play a central

role in this thesis.

2.1.1 Partially Ordered Sets and Incidence Algebras

Definition 2.1. A partially ordered set (or poset) P = (P,$) consists of a set P along

with a binary relation $ which has the following properties:

1. a $ a (reflexivity),

2. a $ b and b $ a implies a = b (antisymmetry),
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3. a $ b and b $ c implies a $ c (transitivity).

We will sometimes use the notation a ≺ b to denote the strict order relation a $ b but

a ! b.

Posets may be finite or infinite, depending upon the cardinality of the underlying set

P. In this thesis, we will have occasion to deal with both finite and infinite posets. When

we talk about finite-dimensional Linear Time-Invariant (LTI) systems, we will model de-

centralization constraints with finite posets. When we talk about systems with time-delays

and spatially invariant (distributed parameter) systems, the underlying state space is infinite

dimensional and we will then use infinite posets to model decentralization constraints.

It is possible to represent a poset graphically via a Hasse diagram by representing the

transitive reduction of the poset as a graph (i.e. by drawing only the minimal order relations

graphically, an upward arrow representing the relation$, with the remaining order relations

being implied by transitivity).

Example 2.1. An example of a poset with three elements (i.e., P = {a, b, c}) with order

relations a $ b and a $ c is shown in Figure 2-1. In the diagram (known as a Hasse

diagram), an up arrow indicates the order relation $.

cb

a

Figure 2-1: A poset on the set {a, b, c}.

Definition 2.2. Let P = (P,$) be a poset. Let Q be a field. The set of all functions

f : P × P → Q with the property that f (x, y) = 0 if y ! x is called the incidence algebra of

P over Q. It is denoted by I(P). ∗

∗Standard definitions of the incidence algebra use an opposite convention, namely f (x, y) = 0 if x ! y.
Thus, the matrix representation of the incidence algebra is typically a transposal of matrix representations
that appear here. For example, while the incidence algebra of a chain is the set of lower-triangular matrices
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The ring will usually be clear from the context (most often it will be either the field of

rational proper transfer functions or the reals). When the set P is finite, the set of functions

in the incidence algebra may be thought of asmatriceswith a specific sparsity pattern given

by the order relations of the poset.

Definition 2.3. Let P be a poset. The function ζ ∈ I(P) defined by

ζ(x, y) =























0, if y ! x

1, otherwise

is called the zeta-function of P.

Clearly, the zeta-function of the poset is an element of the incidence algebra.

Example 2.2. The matrix representation of the zeta function for the poset from Example 1

is as follows:

ζ =









































1 0 0

1 1 0

1 0 1









































The incidence algebra is the set of all matrices inQ3×3 which have the same sparsity pattern

as its zeta function.

Given two functions f , g ∈ I(P), their sum f+g and scalar multiplication c f are defined

as usual. For finite posets, the product h = f · g is defined as follows:

h(x, y) =
∑

z∈P

f (x, z)g(z, y). (2.1)

(The definition can be appropriately extended to infinite posets by replacing summation by

integration, we will do so when dealing with spatially distributed systems.) As mentioned

in this thesis, in standard treatments it would appear as upper-triangular matrices. We reverse the convention
so that in a control theoretic setting one may interpret such matrices representing poset-causal maps. This
reversal of convention entails transposition of other standard objects like the zeta and the Möbius functions.
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above, we will frequently think of the functions in the incidence algebra of a poset as

square matrices (of appropriate dimensions) inheriting a sparsity pattern dictated by the

poset. The above definition of function multiplication is made so that it is consistent with

standard matrix multiplication.

Theorem 2.1. Let P be a finite poset. Under the usual definition of addition and multi-

plication as defined in (1) the incidence algebra is an associative algebra (i.e. it is closed

under addition, scalar multiplication and function multiplication).

Proof. Closure under addition and scalar multiplication is obvious. Let f , g ∈ I(P), and

consider elements x, y such that y ! x. If y ! x, there cannot exist a z such that y $ z $ x.

Hence, in the sum (5.4), either f (x, z) = 0 or g(z, y) = 0 for every z, and thus h(x, y) = 0. !

A standard corollary of this theorem is the following [50, Theorem 1.2.3].

Corollary 2.1. Let P be a finite poset and let A ∈ I(P) be an invertible matrix. Then

A−1 ∈ I(P).

Often we will abuse notation and think of incidence algebras at the block matrix level.

To element i ∈ P we associate mi rows and ni (consecutive) columns of the matrix. Then

if j ! i we set the (i, j) block matrix of size mi × nj to be zero. Thus we may think of

rectangular matrices (which are square at the block level) as being in the incidence algebra.

Example 2.3. The following block matrix may be viewed as being in the incidence algebra

of the poset shown in Fig. 2-1. In this matrix, m1 = 2, n1 = 1,m2 = 2, n2 = 2,m3 = 1, n3 =

1.












































































1 0 0 0

1 0 0 0

1 1 1 0

1 1 1 0

1 1 1 1













































































.
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This notion can be made more rigorous using the notion of a quoset as described below.

In only one section of this thesis will we need to think formally of quosets and their as-

sociated algebras. For the most part, thinking of incidence algebras at the block level will

suffice.

2.1.2 Quosets and Structural Matrix Algebras

It is possible to define a more general notion of a partial order in the absence of anti-

symmetry. Indeed, one can equip the set P with an equivalence relation, and impose a

order relation on the quotient set modulo the equivalence relation. The resulting object is

called a quotient poset or quoset, (sometimes called a preorder in the literature). There is

a corresponding algebraic object, analogous to the incidence algebra, called the structural

matrix algebra [3].

Definition 2.4. A quoset Q = (Q,") is a set Q with a binary relation " such that " is

reflexive and transitive.

Thus it is possible for distinct elements i, j to satisfy i " j and j " i (we will call such

elements equivalent and denote this by i * j).

The analogue of an incidence algebra generalized to quosets is the following:

Definition 2.5. Let Q be a field and Q = (Q,") be a quoset. Let the structural matrix

algebraM be the set of functions f : Q × Q → Q with the property that f (i, j) = 0 if j " i

for all i, j.

We leave it as an easy exercise to the reader to verify thatM is an associative algebra.

Figure 2-2 shows an example of a quoset and the sparsity pattern of the associated structural

matrix algebra.
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1

2,3 4








∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ 0 0 ∗









Figure 2-2: A quoset and the sparsity pattern of its associated structural matrix algebra.
Elements with a ’∗’ indicate possible nonzero elements.

2.1.3 Galois Connections

In some situations, we will be dealing with two different posets whose order relations are

closely related to one another via a notion of “similarity”. (As an example if poset were a

sub-poset of the other, one would like to say that they are “similar”). One natural way of

modeling such a situation is using the notion of Galois connections.

Definition 2.6. Let P = (P,$) and Q = (Q,+) be finite posets. A pair of maps (φ, ψ)

where φ : P → Q and ψ : Q → P is said to form a Galois connection if it satisfies the

following property:

q + φ(p) ⇔ ψ(q) $ p for all p ∈ P and q ∈ Q.

Indeed, if P and Q are isomorphic (as posets), the isomorphism and its inverse consti-

tutes a Galois connection. More generally, if P and Q are related by a Galois connection

then the posets (φ(P),+) and (ψ(Q),$) are isomorphic [17].

Example 2.4. Figure 2-3 shows two posets P and Q related by a Galois connection. Note

that poset P is isomorphic to the subposet of Q with the elements {1, 3}.

Example 2.5. We present another example of a pair of posets (P,Q) related by a Galois

connection. The blue arrows indicate the maps φ and ψ.
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a

b

1

2 3

P
Q

Figure 2-3: A pair of posets related by a Galois connection.

a

b

1

2 3

P Q

c

Figure 2-4: Another pair of posets related by a Galois connection.

2.2 Control Theoretic Background

In this section we describe the basic control theoretic setup we will be considering in this

thesis. For most of this thesis we consider finite-dimensional linear time-invariant systems

(except for a brief period when we consider systems with time-delays and distributed-

parameter systems). In what follows, we remind the reader representations of such systems

in terms of frequency domain representations and state-space descriptions.

2.2.1 Finite Dimensional Systems

Let us begin by considering finite-dimensional linear time invariant systems. It is often

convenient to take an input-output view of the system in terms of the following block

diagram (Fig. 2-5). We will not particularly emphasize the continuous or discrete time

P11 P12

P21 P22 uy

z w

Figure 2-5: A standard input-output LTI system.
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cases as all our results will apply equally well to both the settings. In Fig. 2-5, u ∈ Rnu is

the control input, y ∈ Rny is the plant output, w ∈ Rnw is the exogenous input, z ∈ Rnz is

the system output. We will be interested in representing our systems via transfer function

matrices in the standard way [66] as

P(ω) =























P11(ω) P12(ω)

P21(ω) P22(ω)























, (2.2)

where P(ω) ∈ C(nw+nu)×(nz+ny) is the overall system transfer function. We will assume

throughout that the resulting system is controllable and detectable. In this thesis, often

the plant P22 will play a special role, so we will abbreviate notation and define G := P22.

We assume that G is strictly proper, so that stabilization of P is equivalent to stabilization

of G.

While dealing with finite dimensional LTI systems the signal and operator spaces will

be the standard ones [44]. In some sections we will be dealing with systems with time-

delays, in these cases the systems are no longer finite-dimensional, and the relevant spaces

will need to be appropriately extended (see [42, 43, 44]). We denote Rm×n
p to be the set of

rational-proper transfer matrices of dimension m × n. We denote the set of stable proper

transfer matrices by RH∞. The entries of P can be shown to be rational proper transfer

functions, i.e. P ∈ R
(nw+nu)×(nz+ny)
p .

The fundamental question in control theory is that of controller design. In terms of

the input-output view under consideration (see Fig. 2-5), the problem may be viewed as

designing a transfer function matrix K ∈ R
ny×nu
p with certain desirable properties (to be

formalized below). Note that once a suitable K has been chosen, one interconnects G with

K in the feedback loop as shown in Fig. 2-6

This interconnection induces a map from w to z which may be represented by a transfer

function as:

f (P,K) := P11 + P12K(I −GK)−1P21.
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P11 P12

P21 P22
uy

z w

K

Figure 2-6: Interconnection of the system P with the controller K.

In this thesis we will explore the question of choosing appropriate “optimal” controllers.

However, a far more basic requirement of a controller K is that it be stabilizing. Infor-

mally, this means that upon interconnection, the controller ensures that bounded energy

disturbances w only produce bounded energy signals within the closed-loop (this property

is known as internal stability). We refer the reader to [66] for a formal introduction of this

basic concept. There is a subtle distinction between stability and internal stability. We will

always require controllers to be internally stabilizing, but nevertheless informally refer to

them as being stabilizing.

A formal statement of the classical optimal controller-synthesis problem is the follow-

ing:

minimize
K

‖ f (P,K) ‖

subject to K stabilizes P
(2.3)

Very generally, ‖ · ‖ represents any norm on Rnz×nwp , chosen to appropriately capture

the performance of the closed-loop system. At that level of generality, the problem of

computing optimal solutions may be challenging. Two canonical and well-studied norms

in control theory are theH2 and theH∞ norms, we will defer their formal treatment to later

chapters.

The well-studied classical problem stated in (2.3) requires only that the controller be

stabilizing. In this thesis, we will additionally require that the controller also be decen-

tralized. These decentralization constraints on the controller will manifest themselves in

35



the form of certain structural constraints on K. Indeed the decentralized control problem

considered in this thesis is of the form:

minimize
K

‖ f (P,K) ‖

subject to K stabilizes P

K ∈ S ,

(2.4)

where S represents a class of structural constraints. In our thesis, S represents some sub-

space of the space of controllers (typically a subspace of sparse transfer function matrices

with a fixed sparsity pattern). It may be noted that for general P and S there is no known

technique for solving problem (2.4). Indeed, the reader may recall from the Chapter 1 that

certain variants of the problem are known to be NP-hard [9].

In this thesis, we will consider structures S that arise from posets. Specifically, S will

correspond to the subspace I(P), the incidence algebra of a fixed poset P (we will also

briefly consider other types of structures S that arise from Galois connections). These

types of constraints will have natural interpretations in terms of the flow of information in

the system.

2.2.2 Youla Parametrization

Problem (2.3) as presented is a nonconvex problem in K. The nonconvexity arises as a con-

sequence of the linear-fractional nature of the objective function in the controller variable

K (recall that norms are convex functions). The constraints K stabilizing and K ∈ S (where

S is a subspace) are both convex (since the set of stabilizing controllers forms a subspace

[11, pg. 154]). If the subspace constraint K ∈ S were absent (the so-called “central-

ized” problem), several techniques exist for solving the problem (2.3) [20]. One approach

towards a solution to the problem is via an explicit parameterization of all stabilizing con-

trollers for the problem (2.3). It is desirable to have the closed-loop transfer function be an
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affine function in the parameter, so that the problem becomes convex. There are different

approaches to perform the parametrization, for example the Youla parametrization [44] and

the so-called R-parametrization [11].

Let Hstab denote the set of all stable closed loop transfer matrices achieved by con-

trollers that internally stabilize the plant, i.e.

Hstab =
{

P11 + P12K(I −GK)−1P21 | K stabilizes P
}

. (2.5)

Let

hG :Rny×nu → Rny×nu

K .→ K(I −GK)−1.
(2.6)

Let us define R := hG(K). Then it is well-known [11] that Hstab can be parameterized in

terms of R via

Hstab = {P11 + P12RP21 | RG ∈ RH∞,R ∈ RH∞, I +GR ∈ RH∞, (I +GR)G ∈ RH∞} .

(2.7)

If G is stable, (2.7) reduces to a simpler parameterization:

Hstab = {P11 + P12RP21 | R ∈ RH∞} . (2.8)

Under reasonably mild conditions (namely well-posedness of the interconnection be-

tween P and K [66]), the map hG is invertible. Hence, given R, the controller K may be

uniquely recovered by

K = h−1
G (R) = (I + RG)−1R. (2.9)

An interesting feature of the map hG is that for certain classes of information structures

S the map is structure-preserving. Indeed when the structure under consideration is an in-
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cidence algebra, the maps hG and h−1
G preserve the incidence algebra structure as described

below:

Lemma 2.1. Assume G ∈ I(P). Then hG(K) ∈ I(P) if and only if K ∈ I(P).

Proof. Follows from the definition of hG, Theorem 2.1 and Corollary 2.1. !

2.2.3 Quadratic Invariance

While the Youla parametrization enables one to convexify centralized control problems of

the form (2.3), it is natural to ask under what conditions one can also expect an exact convex

reformulation of the more challenging subspace-constrained problem (2.4). Motivated by

this question, Rotkowitz and Lall present a property known as quadratic invariance in their

paper [44], defined below:

Definition 2.7. A plant G and a subspace (of controllers) S is defined to be quadrati-

cally invariant if for every K ∈ S , KGK ∈ S .

If the plant G and the constraint S in problem (2.4) possess quadratic invariance then

the Youla parametrization allows an exact convex reformulation of (2.4).

More formally, let h(K,G) := hG(K) (defined in (2.5)), and Knom be a nominal stable

and stabilizing controller. Then Lall and Rotkowitz [44] show that the set of all feasible

controllers is given by:

Cstab = {Knom − h(h(Knom,G),Q) | Q ∈ S ,Q stable } .

Then the decentralized control problem (2.4) has the exact reformulation:

minimize
K

‖ P11 + P12QP21 ‖

subject to Q stable

Q ∈ S .

(2.10)
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If Q∗ is the optimal solution of the above problem then the optimal controller is given

by K∗ = Knom − h(h(Knom,G),Q∗). We will explore the connections between quadratic

invariance and our poset-based approach in detail in later chapters. The appealing property

of (2.10) is that it is an exact convex reformulation of the nonconvex problem (2.4).

2.2.4 State Space Realizations

While a frequency domain transfer function representation of the form (2.2) is a natural

way to describe an LTI system, it is often very useful to present the system via a state-

space realization [66]. We consider the following state-space description of the system

shown in Fig. 2-5 in discrete time:

x[t + 1] = Ax[t] + B1w[t] + B2u[t]

z[t] = C1x[t] + D11w[t] + D12u[t]

y[t] = C2x[t] + D21w[t] + D22u[t].

(2.11)

(Note that we describe the discrete time case here for convenience and note that continuous

time descriptions are analogous in nature). A convenient (and standard [66]) notation we

will often use to compactly represent (2.11) is:























z

y























=









































A B1 B2

C1 D11 D12

C2 D21 D22










































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(2.12)

In this thesis we will often encounter situations where the plant (i.e. the map from u to y) of

the state space system (2.11) is in the incidence algebra I(P) for some poset P. This will

be ensured by assuming that A, B2,C2 and D22 are in the (block) incidence algebra I(P).

This assumption will have a natural interpretation in terms of the flow of information in the

system that will be made precise at the appropriate juncture.
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2.2.5 Systems with Time Delays

In Chapter 3, we will encounter a class of systems where the dynamics in the plant and

controller suffer from propagation delays. The class of time-delayed systems under con-

sideration will be Linear and Time-Invariant (LTI), however these systems are not finite

dimensional and hence state-space descriptions are inconvenient.

By suitably extending the class of signal spaces and operator spaces [43], it is possible

to define and work with transfer function representations of such systems. Indeed, the

optimization problem (2.3), the Youla parametrization and convex reformulation results

described in Section 2.2.2 all extend naturally to this setup.

Another useful representation of such systems is via the impulse response. Given a

time-delayed system G with input u and output y, the impulse response ψ(t) is defined to

be the output y(t) obtained under a unit impulse input δ(t). For a general input,

y(t) =
∫

t∈R
ψ(t − τ)u(τ)dτ,

and the above is often represented using the standard convolution operation y(t) = ψ(t) ∗ u(t).

(This definition is stated for the situationwhere the input u and output y are single-dimensional,

but may be generalized in a natural way to the multi-dimensional setting).

2.2.6 Spatially Invariant Systems

In this section, we briefly introduce the notion of spatially invariant systems. The formal

presentation of the subject is quite detailed and technical, and for the purposes of this

thesis somewhat tangential (since in the context of spatially distributed systems we wish

to mostly emphasize the connection between communication constraints and posets). For

further details, we encourage the reader to see [30, 7, 15, 8, 4, 6] and the references therein.

Spatially invariant systems are a class of distributed parameter infinite-dimensional sys-

tems that evolve along the spatio-temporal coordinates (x, t) ∈ X×T where X is the spatial
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domain and T is the temporal domain (or time). We assume that X = Rn and the tempo-

ral domain T may be assumed to be R≥0. (In the fully general case, one can assume that

these domains have the structure of a locally compact abelian group, but for the sake of

simplicity, and to fix ideas we make these choices.) In this thesis, we will study the class of

systems that are linear and spatially and temporally invariant, i.e spatio-temporal systems

that are invariant under translations along the spatial and temporal coordinates (we will as-

sume the temporal invariance implicitly, and call such systems spatially invariant systems).

Just as LTI systems are characterized by impulse responses h(t) (such a description being

possible due to time-invariance), spatially invariant systems cab be completely described

by a spatio-temporal impulse response ψ(x, t).

Much like finite-dimensional LTI systems and time-delayed systems described above,

spatially invariant systems also have natural state-space and frequency domain descrip-

tions (though both spatial and temporal frequency variables are now present). Indeed, such

systems may be thought to posses transfer functions (which depend on both the temporal

frequency variable s and spatial frequency variable λ). As mentioned above, the precise

treatment of these concepts is well-studied and fairly technical. In this thesis, we intend to

emphasize the connections with partially ordered sets, and for those purposes the somewhat

informal treatment described here will suffice.

Example 2.6. The canonical example to keep in mind while thinking of such spatially

invariant systems is those described by linear PDEs, such as the wave equation:

∂2t ψ(x, t) = c2∂2xψ(x, t) + u(x, t). (2.13)
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This has a state-space description:
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.

This also has a compact transfer function description:

G(λ, s) =
1

s2 + c2λ2
.
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Chapter 3

Poset-Causal Systems, Convexity, and

the Youla Parameterization

In this chapter we begin our study with a class of systems known as poset-causal systems.

These systems are composed of collection of subsystems such that the interconnection

between them has a certain generalized spatial causality structure. This chapter revolves

around two themes involving poset-causal systems. The first, and major theme of this

chapter involves unification of a broad class of (previously studied, as well as new) class

of decentralization structures into a common theoretical framework. Variations of this

theme occur throughout this chapter in different contexts: we consider finite-dimensional

systems, systems with delays and distributed parameter systems. In all these settings we

show that many previously studied decentralization structures possess a single unifying

concept, namely poset-causality.

The second theme in this chapter is convexity, and the role of the Youla parametrization

in facilitating convexity. It is well-known in optimization that convexity is an important and

fundamental property enabling computational tractability. Thus, in order to solve optimal

control problems involving decentralization tractably, it is reasonable to demand convexity.

Here again, the algebraic properties of partially ordered sets play a fundamental role that
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enable convex reformulations. We study this, and connections to related properties that

enable convexity such as quadratic invariance, in this chapter. The message we wish to

convey to the reader through the chapter is that many classes of decentralized control prob-

lems that are considered to be tractable have an underlying poset structure. The algebraic

properties that this structure brings with it ensures computational tractability.

In this chapter we first consider finite-dimensional linear time invariant systems with

communication constraints, both within the plant and the controller. In first part of the

chapter we are interested in the setting where the system is composed of several interacting

subsystems. This subsystem approach enables us to partition the overall transfer function

into several local transfer functions. The communication constraints among the subsystems

manifest themselves via sparsity constraints in the plant and controller transfer functions.

These sparsity constraints can often be modeled quite naturally using posets. In this chapter

we consider several specific classes of such communication constraints that arise naturally

in many decentralized decision-making problems.

We then consider systems with time-delays. Decentralized systems composed of inter-

acting subsystems with communication delays have been studied in the past by Rotkowitz

and Lall [44]. We show that these results may be naturally interpreted using posets.

Many practical control problems are also naturally spatially distributed, i.e. the overall

subsystem is composed of many subsystems, each of which is at a different spatial location.

Spatially distributed systems (and the related notion of distributed parameter systems) have

also been extensively studied (see [30, 7, 15, 8]). It is natural to study decentralized control

in the spatially distributed setting since many spatially distributed systems are also large

scale and lumped in the sense that the controller may interface with the system at only a

relatively small number of spatial coordinates and thus may face natural communication

constraints. The problem of decentralized control of spatially distributed systems becomes

considerably simpler when the system has a property known as spatial invariance. Intu-

itively, this means that the overall system is not only time-invariant but also invariant under
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spatial translations. Such systems have been studied in some detail by Bamieh et. al. [4, 6].

We also study the problem of decentralized control of spatially invariant distributed

systems based on the partial order framework developed in [47, 48]. We show that this

framework allows one to study several interesting classes of decentralized problems. To

study communication structures for spatially invariant systems, it is sufficient to study the

spatio-temporal impulse response, which constitutes the impulse response in the joint spa-

tial and temporal domain (denoted by h(x, t), where x is the spatial domain and t is the

temporal domain) when the system reacts to an impulse at the origin (x, t) = (0, 0). The

communication structure of the system determines the support of h(x, t). We show that

modeling the communication structure via posets allows us to generalize the results of

Bamieh et. al. [4, 6]. Similar results were simultaneously and independently developed by

Rotkowitz [41].

The main contributions of this chapter may be summarized as follows:

• We introduce the notion of a partially ordered set (poset) as a means of modeling

causality-like communication constraints between subsystems in a decentralized con-

trol setting.

• We exploit algebraic properties of the problem to show that the set of controllers that

satisfy the sparsity constraints can be parameterized explicitly.

• We generalize the poset based model from the setting where plant and controller

have same communication constraints to the setting where they may have different

constraints.

• We study systems with time delays. It had been shown in a previous chapter [42],

that subject to certain conditions on the delays between subsystems (namely trian-

gle inequality), the resulting problem was quadratically invariant (and thus amenable

to convex optimization). We show that there is a natural poset associated with sys-

tems with time delays with this subadditivity property, and that the computational
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tractability is simply an algebraic consequence of this underlying poset.

• We introduce a poset-based framework to study decentralized control of spatially

distributed systems. This model naturally extends the results on time delayed systems

mentioned in the previous item. We generalize some previously known results of [6]

regarding funnel-causal systems.

• We study the relationship between posets and quadratic invariance. We show that

quadratic invariance can be naturally interpreted as a transitivity property, and that

under certain natural settings, poset structures and quadratic invariance are exactly

equivalent. We introduce the notion of a quoset, which is a poset modulo an equiv-

alence relation. We show that under similar but somewhat more general conditions,

quadratic invariance is equivalent to quosets.

This chapter is organized as follows. In Section 3.1 we introduce the class of finite-

dimensional LTI poset-causal systems and establish how optimal decentralized controllers

may be computed by convex optimization using the Youla parametrization. In Section

3.3 we extend these results beyond poset-causal systems to a more general class using the

notion of Galois connections. In Section 3.4 we unify known results related to decentral-

ized systems with time-delays into a poset-causal framework. In Section 3.5, we unify

and generalize known results about distributed spatially invariant systems using the poset

framework. In Section 3.6, we discuss the connections between quadratic invariance and

poset-causality.

3.1 Control of Poset Causal Systems

We begin introducing poset-causality in the context of finite-dimensional LTI systems. The

interconnection between subsystems in these systems will obey certain causal relation-

ships, which will be formalized using posets. We will call such decentralized systems
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poset causal systems. These are a (reasonably large) class of structured decentralized sys-

tems that have a one-directional or causal flow of information. We will study the task

of designing controllers that mirror these structural constraints. We first begin with some

examples of communication structures that can be modeled using posets.

3.1.1 Examples of Communication Structures Arising from Posets

In this section we study some examples of posets. Several classes of communication struc-

tures have been studied in the decentralized control literature [59], [60], we show how these

classes can be unified in a poset framework. The intuition behind modeling communication

among subsystems via posets is as follows. We say that subsystems i and j satisfy i $ j if

an input at subsystem i affects the output at subsystem j. It means that subsystem j is more

information-rich. We will formalize this notion in the next section.

Independent subsystems

The trivial poset on the set {1, 2, . . . , n} where there are no partial order relations between

any of the elements (i.e. all the elements are independent of each other) corresponds to

the case where the subsystems exchange no communication whatsoever (all subsystems

have access to only their own information, thus K and G are diagonal). The corresponding

incidence algebra for this poset is the set of diagonal matrices. It is readily seen that this

is just the case where one is required to stabilize n independent plants using independent

controllers, a problem that reduces to a classical control problem.

At the other extreme is the case where the poset is totally ordered. This is the case of

nested control [59], which we study below.

Nested systems

This is a class of systems where the transfer functions have a block-triangular structure.

Nested systems have been analyzed by Voulgaris [60], [59]. Such structures arise in cases
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Figure 3-1: A system with nested communication constraints.

where there are several subsystems are arranged hierarchichally, such as when each subsys-

tem is contained within a subsequent subsystem so that the arrangement forms a nest. There

is one-way communication among the subsystems (say from the inside to the outside).

For simplicity, consider a system with just two subsystems P1 and P2. The internal

subsystem P1 can communicate information to the outer subsystem P2 (but not vice-versa).

The task at hand is to design a controller that obeys this same nested-communication ar-

chitecture. The following is the set of plant outputs, control inputs, exogenous outputs and

exogenous inputs respectively:
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The sparsity pattern generated by the communication constraints for the controller and the

plant are as follows:
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.

Figure 3-1 depicts such a nested system in a block diagram. It is easy to see that G
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and K are matrices in the incidence algebra generated by the poset over {1, 2} with 1 $ 2.

This is consistent with the intuition that since subsystem 2 has access to information from

subsystem 1 (input 1 can affect output 2) to make decisions (K21 is allowed to be non-zero),

subsystem 2 is more information-rich. Voulgaris [59] showed that for such nested systems,

the optimal control problem can be reduced to a convex problem in the Youla parameter.

In the next section we will see that this result follows as a special case of a more general

result that is true for all poset-causal systems.

Other examples

The example cited in the above subsection shows that nested systems are just special cases

of those arising from posets. Clearly, many other communication structures can be modeled

as posets. Some such examples include multi-chains, lattices and transitive closures of

directed acyclic graphs. A few such examples are shown in Fig. 3-2.

3 6

5

4

2 1

(a)

5

4 3 2

1

(b)

7 8

6

4 5

3

1 2
(c)

Figure 3-2: Examples of other poset communication structures: (a) A multi-chain (b) A
lattice (c) A directed acyclic graph.

3.2 Systems with Same Plant and Controller Communica-

tion Constraints

We now consider systems that are composed by interconnecting several subsystems. Each

subsystem is assumed to be linear, time-invariant, and finite-dimensional. For concrete-
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ness, we consider systems evolving in discrete time, though we emphasize that all results

presented in this thesis extend naturally to the continous time case. We consider an input-

output framework where each subsystem is represented as a transfer function matrixG. We

viewG ∈ Rn×n
p as a system that is composed of n subsystems. Subsystem i consists of input

i and output i (the transfer function between which is Gii). In addition, input i can also af-

fect another subsystem (say subsystem j) in which case Gi j ! 0. As in [44], we would like

to consider communication constraints between the subsystems being modeled as sparsity

constraints on the matrix G. To this end we define some terminology.

Suppose we have a collection of subsystems that are interconnected in a way that is

consistent with the partial order structure of a poset P = ({1, . . . , n},$). The partial order

represents the communication structure in the plant as follows:

Definition 3.1. The plant G ∈ Rn×n
p is said to be P-poset-causal if whenever j ! i, an

input at subsystem j does not affect subsystem i (i.e. Gi j = 0).

This definition formalizes the notion of subsystem level causality in the plant, i.e. that

j $ i implies that i is in the cone of influence of j since Gi j ! 0. In this section we are

interested in the case where the controller K mirrors the communication constraints of the

plant, i.e. if j ! i then Ki j = 0 (i.e K ∈ I(P). This formalizes a notion of information

richness, since if j $ i then the controller for i has access to more information than the

controller for j (Ki j is allowed to be nonzero, whereas Kji is forced to be zero).

Example 3.1. Consider the poset with six elements as shown Figure 3-2(a). An input

at subsystem 4 can only affect (the outputs of) subsystems 3, 5 and 6. In other words,

subsystems 3, 5 and 6 are in the cone of influence of subsystem 4. In the language of posets,

this is stated as 4 $ 3 and 4 $ 5 and 4 $ 6. Thus, the language of posets enables us to

model such causal relationships between subsystems in decentralized systems. Variations

of this theme will recur in this chapter in later sections will generalize this notion to other

types of constraints.
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We denote the set of all stabilizing controllers that lie in the incidence algebra by

Cstab(P). Let the set of all achievable closed loop transfer functions that are stabilized by

K ∈ Cstab(P) be denoted by Hstab(P). Recall that we are interested in solving the optimal

control problem:

minimize
K

‖ f (P,K) ‖

subject to K stabilizes P

K ∈ I(P),

(3.1)

To convexify (3.1) it will be necessary to reparameterize Cstab(P) and Hstab(P). Our

approach will be as follows. First we will construct an explicit stabilizing controller in

Cstab(P). Using this controller in the feedback loop, we reduce the problem to the case

where the plant is stable and then use equation (2.8) to parameterize the set of all closed

loop maps. Before we do so, we make an important remark and state a related assumption.

Stabilization

Remark Suppose we have a plant G ∈ I(P) with Gi j unstable for some i ! j. The task

of internally stabilizing the plant G with a controller K ∈ I(P) is impossible. This is

because Gi j does not have a feedback path. To illustrate this consider an example with

two subsystems forming a nest (i.e. the block-triangular case we saw in the preceding

subsection). Suppose
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,

where K is some stabilizing controller in the incidence algebra. By Theorem 2.1 and Corol-

lary 2.1 it is easy to see that R = K(I − GK)−1 is also in the incidence algebra (i.e. it is
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lower triangular). However, if this were the case, one can readily check that

(I +GR)G =
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


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.

It is impossible for this to be stable, thus the controller cannot be internally stabilizing,

yielding a contradiction. As mentioned already, the problem here is that G12 has no feed-

back path around it to internally stabilize it. This fact is illustrated in Fig. 3-3.

G

K

G12

u1

u2

y1

y2

y1

y2

u1

u2

Figure 3-3: Feedback interconnection showing absence of feedback path around G21

This is true in general, and we will state this formally. First we recall that the configuration

shown in Figure 3-4 involving an unstable G is internally unstable for all K because the

signal z is unbounded when the input u is non-zero.

G Ku
z y

Figure 3-4: Open loop interconnection cannot be internally stable.

Lemma 3.1. Let G be a poset-causal system. If for some i, j (distinct indices) Gi j is unsta-

ble, then the plant is not internally stabilizable by a P-poset-causal controller K ∈ I(P).

Proof. We show that in a feedback interconnection of G and K where both are P- poset-

causal, Gi j has no feedback path around it. Let i ! j and suppose (for the sake of contra-
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diction) that there is a feedback element Klm around Gi j. First, note that since Gi j ! 0 (it

is in fact unstable, so must be non-zero), we have j $ i. Since the output of subsystem i

in the plant is connected only to the input of controller i, and the output of controller i is

connected only to the input of subsytem i in the plant, it must be the case that l = j and

m = i. Hence we require Kji to be nonzero. Since K is in the incidence algebra and Kji ! 0

we have i $ j. We thus established that i $ j and j $ i, so that by antisymmetry (Definition

2.1), i = j, a contradiction. !

The preceding argument demonstrates that the task of stabilizing a poset-causal plant

with a poset-causal controller is feasible only when the off-diagonal entries Gi j are stable.

We will see that the Gi j being stable for all i ! j alongwith Gii being stabilizable for

all i is also a sufficient condition for stabilizability of the overall system. For technical

reasons that will become apparent, we will assume something stronger, namely that theGii

are stabilizable by a stable controller. We next show that when these conditions hold, a

stabilizing controller in the incidence algebra may be explicitly constructed. We formalize

this result.

Lemma 3.2. Let G be a poset-causal plant. Then G is internally stabilizable by a controller

K ∈ I(P) if and only if:

• Gi j is stable for i ! j.

• Gii is stabilizable for all i ∈ P.

Furthermore, G is internally stabilizable by a stable controller K ∈ I(P) if Gii is stabiliz-

able by a stable controller for all i ∈ P.

Proof. Since G ∈ I(P), without loss of generality, we assume that G is lower triangular.

(It is always possible to put it in triangular form by constructing a linear extension of the

poset i.e. extending the partial order to a total order which is consistent [1, Prop 1.4]). Let

us use the notation R = K(I −GK)−1 so that Rii = Kii(I −GiiKii)−1.
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Note that by Lemma 3.1, Gi j (for i ! j) being stable are necessary conditions. Since

K(I − GK)−1 is lower-triangular, its diagonal entries are simply Rii = Kii(I − GiiKii)−1.

Corresponding expressions hold for the diagonal entries of RG, (I +GR)G, and I +GR. By

(2.7) these diagonal entries are stable if and only if Kii can internally stabilize Gii. Hence

the conditions stated in the statement of the lemma are necessary.

To see sufficiency, let us pick a controller K which is diagonal and with diagonal entries

Kii such that it internally stabilizes the Gii. It can be easily verified that the off-diagonal

entries of these matrices are stable because they are sums and products of stable entries (re-

call that by assumption theGi j are stable for i ! j). Hence all four of the transfer functions

are stable, and by (2.7) we have a stable closed loop. Lastly, if the Gii are stabilizable by

a stable controller, a choice of a diagonal stable K such that Kii is stable and stabilizes Gii

for all i ∈ P. This controller internally stabilizesG. !

Henceforth, we assume the following:

• Gi j are stable for i ! j

• Gii is stabilizable by a stable Kii for all i ∈ P.

Parametrization of all stabilizing controllers in the incidence algebra

An important step in reparametrizing the nonconvex problem (3.1) is understanding the

class of feasible controllers. In the centralized control problem, the Youla parameterization

provides a complete characterization of the class of achievable stable closed loops and the

set of feasible controllers. We now describe how to extend such a parametrization for the

poset-causal case.

Given a poset-causal plant G ∈ I(P) we provide a characterization of the set of poset-

causal controllers K ∈ I(P) which internally stabilize the plant, along with the set of

achievable stable closed loops.
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Let us define R = hG(K) as defined in (2.6). We begin by noting that from Lemma 2.1,

K ∈ I(P) if and only if R ∈ I(P). Note that from (2.7), if we treat R = hG(K), as a

parameter the set of achievable stable closed loops by controllers K ∈ I(P) is given by

Hstab = {P11 + P12RP21 | R ∈ RH∞ ∩ I(P),RG ∈ RH∞, I +GR ∈ RH∞, (I +GR)G ∈ RH∞} .

This is a complete parametrization of the set of achievable closed loops. It is an appeal-

ing construction because the set of closed-loops is an affine function of the parameter R.

One important drawback of the above is that it is not a free parametrization. The parameter

R is constrained to have certain stabilization properties indicated by the last three inclusion

requirements in the preceding formula. Indeed, for practical as well as theoretical reasons,

it would be more appealing to express the set of closed loops as a free parametrization.

This can indeed be done by using the idea of pre-stabilization, which we describe next.

We first note that by Lemma 3.2, it is straightforward to choose a nominal controller

Knom which is stable, diagonal (and hence trivially in the incidence algebra) and also sta-

bilizing (one only needs to stabilize the diagonal elements separately). We use Knom in the

closed loop to stabilize the plant, so that the problem is reduced to the case of a stable plant.

Now we treat the system with Knom in the closed loop as the “new plant”, which is already

stable. Let

P̃ =























P̃11 P̃12

P̃21 G̃























,

where P̃ is the closed loop map obtained by interconnection ofKnom with G. It is well-

known (see for example [44, Theorem 17]) that the set of all achievable stable closed-loops

is given by

Hstab(P) =
{

P̃11 + P̃12RP̃21|R ∈ RH∞ ∩ I(P)
}

.
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Finally, the set of all stabilizing controllers in the incidence algebra is

Cstab(P) =
{

(I + RG̃)−1R|R ∈ RH∞ ∩ I(P)
}

.

Using this parameterization, one can reduce the optimal control problem (3.1) to the convex

problem:

minimize
R

‖ P̃11 + P̃12RP̃21 ‖

subject to R ∈ RH∞

R ∈ I(P),

Remark Rotkowitz and Lall have studied a property known as quadratic invariance (see

Definition 2.7) in the context of Youla domain convexification. They show that this alge-

braic condition describes a large class of problems which are amenable to convex reparametriza-

tion. In subsequent work [29] it is also shown that in a certain sense this is the largest

class of problems which is amenable to convex reparametrization in the Youla domain.

We remark that a poset-causal plant G and the subspace of poset causal controllers (i.e.

S = I(P)) is quadratically invariant for the following reason. Since G is poset-causal,

G ∈ I(P) and the information constraint is also K ∈ I(P). By Theorem 2.1, I(P) is an

algebra of matrices, hence KGK ∈ I(P).

We emphasize that poset-causal systems form a subclass of quadratically invariant prob-

lems. While the attendant convexity guarantees are thus unsurprising, they form a large in-

teresting subclass with intuitive combinatorial structure and rich algebraic structure. This

additional structure, present in poset-causal systems but absent in a general quadratically

invariant setup, can be exploited to obtain much stronger results as will become apparent

later in the thesis.

As an example of this, note that in our approach (unlike in a quadratically invari-

ant setup) we do not need to assume a priori knowledge of a nominal stable controller

K ∈ I(P) to obtain a convex reformulation. Rather, as described above, we can explicitly
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construct such a nominal controller (assuming that the subsystems (i.e. diagonal elements)

themselves have a stable controller). That enables us to obtain a free parametrization that

does not have any constraints apart from R ∈ RH∞ ∩ I(P).

This distinction of being able to explicitly produce nominal stabilizing and stable con-

trollers is important. The task of producing a nominal stable, stabilizing and decentralized

controller in general settings may potentially be as hard as the optimization problem itself

(testing feasibility may be as hard as optimization). In our case, the poset structure allows

us to explicitly produce a stabilizing controller.

3.3 Systems with different plant and controller communi-

cation constraints

3.3.1 Modeling via Galois Connections

In this section we examine a more general setting where the controller is not necessarily

required to mirror the communication constraints of the plant. In the previous section, we

viewed the system as a collection of interconnected subsystems with the poset describing

an information hierarchy on the subsystems. We alter this view here to deal with different

information structure in the plant and the controller while retaining a partial order point

of view. Instead of having a partial order on subsystems, we now impose a partial order

on the set of inputs and a (possibly different) partial order on the set of outputs. The

communication constraints between the inputs and outputs in the plant and the controller

are given by a pair of maps between the two posets. We show that if the pair of maps have

the special property of being a Galois connection [39, 23] the controller synthesis problem

(subject to the communication constraints) is amenable to convex optimization.

The main idea behind using Galois connections to describe poset-like decentralization

constraints is as follows. Suppose one has a plant with a set of inputs and a set of outputs.
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Often, cases may arise where some inputs are more influential than other inputs (in that

the effect of an impulse can be observed at more output ports). This hierarchy among the

inputs in terms of their “cone of influence” defines a natural partial ordering on the set of

inputs. The task at hand is to design a certain decentralized controller where the inputs

to the controller (which are the outputs of the plant) also obey certain “similar” causality

constraints. We show that it is possible to solve such decentralized control problems when

the notion of similarity being used is the notion of a Galois connection.

We first remind the reader that a Galois connection formally captures the notion of

similarity between posets (see Definition 2.6). Let G ∈ R
ny×nu
p be a system with nu inputs

and ny outputs. Let P = ({1, . . . , nu},$) and Q = ({1, . . . , ny},+) be posets on the index sets

of the inputs and outputs respectively.

Definition 3.2. (1) We say that the plant G is communication-constrained by φ if

whenever φ( j) # i input j cannot communicate with output i (i.e. Gi j = 0).

(2) We say that the controller K is communication-constrained byψ if whenever ψ( j) ! i,

j cannot communicate with input i (i.e. Ki j = 0).

We will call a plant G ∈ S (φ) and a controller specification K ∈ S (ψ) a Galois-causal

problem.

The set of all controllers that are communication-constrained by ψ is a subspace. This

subspace is denoted by S (ψ). Similarly, the set of all plants that are constrained by φ are

denoted by S (φ). These definitions can be interpreted as follows. Let ↑ i = {k ∈ Q : k 2 i}.

Then given an input at j in the plant, ↑ φ( j) is exactly those outputs in the cone of influence

of input j.

Remark These definitions generalize the notion of an incidence algebra to the case when

we have two posets. For instance if the two posets are the same (i.e. P = Q) and we choose

the Galois connection to be the identity map (i.e. φ = ψ = id), then it can be easily verified

that S (φ) = S (ψ) = I(P).
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Theorem 3.1. LetP andQ be posets on the index sets of the inputs and outputs respectively.

Let G ∈ R
ny×nu
p ∈ S (φ) and G ∈ R

nu×ny
p ∈ S (ψ). Then KGK ∈ S (ψ) and GKG ∈ S (φ).

Proof. We prove KGK ∈ S (ψ). Suppose G ∈ S (φ) and K ∈ S (ψ). Assume ψ( j) ! i (so

Ki j = 0), and assume for the sake of contradiction that (KGK)i j ! 0. Note that (KGK)i j =
∑

k
∑

l KikGklKl j. If ψ(k) ! i then Kik = 0. Similarly if ψ( j) ! l then Kl j = 0 and if φ(l) # k

then Gkl = 0. Hence, nonzero terms in the above summation may only occur for indices

that satisfy ψ(k) $ i, φ(l) + k, and ψ( j) $ l. Using Definition 2.6, since (φ, ψ) form a Galois

connection ψ(k) $ i ⇔ k + φ(i), and ψ( j) $ l ⇔ j + φ(l) Hence, j + φ(l) + k + φ(i). These

three conditions imply that j + φ(i) ⇔ ψ( j) $ i, contradicting our initial assumption and

thereby proving that (KGK)i j = 0.

We now prove thatG ∈ S (φ) ⇒ GKG ∈ S (φ). Suppose φ( j) # i (so thatGi j = 0). Then

(GKG)i j =
∑

kl GikKklGl j. If Gik ! 0 then φ(k) + i, Kkl ! 0 then ψ(l) $ k, and if Gl j ! 0

then φ( j) + l. Now ψ(l) $ k ⇔ l + φ(k). Hence φ( j) + l + φ(k) + i so that φ( j) + i, a

contradiction.

!

a

b

1

2 3

Input Poset
Output Poset

P
Q

Figure 3-5: Posets P and Q with a pair of maps that form a Galois connection.

Remark A consequence of Theorem 3.1 is that problems with such communication con-

straints are quadratically invariant [44] (see Definition 2.7), and can hence be recast as

convex problems in the Youla parameter. The emphasis here is on the fact that this enables

us to extend the class of decentralization structures that can be captured under the poset

umbrella.
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Example 3.2. Consider a system with three inputs (P = {1, 2, 3}) and two outputs (Q = {a, b}).

The input and output spaces are endowed with a partial order structure and a pair of maps

(φ, ψ) that form a Galois connection (see Fig. 3-5).

φ(1) = a ψ(a) = 1

φ(2) = a ψ(b) = 3

φ(3) = b.

This order-theoretic structure results in communication constraints on the plant G and

controller K as shown in (3.2) below. The constraints in the plant G have a certain spar-

sity structure that is dictated by the posets P and Q and the map φ. When appropriately

interpreted, these constraints naturally generalize the notion of causality and “cone of in-

fluence” type interpretation that we encountered in the incidence algebra case. In the plant

each input j has associated to it a set of outputs in its “cone of influence”, which is exactly

the set ↑ φ( j). For example, for the input 1, its cone of influence is ↑ φ(1) = {a, b}. Sim-

ilarly the cone of influence of input 3 is ↑ φ(3) = {b}. A similar interpretation holds for

the controller: each input to the controller i has a “cone of influence” which is precisely

↑ ψ(i).

G =























∗ ∗ 0

∗ ∗ ∗
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










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




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


















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∗ 0
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
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





















(3.2)

It can be easily verified that the problem with these sparsity constraints is quadratically

invariant. The quadratic invariance of the problem depends only on the interconnec-

tion between the inputs and outputs in the controller and plant. The emphasis here is

that when such constraints are modeled using order-theoretic considerations as explained

above, quadratic invariance and the attendant convexity guarantees follow.

Example 3.3. As another example of sparsity patterns governed by Galois connections

consider the posets shown in Fig. 3-7. The maps (φ, ψ) are given by:
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G

K

a
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b

b

1
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3

1

2

3

Figure 3-6: Communication constraints withinG and K resulting from the poset and Galois
connection shown in Figure 3-5.

a

b

1

2 3

P Q

c

Input Poset Output Poset

Figure 3-7: Posets P and Q with a pair of maps that form a Galois connection.
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φ(1) = a ψ(a) = 1

φ(2) = a ψ(b) = 3

φ(3) = b ψ(c) = 3.

The sparsity patterns of G and K associated to this poset pair (P,Q) with the Galois con-

nection maps (φ, ψ) is

G =


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


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

.

It is straightforward to verify that this pair of sparsity patterns is quadratically invariant.

3.4 Systems with Time Delays

As mentioned earlier, one of the goals of this chapter is to show that many examples of

decentralized control problems studied in the literature can be modeled via posets. In this

section we provide another example of this involving certain structured time-delayed sys-

tems. It was shown by Rotkowitz and Lall [44] that systems involving time-delays which

obey the triangle inequality may be studied in a quadratic invariance setup. In this section

we show that such systems have a natural underlying poset structure, and its associated

incidence algebra structure implies the convexity guarantees. The emphasis here is on the

construction of the underlying poset and not the resulting quadratic invariance. We hope to

convince the reader through these and other examples of the fundamental role that posets

seem to play in much of the current theory on decentralized control.

In this section we consider LTI systems with time delays. Given a decentralized plant

with communication delays between the different subsystems, we consider the task of de-

signing controllers for the subsystems which interact according to a similar delay structure.
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It has been known [42, 43] that such communication structures are amenable to convex

reparametrization due to their quadratic invariance. In this section we show that posets

arise naturally in this setup, that they describe the communication constraints in an intu-

itive way, and that the partial order structure results in convexity.

Consider a system with n subsystems (let N = {1, . . . , n}). Let the system be described

by the transfer function matrix G where Gi j(ω) describes the frequency response between

input of system j and output of system i. An equivalent way to describe the plant is to

specify the impulse responses gi j(t). Define the delay between the subsystems i and j

(denoted by Di j) as follows (see Figure 3-12):

Di j = sup
{

τ : gi j(t) = 0 for all t ≤ τ
}

.

Note that since all systems are assumed to be causal, the delays Di j are nonnegative.

t

hij(t)

Dij

Figure 3-8: Impulse response hi j(t) along with the associated delay Di j.

We define a relation $ onN × R as follows.

Definition 3.3. We say that ( j, t1) $ (i, t2) if

t2 − t1 ≥ Di j.

Since the systems we are dealing with are time invariant, what this condition means

intuitively is that ( j, t1) $ (i, t2) if system i at time t2 is in the cone of influence of an

impulse applied at system j at time t1. We show next that if the delays satisfy a triangle

inequality then the relation $ described in Definition 3.3 is a partial order relation.
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Proposition 3.1. Suppose Dii = 0 (i.e. effect of input on output within same subsystems is

without delay), Di j > 0 (there is nonzero delay between distinct subsystems) and the Di j

satisfy

Di j + Djk ≥ Dik, (3.3)

for all i, j, k distinct. Then $ in Definition 3.3 is a partial order relation.

Proof. Since Dii = 0, by definition (i, t1) $ (i, t1). If (i, t1) $ ( j, t2) and ( j, t2) $ (i, t1)) then

t1 − t2 ≥ 0 and t2 − t1 ≥ 0 (since delays are nonnegative), thus by definition t1 = t2. Since

Di j > 0 for i ! j it must be the case that i = j giving anti-symmetry. If (i, t1) $ ( j, t2) and

( j, t2) $ (k, t3), we have t1 ≤ t2 ≤ t3. Further, t2 − t1 ≥ Dji and t3 − t2 ≥ Dk j. By (3.3),

t3 − t1 ≥ Dji + Dk j ≥ Dki and hence (i, t1) $ (k, t3), verifying transitivity. !

Note that this triangle inequality structure on the delays is exactly the condition that

appears in [42]. What is interesting here is that these delays actually arise from a natural

poset structure, as we have just pointed out (the poset is determined purely by the delays,

the actual functional form of the impulse response does not matter). Furthermore, the set

of impulse responses gi j(t) which satisfy this delay structure actually forms an algebra of

functions under convolution, as the next proposition shows.

Definition 3.4. Let Ψ =
{

Di j
}

1≤i, j≤n
be a given set of delays. Let IΨ denote the set of

(matrix) impulse responses G(t) with the property that gi j(t) = 0 if ( j, 0) ! (i, t).

Intuitively gi j(t) = 0 means that the effect of an impulse at time t = 0 at subsystem

j has not reached the output of subsystem i at time t. Thus IΨ is precisely the set of

systems which obeys the delay structure prescribed byΨ. Given a set of impulse responses

F =
{

fi j(t)
}

and G =
{

gi j(t)
}

define F ∗ G to be the matrix of impulse responses with

(F ∗G)i j(t) =
∑n
k=1 fik ∗ gk j(t).

Proposition 3.2. Given a set of delaysΨ which satisfy the conditions of Proposition 3.1. If

F =
[

fi j(t)
]

1≤i, j≤n
,G =

[

gi j(t)
]

1≤i, j≤n
such that F,G ∈ IΨ, then F ∗G ∈ IΨ.
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Proof. Suppose ( j, 0) ! (i, t). It suffices to show that (F ∗G)i j(t) = 0. Now,

(F ∗G)i j(t) =
n

∑

k=1

∫

R+

fik(t − τ)gk j(τ)dτ.

If (F ∗ G)i j(t) ! 0 then there must be some k, τ such that gk j(τ) ! 0 and fik(t − τ) ! 0.

This in turn means that τ ≥ Dk j and t − τ ≥ Dik. Thus ( j, 0) $ (k, τ) and (k, τ) $ (i, t). By

transitivity, ( j, 0) $ (i, t), contrary to our assumption. !

Since the impulse responses form a convolutional algebra, the transfer functionmatrices

F(ω) and G(ω) form a multiplicative algebra and are thus quadratically invariant. This

allows us to conclude the following proposition.

Proposition 3.3. Consider a set of delay constraints Ψ such that they satisfy the triangle

inequality (3.3). Given a plant G ∈ IΨ with same delay constraints, the set of controllers

K ∈ IΨ is quadratically invariant with respect to G.

Remark This recovers another well-known result known in the decentralized control lit-

erature [42, 43] i.e. if the plant and controller have the same delay structure Ψ (with the

triangle inequality), then designing optimal controllers with this delay structure is amenable

to convex reparametrization. We emphasize again the interesting connections between con-

vexity and underlying poset structure in this class of problems.

3.5 Spatially Invariant Systems

It is possible to extend the results of the preceding section on time-delayed systems to a

class of infinite dimensional systems that are spatially distributed [48]. While these results

were proposed in [48] by Shah and Parrilo, similar results were independently and simul-

taneously developed by Rotkowitz et. al. in [41]. These results generalized in multiple

directions the previous results of Bamieh and Voulgaris [6]. In the spirit of this chapter of

unifying past results into a poset framework, we briefly review our results in this section.

65



Recall that spatially invariant systems are a class of spatially distributed dynamical

systems (sometimes called distributed parameter systems) that evolve in a spatio-temporal

domain. Such systems have been extensively studied and analysed [15]. A detailed treat-

ment of the subject is fairly involved and technical. More pertinent to our discussion is the

study of decentralized structures in the context of spatially distributed systems, an interest-

ing and well-studied topic [6, 4, 33]. In this section, we aim to establish connections to such

decentralization structures arising naturally in this context to the notion of poset-causality.

We will see that, once again, known classes of tractable problems have an underlying poset

structure.

Recall from Chapter 2 the notion of spatially invariant systems that evolve along spa-

tial coordinates (x ∈ X) as well as temporal coordinates (t ∈ T ). Much like temporal

invariance, we say that a system is spatio-temporally invariant if the effect of an impulse at

spatial coordinate x1 at time t1 at another location x2 at time t2 depends only on x2 − x1 and

t2 − t1. Such systems may be specified by their spatio-temporal impulse response h(x, t).

This function describes the response of the system at location (x, t) under the influence of

an impulse at (0, 0). Given a system h(x, t) one defines the support function f (x) as follows:

f (x) = sup {τ : h(x, t) = 0 for all t ≤ τ} . (3.4)

The support function evaluated at x describes the delay involved in the effect of an impulse

at the origin to reach x. Note that this support function provides the natural generalization

of delay between subsystems that we encountered in section 3.4. For example, if the system

under consideration were described by the wave equation, then the support function would

be exactly the light cone centered at the origin (see Fig. 3-9).
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x

t

f(x)

Figure 3-9: Light cone of a wave generated at the origin.

Partial Order Formulation

For concreteness we fix X = Rn to be the domain of the spatial variable x and T = R≥0 to

be the domain of the temporal variable t. Let f : Rn → R≥0 be the support function. We

define a partial order on the tuple (x, t) as follows:

Definition 3.5. The relation (x1, t1) $ (x2, t2) holds if

1. t1 ≤ t2 (in the standard ordering on R),

2. f (x2 − x1) ≤ t2 − t1 (in the standard ordering on R).

Proposition 3.4. Suppose the support function f : Rn → R≥0 satisfies the following prop-

erties:
1. f (0) = 0,

2. f (x) > 0 for x ! 0,

3. f (x1 + x2) ≤ f (x1) + f (x2)

for all x1, x2 ∈ Rn (subadditivity).

(3.5)

Then the relation $ in Definition 3.5 is a partial order relation.

Proof. We need to verify the three defining properties of partial order relations, namely

reflexivity, anti-symmetry, and transitivity.

The relation (x1, t1) ≤ (x1, t1) holds trivially, condition 1 in Definition 3.5 is satisfied

trivially, and condition 2 is satisfied because f (0) = 0.

Suppose (x1, t1) ≤ (x2, t2) and (x2, t2) ≤ (x1, t1). Then, by Definition 3.5 condition 1,
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clearly t1 = t2. Thus f (x2 − x1) ≤ 0, and since f (x) ≥ 0 with equality only at the origin, it

must be the case that x1 = x2. Thus (x1, t1) = (x2, t2).

Finally, suppose that (x1, t1) ≤ (x2, t2) and (x2, t2) ≤ (x3, t3). Then f (x3 − x2) ≤ t3 − t2

and f (x2 − x1) ≤ t2 − t1. By subadditivity,

f (x3 − x1) ≤ f (x3 − x2) + f (x2 − x1) ≤ t3 − t1.

Hence, transitivity holds. !

Note that subadditivity of the support function provides the natural generalization of

the triangle inequality of delays between subsystems that we saw in Section 3.4. Once a

partial order is defined on the space, one can think of the space as a poset P = (P,$) (in

our case the set P = Rn × R≥0). By defining a multiplication rule on functions of the form

h : P × P → R one can define the incidence algebra associated with the poset.

Rather than considering all functions of the form h : P × P → R, which are of the

form h((x1, t1), (x2, t2)) we restrict our attention to those functions which are spatially and

temporally invariant, i.e. the value of the function depends only on x1− x2 and t1− t2. More

precisely, these functions are of the form h((x1, t1), (x2, t2)) = h(x1 − x2, t1 − t2).

Definition 3.6. Let f be a support function satisfying (3.5) andP = (Rn×R≥0,$) where

the relation $ is as defined in Definition 3.5. The set of functions h : P × P → R with the

property that :

1. h((x1, t1), (x2, t2)) = h(x1 − x2, t1 − t2)

(called spatial invariance)

2. h(x1 − x2, t1 − t2) = 0 for (x1, t1) ! (x2, t2)

(called order sparsity).

is called the spatially invariant incidence algebra with respect to the support function f . It

is denoted by I f .

Consider a spatially invariant system where g(ξ, τ) is the spatio-temporal impulse re-
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sponse (i.e. the response of the system at (ξ, τ) under an impulse at x = 0, t = 0).Due to

spatial and temporal invariance, the impulse response of the system at (ξ, τ) under impulse

at an arbitrary (x, t) will be simply g(ξ − x, τ − t). (For invariant systems, it is enough to

specify the impulse response at the origin). Setting g((ξ, τ), (x, t)) = g(x − ξ, t − τ), one can

view g as being an element of the spatially invariant incidence algebra.

We now justify the reason for calling the object defined in Definition 3.6 an algebra.

We show next that one can define a natural multiplication operation on I f , and that I f is

closed under this multiplication, justifying its description as an “algebra”. We first define

the multiplication operation.

Definition 3.7. Let h1(x1 − x2, t1 − t2), h2(x1 − x2, t1 − t2) ∈ I f be two functions in the

spatially invariant incidence algebra. Then,

h3((x1, t1), (x2, t2))

# h1(x1 − x2, t1 − t2) + h2(x1 − x2, t1 − t2)

#
∫

R≥0

∫

G
h1(x1 − x, t1 − t)h2(x − x2, t − t2)dxdt.

(3.6)

We now show the closure property of the incidence algebra.

Proposition 3.5. Let h1, h2 ∈ I f be two functions in the spatially invariant incidence alge-

bra. Then the following statements are true:

(a) h1 + h2 ∈ I f ,

(b) For every scalar c, c· h1 ∈ I f ,

(c) h1 + h2 ∈ I f .

Proof. Note that to prove membership in I f one needs to prove two things, namely spatial

invariance and order sparsity. Verifying spatial invariance and order sparsity of (a) and (b)

are trivial exercises. We next verify the invariance property of h1 + h2.
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Let h3 = h1 + h2. Then,

h3((x1 + ξ, t1 + τ), (x2 + ξ, t2 + τ))

= h1((x1 + ξ) − (x2 + ξ), (t1 + τ) − (t2 + τ)) + h2((x1 + ξ) − (x2 + ξ), (t1 + τ) − (t2 + τ))

= h1(x1 − x2, t1 − t2) + h2(x1 − x2, t1 − t2)

= h3((x1, t1), (x2, t2)).

Hence h3 is also spatially (and temporally) invariant. Having justified the invariance, from

now on we will write h3(x1 − x2, t1 − t2).

To prove order sparsity, suppose h1 and h2 are poset causal with respect to a support

function f . Consider h3(x1 − x2, t1 − t2) such that (x1, t1) ! (x2, t2). Then by Definition

3.6, h1(x1 − x2, t1 − t2) = 0 and h2(x1 − x2, t1 − t2) = 0. Furthermore, there cannot exist

a (ξ, τ) with both (x1, t1) $ (ξ, τ) and (ξ, τ) $ (x2, t2) simultaneously true (if they were

both true, then by associativity if the partial order relation we would have (x1, t1) $ (x2, t2)

yielding a contradiction). Thus, in (3.6), each term in the integrand is zero, thus giving

h3(x1 − x2, t1 − t2) = 0. !

Definition 3.8. Given a spatially invariant distributed system with impulse response

h(x, t), the system is said to be poset-causal if the impulse response satisfies order sparsity

with respect to a function f satisfying the conditions 1, 2 and 3 of Proposition 3.4.

Since we defined multiplication in such a way that it is consistent with convolution

of impulse response functions, we get the following important theorem as a direct conse-

quence of Proposition 3.5:

Theorem 3.2. The composition of spatially invariant poset-causal systems is also spatially

invariant and poset-causal.

Much like standard LTI systems, infinite-dimensional spatially invariant systems also

have frequency domain representations, Youla parametrization and other standard proper-
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ties [4, 6]. We mention that the fact that poset-causal spatially invariant systems form a

convolutional algebra in the time domain readily implies that they form a multiplicative

algebra in the frequency domain. This in turn enables one to exploit the Youla parametriza-

tion to express the set of achievable closed loop maps as an affine function in the Youla

parameter, thereby raising the possibility of tractable computational methods. We do not

dwell on the computational aspects of the problem here. Instead we study the poset as-

pects and show how conditions that we arrived at using our framework enables us to refine

previously known results.

3.5.1 Relation to Funnel Causality

In [6], Bamieh and Voulgaris introduce a specific class of communication constraints for

spatially invariant systems. They call such systems funnel causal systems. In their paper,

the authors show that convolution of funnel causal impulse responses are also funnel causal,

and that such systems are thus closed under composition. Finally, the authors show that due

to this closure property, the set of all stabilizing funnel causal controllers can be described

in the Youla domain in a convex fashion, thus making it amenable to optimization.

Our results generalize these results by Bamieh and Voulgaris. We show in this subsec-

tion that their main result regarding closure under composition of funnel-causal systems is

essentially a statement about poset causal systems. We show that funnel causal systems

are a sub-class of poset causal systems, i.e. if a system is funnel causal, one can construct

a poset and an associated incidence algebra that contains the impulse response of the given

system. In fact funnel causal systems form a proper subset of poset causal systems, indeed

in the next subsection we will provide examples of poset-causal systems that are not funnel

causal.

We will show that Theorem 3.2 completely generalizes the results in [6]. The outline

of the argument is as follows. Funnel causal systems are defined in terms of concave

support functions (in one dimension), whereas poset-causal systems are defined in terms of
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sub-additive support functions as defined in (3.5). We first show that for functions in one

dimension, concave functions are subadditive. Thus, if f is concave (thus funnel causal),

f is sub additive and by Proposition 3.4 the system is poset causal. Proposition 3.4 shows

that such systems have a naturally associated poset and incidence algebra. By Theorem 3.2

poset-causal (thus funnel-causal) systems are closed under composition. In [6], the authors

define funnel causal systems and the related notion of propagation functions (which are

essentially support functions) in the following way.

Definition 3.9 ([6]). A scalar valued function f (x) is said to be a propagation function

if f is nonnegative, f (0) = 0 and such that { f (x), x ≥ 0} and { f (x), x ≤ 0} are concave

respectively.

Definition 3.10 ([6]). A system is said to have the property of funnel causality if its

impulse response is such that

h(x, t) = 0 for t < f (x),

where f (x) is a propagation function.

This definition essentially imposes a concave, “funnel” shape on the support (prop-

agation) function of the spatio-temporal impulse. We next show that such propagation

functions are in fact subadditive. Hence, by Definition 3.5 and Proposition 3.4 they can be

endowed with a partial order with respect to the propagation function f .

Proposition 3.6. If f : R → R is such that f (0) = 0, f (x) > 0 for x ! 0 and { f (x), x ≥ 0},

{ f (x), x ≤ 0} are concave, then f is subadditive.

Proof. Let us restrict attention to the case where x ≥ 0 (the case where x ≤ 0 is similar).

We first show that over this range, the function f is monotonically increasing (it will be
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decreasing over x ≤ 0). By concavity, for every γ ∈ (0, 1) and t > 0 we have

f (x + t) ≥ γ f (x) + (1 − γ) f
(

x + 1
1−γ
t
)

> γ f (x),

where the last inequality follows from the fact that f (x) > 0 for x ! 0. Since this inequality

is true for every γ ∈ (0, 1) it must be true that f (x + t) ≥ f (x).

Let a, b ≥ 0 (the case where a, b ≤ 0 is similar, and the case where a ≤ 0, b ≥ 0 will be

addressed last). We want to show that f (a + b) ≤ f (a) + f (b). Without loss of generality,

assume a ≤ b. Then b = γa + (1 − γ)b for some γ ∈ [0, 1] (in fact γ = a
b). Let L1 represent

the straight line that passes through the points (a, f (a)) and (a+b, f (a+b)) (see Fig. 3-10).

Consider the point (b, r) ∈ L1 (thus r satisfies r = γ f (a)+(1−γ) f (a+b)). By non-negativity

and concavity of f , we have 0 ≤ r ≤ f (b).

a b a+b

L1

L2

(b,r) f(x)

x

Figure 3-10: Subadditivity of concave support functions.

Thus,
f (a + b) − f (b) ≤ f (a + b) − r

=
r − f (a)
b − a

a,
(3.7)

where the last equality follows from elementary properties of the straight line L1.

Let L2 be the straight line between the points (0, 0) and (b, r). Let (a, t) ∈ L2 be the
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point on this straight line at a. Then

t = η(0) + (1 − η)r

≤ (1 − η) f (b)

≤ f (a),

where the last inequality follows from the facts that the point (a, (1 − η) f (b)) is a point on

the straight line L3 which connects (0, 0) and (b, f (b)) and that f is concave. Substituting

t ≤ f (a) in (3.7), we get

f (a + b) − f (b) ≤
r − t
b − a

a

= t

≤ f (a).

The second equality follows from the fact that the points (0, 0), (a, t), and (b, r) all lie on

the straight line L2. Thus, for a, b ≥ 0, f (a + b) ≤ f (a)+ f (b). As mentioned, the proof for

the case when a, b ≤ 0 is similar.

Now let a ≤ 0, b ≥ 0. Let a + b ≥ 0 (the other case is similar). Since a + b ≤ a and

f is increasing, f (a + b) ≤ f (a) ≤ f (a) + f (b) (recall that the function is nonnegative

everywhere). This completes the proof. !

As a corollary, we recover the following result by Bamieh [6, Lemma 1].

Corollary 3.1. Composition of spatially invariant funnel causal systems is also spatially

invariant and funnel causal.

Proof. By Proposition 3.6, the propagation function in subadditive. By Proposition 3.4,

the propagation function f satisfies all the conditions to define a partial order relation on

Rn × R≥0. Hence, if h(x, t) is funnel causal with respect to the propagation function f , it is

also poset causal with respect to (the partial order defined by) f . !
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Support of impulse response h(x , t)

x

t

t

x

Support of impulse
response h(x, t)

(a) (b)

Figure 3-11: Examples of poset causal systems. (a) A centralized causal system. (b) A
completely decentralized causal system.

3.5.2 Examples of Poset Causal Systems

In this subsection, we consider some examples of poset-causal systems to show how some

interesting communication structures can be modeled via this poset framework.

Example 3.4. We begin with the trivial example where the support function f (x) = −∞ for

all x ! 0 and f (0) = 0. Note that subadditivity is trivially satisfied. Then the partial order

on Rn × R≥0 is simply (x1, t1) $ (x2, t2) if t1 ≤ t2. Hence, the set of poset-causal impulse

responses is the set of impulse responses such that h(x1 − x2, t1 − t2) = 0 if t1 > t2. This is

simply the impulse responses for the set of centralized causal systems where information

propagates instantaneously. The spatial variables have no communication constraints, all

subsystems in space have access to all information about other subsystems upto the present

time t.

On the opposite end of the spectrum, we have the completely decentralized case as we

illustrate in Example 3.5 below.

Example 3.5. Let f (x) = ∞ for x ! 0 and f (0) = 0. In this case, (x1, t1) ! (x2, t2) if

1) t1 ≤ t2

2) f (x2 − x1) ≤ t2 − t1.

However, if x2 ! x1, f (x2− x1) = ∞, hence the second condition in Definition 3.5 can never
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be satisfied for distinct x1 and x2. This corresponds to the case when all subsystems are

incomparable with respect to each other. This resulting incidence algebra corresponds to

the set of systems that are causal and completely decentralized, i.e. the impulse response

h(x, t) (which corresponds to an impulse at (x, t) = (0, 0)) has support only on the surface

x = 0, t ≥ 0, and is zero for other values of x.

Example 3.6. A class of systems that has been studied in the literature corresponds to the

case where the support function f (x) = c|x| where x is understood to be one-dimensional.

Such systems have been called cone causal systems. Note that f (0) = 0, f (x) > 0 for x ! 0.

Subadditivity of f follows from the triangle inequality (alternatively, from the concavity of

|x|). Hence, f satisfies all the conditions to prescribe a partial order on Rn × R≥0. The

impulse-response support for functions in this incidence algebra are depicted in Figure

3-9. Such systems draw motivation from the following interpretation. Suppose the system

responds to an impulse at the origin. Then h(x, t) is going to be supported on a light cone

originating at the origin with speed of light equal to c. In other words the system has a

constant (but finite) speed of signal propagation. Such examples arise naturally in physical

systems, for example linear wave equations as described by (2.13).

Example 3.7. Another class of poset causal systems that have been studied in the liter-

ature are funnel causal systems. As described in Section 3.5.1 funnel causal systems are

subclasses of poset causal systems. For more details and examples, the reader is referred

to [6].

Example 3.8. The examples described up to this point correspond to systems with a single-

dimensional spatial domain (X = R), we now consider an examples with multi-dimensional

spatial domains (X = Rn). (We remind the reader that the result for funnel-causal systems

as presented in [6], closure under convolution only holds for one dimensional systems).

The advantage of our approach is that it abstracts the essential property for convolutional

closure to hold. This essential property that we identify is subadditivity, which arises natu-

rally for many classes of (multi-dimensional) functions.
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A natural class of support functions f (x) are the p-norms f (·) = ‖·‖p for p ≥ 1. Clearly,

f (0) = 0 and f (x) > 0 for x ! 0 by definition of a norm. Also, by the triangle inequality

for norms,

f (x1 + x2) = ‖x1 + x2‖p ≤ ‖x1‖p + ‖x2‖p = f (x1) + f (x2).

Again, since f satisfies all the properties necessary to impose a poset structure on the

system, the incidence algebra based argument tell us that the corresponding impulses will

be closed under convolution.

It is interesting to note that, in [6], the authors identified concavity of f as being the

property essential to having convolutional closure. In this example, norms in general are

not concave, on the contrary, they are convex, yet we have convolutional closure. This

further strengthens the argument that sub-additivity is a more fundamental property. (In the

one-dimensional case, of course, the p-norms coincide with the absolute value function).

In the next example we further investigate the relationship between funnel causality

and poset causality. As already mentioned, the property at the heart of funnel causality

is concavity, whereas the property at the heart of poset causality is sub-additivity. We

have already shown that in one dimension, concavity implies sub-additivity so that funnel-

causal systems are poset causal. It is natural to wonder whether the converse is true, i.e.

whether all subadditive functions are concave. The p norms on Rn for n > 1 and p > 1)

are examples of subadditive functions which are non-concave (in fact, they are convex).

Example 3.9 below is an another example of a sub-additive function on the real line which

is not concave (nor convex).

Example 3.9. Consider the function f : R→ R (see Fig. 3-12 given by

f (x) =



























































|x| for |x| ≤ 1

2 − x for 1 < x ≤ 1 + ε

2 + x for − 1 − ε ≤ x < −1

1 − ε for |x| > 1 + ε.
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1 + ε1-1-1-ε

1

1-ε

x

t

f(x)

Support of impulse response h(x, t)

Figure 3-12: A sub-additive non-concave support function.

Here we assume that ε is a sufficiently small positive number, say 0 < ε < 1
4 . One needs

to verify sub-additivity, i.e. f (a+b) ≤ f (a)+ f (b), it is straightforward to do so by verifying

several sub-cases.

3.6 Quadratic Invariance and Poset Structure

We remind the reader that quadratic invariance [44] characterizes the class of problems that

can be convexified in the Youla domain as described in Section 2.2.3. In this section we

want to study the connection between quadratic invariance and posets. We have seen that

poset structure implies that the problem is quadratically invariant. We are now interested

in understanding the converse, i.e. “does quadratic invariance imply existence of poset-like

structure?” We will see that quadratic invariance, in a certain restricted setting, closely

resembles the transitivity property. As argued earlier, posets provide the right language

to describe transitive relations. In what follows, we make this connection more concrete.

Connections between quadratic invariance and partially nested structures as defined in a

team-theoretic setting by Ho and Chu [25] have been studied and pointed out by Rotkowitz

[40]. The team theoretic problem considers a scenario where there are multiple decision

makers who must each make a decision in some order. The paper considers a scenario
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where the order in which decisions are made satisfy certain precedence relations. (Though

this terminology is not used in these papers, these precedence relations are, in fact, partial

order relations.) The paper by Ho [25] shows that problems with this precedence structure

(called partially nested problems) are amenable to convex optimization, and moreover, that

optimal controllers are linear. Rotkowitz shows that existence of these precedence relations

is equivalent to quadratic invariance. Our results are similar in spirit, in fact Proposition

3.7 (below) is essentially contained in [40]. However, we provide a finer characterization

of quadratic invariance in terms of posets and quosets.

Consider the problem of designing an optimal controller K ∈ S as described in problem

(2.4). In this section we revisit the model where decentralization constraints are viewed as

sparsity constraints on the controller. Let K ∈ Rny × Rnu . Define a subset of indices of K

via J ⊆
{

1, . . . , ny
}

× {1, . . . , nu}. Then the subspace constraint is defined as Ki j = 0 for all

(i, j) ∈ J . Define

Sparsity(S ) =
{

K | Ki j = 0 for (i, j) ∈ J and Ki j = 1 for (i, j) ∈ Jc
}

.

Quadratic invariance reduces to the following transitive property in this model [44, Theo-

rem 26]:

Theorem 3.3. The subspace S is quadratically invariant with respect to a specified plant

G if and only if for all K ∈ Sparsity(S ) and all i, j, k, l,

Ki jG jkKkl(1 − Kil) = 0. (3.8)

Remark Let us interpret equation (3.8) in an intuitive way. Let us denote the constraint

Ki j ! 0 by i →K j (which denotes that there is a path from i to j in the controller) and

Gjk ! 0 by j →G k (i.e. that there is a path from j to k in the plant). Then the equation

(3.8) states that:

i →K j, j →G k, k →K l implies i →K l. (3.9)
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The transitive structure becomes more apparent now. What quadratic invariance is saying is

that the overall graph of the closed loop (which is comprised of a combination of subgraphs

of the plant and the controller) is transitively closed. The condition means that if l is not

allowed to communicate to i in the controller then there must exist no path from l to i

around the closed loop (because such a path would produce a way for l to communicate to

i by going once around the closed loop).

When the graph inside the plant and the controller is identical, quadratic invariance reduces

to transitive closure of this (identical) graph. We next show that in this scenario quadratic

invariance corresponds to existence of poset structure.

3.6.1 Existence of Posets

Consider a plant G and a decentralized control problem of the form (2.4) with sparsity

constraints. LetJ be the index set on which K is required to be sparse so that the constraint

set S is described by

S =
{

K | Ki j = 0 for (i, j) ∈ J
}

.

We consider the square case i.e. ny = nu. Let N =
{

1, . . . , ny
}

. We say that a given

decentralized control problem is plant-controller symmetric if the given plant also satisfies

the sparsity constraints of the controller (i.e. G ∈ S ). In this setup, notice that quadratic

invariance (3.8) is equivalent to the fact thatJc is transitively closed, i.e.

(i, j) ∈ Jc, ( j, k) ∈ Jc, (k, l) ∈ Jc ⇒ (i, l) ∈ Jc. (3.10)

Proposition 3.7. Consider a plant-controller symmetric control problem. Suppose the fol-

lowing assumptions are true of the index set:

1. (i, i) ∈ Jc

2. For distinct i and j we have (i, j) ∈ Jc ⇒ ( j, i) ∈ J .
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3. The problem is quadratically invariant.

Then there exists a poset P over ny elements such that S is the incidence algebra of P.

Proof. Since both G and K are ny × ny matrices, it is enough to construct a poset on ny

elements and show that the sparsity pattern of S exactly corresponds to the incidence al-

gebra of this poset. Let us define our candidate for the partial order $ as follows: i $ j if

(i, j) ∈ Jc. We need to verify that this is indeed a partial order relation.

Since (i, i) ∈ Jc, we clearly have i $ i thus verifying reflexivity. If i $ j and j $ i then

it must be the case that (i, j) ∈ Jc and ( j, i) ∈ Jc. However the second assumption in the

statement of the proposition excludes the possibility of such i, j being distinct, thus i = j

and we have anti-symmetry. Finally, suppose we have i $ j and j $ l (i.e. (i, j) ∈ Jc and

( j, l) ∈ Jc). Choose index k such that k = j and use quadratic invariance to conclude from

equation (3.10) that (i, l) ∈ Jc. Thus i $ l, verifying transitivity.

The incidence algebra of this poset is the set of elements such that Ki j = 0 if i ! j, (i.e.

(i, j) ∈ J) which is exactly the definition of S . !

3.6.2 Existence of Quosets

We now generalize Proposition 3.7. It turns out that one can in fact relax the second as-

sumption (anti-symmetry). It is possible to have a more general notion of a partial order in

the absence of anti-symmetry. In that setting, distinct elements can be equivalent, and the

partial order is defined on the quotient set modulo the equivalence. The resulting object is

similar to a poset (called a quotient poset or quoset, sometimes it is called a preorder in the

literature). There is a corresponding algebraic object, analogous to the incidence algebra,

called the structural matrix algebra [3]. We introduced these notions in section 2.1.2.

The analogue of Proposition 3.7 to quosets is the following.

Proposition 3.8. Consider a plant-controller symmetric control problem. Suppose the fol-

lowing assumptions are true of the index set:
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1. (i, i) ∈ Jc

2. The problem is quadratically invariant.

Then there exists a quoset Q over ny elements such that S is the structural matrix algebra

of Q.

Proof. Again we construct a candidate quoset and verify the associated properties. We

say that i " j if (i, j) ∈ Jc. The verification of the properties are very similar to that of

Proposition 3.7. !

We have thus seen that the second condition from Proposition 3.7 can be relaxed, and

that in the relaxed setting quadratic invariance is equivalent to existence of quoset structure

in the problem. What happens when condition (1) is relaxed (i.e. allow constraints Kii = 0

for some i)? We answer this in the next proposition.

Definition 3.11. Given J , we call J̄ = J \⋃

(i, i) the reflexive closure of J . This is

simply the operation of adding the reflexive relation to the set Jc which may not a priori

satisfy reflexivity.

We will say that the set Jc possesses quoset structure if the collection of relations

(i, j) ∈ Jc satisfy the axioms of a quoset, i.e.

1. (i, i) ∈ Jc

2. (i, j) ∈ Jc and ( j, k) ∈ Jc implies (i, k) ∈ Jc.

Proposition 3.9. Suppose we have a plant-controller symmetric control problem with a

specified index set (of sparsity constraints) J . (The sparsity constraints are thus Ki j = 0

for (i, j) ∈ J .) The problem is quadratically invariant if and only if (J̄)c has a quoset

structure.

Proof. We first note that taking reflexive closure of a transitively closed set does not affect

any of the relations between distinct elements. Define I = Jc. Define i " j if (i, j) ∈ I.
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Suppose we add the reflexive relations so thatI′ = I∪
(⋃

i∈N {(i, i)}
)

. Consider the transitive

closure of I′. The only way new relations can be added is by combining transitive relations

with the newly added reflexive relations. Thus if i " j and j " k, we know that for distinct

i, j, k we already have i " k. If j = i or j = k we get no new relations. Hence I′ is its own

transitive closure.

Suppose the reflexive closure is a quoset. We know that in the closure operation, no new

relations between distinct elements were introduced, hence transitivity is unaffected. By

(3.10) the problem is quadratically invariant. Conversely, if the problem is quadratically

invariant, we know from (3.10) that I is transitively closed. Thus if we take the reflexive

closure, by Proposition 3.8 the resulting set is a quoset. !

3.7 Conclusion

We presented a poset based framework to study decentralized control problems. We showed

the connection between partial order structure and several classes of decentralized control

problems that have been studying in the past. Indeed, in our view posets provide a language

and set of tools to study all these different cases in a unified setting. We also showed the

close connection between posets and the algebraic property known as quadratic invariance.

The work in this chapter shows that all these classes of problems have an important al-

gebraic closure property. This property allows optimal control problems to be reformulated

into convex ones in the Youla domain, thereby opening the possibility of devising efficient

computational procedures. We remind the reader, however, that statement of the control

problem as a convex problem in the Youla domain merely hints at this possibility. The

reformulated problem, though convex, is nevertheless infinite-dimensional. While com-

putational techniques do exist for approximating the solution, they suffer from numerical

instability and severe issues related to undesirable growth of controller orders near opti-

mality (see [46] and the references therein). This is one important reason (among others)
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to seek state-space solutions, the topic of the next chapter.
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Chapter 4

H2 Optimal Control over Posets

4.1 Introduction

While it is possible to design optimal decentralized controllers for a fairly large class of

systems known as quadratically invariant systems in the frequency domain via the Youla

parametrization, there are some important drawbacks with such an approach. Typically

Youla domain techniques are not computationally efficient, and the degree of optimal con-

trollers synthesized with such techniques is not always well-behaved. In addition to com-

putational efficiency, issues related to numerical stability also arise. Typically, operations

at the transfer function level are inherently less stable numerically. Moreover, such ap-

proaches typically do not provide insight into the structure of the optimal controller. These

drawbacks emphasize the need for state-space techniques to synthesize optimal decentral-

ized controllers. State-space techniques are usually computationally efficient, numerically

stable, and provide degree bounds for optimal controllers. In our case we will also show

that the solution provides important insight into the structure of the controller.

In this chapter we consider the problem of designing H2 optimal decentralized con-

trollers for poset-causal systems. The control objective is the design of optimal feedback

laws that have access to local state information. We emphasize here that different subsys-
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tems do not have access to the global state, but only the local states of the systems in a

sense that will be made precise in the next section. The main contributions in the chapter

are as follows:

• We show a certain crucial separability property of the problem under consideration.

This result is outlined in Theorem 4.2. This makes it possible to decompose the

decentralized control problem over posets into a collection of standard centralized

control problems.

• We give an explicit state-space solution procedure in Theorem 4.3. To construct the

solution, one needs to solve standard Riccati equations (corresponding to the different

sub-problems). Using the solutions of these Riccati equations, one constructs certain

block matrices and provides a state-space realization of the controller.

• We provide bounds on the degree of the optimal controller in terms of a parameter

σP that depends only on the order-theoretic structure of the poset (Corollary 4.2).

• In Theorem 4.4 we briefly describe the structural form of the optimal controller.

We introduce a novel pair of transfer functions (Φ, Γ) which are inverses of each

other, and which capture the prediction structure in the optimal controller. We call

Φ the propagation filter, it plays a role in propagating local signals (such as states)

upstream based on local information. We call Γ the differential filter, it corresponds

to computation of differential improvement in the prediction of the state at different

subsystems. The discussion related to structural aspects is brief and informal in this

chapter. In Chapter 5 we discuss architectural issues formally and in depth.

In an interesting paper by Swigart and Lall [51], the authors consider a state-space

approach to the H2 optimal controller synthesis problem over a particular poset with two

nodes corresponding to the nested case (see Section 3.1.1). Their approach is restricted to

the finite time horizon setting (although in a subsequent chapter [52], they extend this to
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the infinite time horizon setting), and uses a particular decomposition of certain optimality

conditions. In this nested controller setting, they synthesize optimal controllers and provide

insight into the structure of the optimal controller. By using our new separability condi-

tion (which is related to their decomposition property, but which we believe to be more

fundamental) we significantly generalize those results in this chapter. We provide a solu-

tion for all posets and for the infinite time horizon. In recent work [44], Rotkowitz and Lall

proposed a state-space technique to solveH2 optimal control problems for quadratically in-

variant systems (which could be used for poset-causal systems). Two important drawbacks

of their approach are: (a) one would need to solve significantly larger Riccati equations

thereby greatly increasing the required computational effort, and (b) the lack of insight into

the form of the optimal controller. Our approach for poset-causal systems is more efficient

computationally. Moreover, our approach also provides insight into the structure of the

optimal controllers.

The rest of this chapter is organized as follows. In Section 4.2 we introduce the neces-

sary preliminaries regarding the problem. In Section 4.3 we describe our solution strategy.

In Section 4.4 we present the main results. We devote Section 4.5 to a discussion of the

main results, and their illustration via examples. Section 4.6 contains the proofs of the main

results.

4.2 Preliminaries

In this section we introduce some additional concepts from order theory, the control the-

oretic setup and some notation. Once again P = (P,$) is a poset, I(P) is its incidence

algebra. Some examples that will be useful to keep in mind in this chapter are shown in

Fig. 4-1.

Let P = (P,$) be a poset and let p ∈ P. We define ↑ p = {q ∈ P | p $ q} (we call it the

upstream set of p). Let ↑↑p = {q ∈ P | p $ q, q ! p} (called the strict upstream set). Simi-
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Figure 4-1: Hasse diagrams of some posets.

larly, let ↓ p = {q ∈ P | q $ p} (called a downstream set), and ↓↓p = {q ∈ P | q $ p, q ! p}.

We will often refer to elements q ∈ ↑↑p as upstream elements of p and q ∈ ↓↓p as down-

stream elements of p. Define an interval [i, j] = {p ∈ P | i $ p $ j}. A chain is a subset

C ⊆ P which is totally ordered (i.e. any two elements of C are comparable). A minimal

element of the poset is an element p ∈ P such that if q $ p for some q ∈ P then q = p. (A

maximal element is defined analogously).

In the poset shown in Fig. 4-1(d), ↑ 1 = {1, 2, 3, 4}, whereas ↑ ↑1 = {2, 3, 4}. Similar

↓1 = ∅, ↓4 = {1, 2, 3, 4}, and ↓↓4 = {1, 2, 3}. Given i $ j, let [i → j] denote the set of all

chains from i to j of the form {i, i1}, . . . , {ik, j} such that i $ i1 $ · · · $ ik $ j. For example,

in the poset in Fig. 4-1(c), [1 → 3] = {{1, 2, 3} , {1, 3}}. A standard corollary of Theorem

2.1 is the following.

Corollary 4.1. Suppose A ∈ I(P). Then A is invertible if and only if Aii is invertible for all

i ∈ P. Furthermore A−1 ∈ I(P), and the inverse is given by:

[A−1]i j =























A−1
ii

∑

pi j∈[ j→i]
∏

{l,k}∈pi j(−AlkA
−1
kk ) if i ! j

A−1
ii if i = j.

4.2.1 Control Theoretic Preliminaries

We consider the following state-space system in discrete time:
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x[t + 1] = Ax[t] + w[t] + Bu[t]

z[t] = Cx[t] + Du[t].
(4.1)

In this chapter we present the discrete time case only, however, we wish to emphasize

that analogous results hold in continuous time in a straightforward manner. In this chap-

ter we consider what we will call poset-causal systems. We think of the system matrices

(A, B,C,D) to be partitioned into blocks in the following natural way. Let P = (P,$ )

be a poset with P = {1, . . . , s}. We think of this system as being divided into s sub-

systems, with sub-system i having some states xi[t] ∈ Rni , and control inputs ui[t] ∈ Rmi

for i ∈ {1, . . . , s}. The external output is z[t] ∈ Rp. The signal w[t] is a disturbance sig-

nal. (To use certain standard state-space factorization results, we assume that CTD = 0

and DTD : 0). The states and inputs are partitioned in the natural way such that the

sub-systems correspond to elements of the set P with x[t] = [x1[t] |x2[t] |. . . |xs[t] ]T , and

u[t] = [u1[t] |u2[t] |. . . |us[t] ]T . This naturally partitions the matrices A, B,C,D into appro-

priate blocks so that A =
[

Ai j
]

i, j∈P
, B =

[

Bi j
]

i, j∈P
, C =

[

Cj
]

j∈P
(partitioned into columns),

D =
[

Dj
]

j∈P
. (We will throughout deal with matrices at this block-matrix level, so that Ai j

will unambiguously mean the (i, j) block of the matrix A.) Using these block partitions, one

can define the incidence algebra at the block matrix level in the natural way. We denote by

IA(P),IB(P) the block incidence algebras corresponding to the block partitions of A and

B. Often, matrices will have different (but compatible) dimensions and the block structure

will be clear from the context. In these cases, we will abuse notation and will drop the

subscript and simply write I(P).

Definition 4.1. We say that a state-space system is P-poset-causal (or simply poset-

causal) if A ∈ IA(P) and B ∈ IB(P).

Example 4.1. We use this example to illustrate ideas and concepts throughout this chapter.
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Consider the system

x[t + 1] = Ax[t] + w[t] + Bu[t]

z[t] = Cx[t] + Du[t]

y[t] = x[t],

with matrices

A =



























































−0.5 0 0 0

−1 −0.25 0 0

−1 0 −0.2 0

−1 −1 −1 −0.1



























































B =



























































1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1



























































(4.2)

C =























I4×4

04×4























D =























04×4

I4×4























. (4.3)

This system is poset-causal with the underlying poset described in Fig. 4-1(d). Note that

in this system, each subsystem has a single input, a single output and a single state. The

matrices A and B are in the incidence algebra of the poset.

Recall that the standard notion of causality in systems theory is based crucially on an

underlying totally ordered index set (time). Systems (in LTI theory these are described by

impulse responses) are said to be causal if the support of the impulse response is consistent

with the ordering of the index set: an impulse at time zero is only allowed to propagate in

the increasing direction with respect to the ordering. This notion of causality can be readily

extended to situations where the underlying index set is only partially ordered. Indeed this

abstract setup has been studied by Mullans and Elliott [34], and an interesting algebraic

theory of systems has been developed.

Our notion of poset-causality is very much in the same spirit. We call such systems

poset-causal due to the following analogous property among the sub-systems. If an input
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is applied to sub-system i via ui at some time t, the effect of the input is seen by the states

x j for all sub-systems j ∈↑ i (at or after time t). Thus ↑ i may be seen as the cone of

influence of input i. We refer to this causality-like property as poset-causality. This notion

of causality enforces (in addition to causality with respect to time), causality with respect

to the subsystems via a poset. For most of this chapter we will deal with systems that

are poset-causal (with respect to some arbitrary but fixed finite poset P). Before we turn

to the problem of optimal control we state an important result regarding stabilizability of

poset-causal systems of the form (4.1) by poset-causal controllers.

Theorem 4.1. The poset-causal system (4.1) is stabilizable by a poset-causal controller

K ∈ I(P) if and only if the (Aii, Bii) are stabilizable for all i ∈ P.

Proof. See Section 4.6. !

Note that this result may be viewed as a specialization of the stabilization result in

Chapter 3 Lemma 3.2 for state-space systems of the form (4.1) with state feedback. In this

chapter, we make the following important assumption about the stabilizability of the sub-

systems. By the preceding theorem, this assumption is necessary and sufficient to ensure

that the systems under consideration have feasible controllers.

Assumption 1: Given the poset-causal system of the form (4.1), we assume that the sub-

systems (Aii, Bii) are stabilizable for all i ∈ {1, . . . , s}.

In the absence of this assumption, there is no poset-causal stabilizing controller to (4.1),

and hence the problem of finding an optimal one becomes vacuous. This assumption is

necessary and sufficient for the problem to be well-posed. Moreover, in what follows,

we will need the solution of certain standard Riccati equations. Assumption 1 ensures

that all of these Riccati equations have well-defined stabilizing solutions. This stabilizing

property of the Riccati solutions will be useful for proving internal stability of the closed

loop system.
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The system (4.1) may be viewed as a map from the inputs w, u to outputs z, x via

z = P11w + P12u

x = P21w + P22u

where
























P11 P12

P21 P22

























=

























C(zI − A)−1 C(zI − A)−1B + D

(zI − A)−1 (zI − A)−1B

























=











































A I B

C 0 D

I 0 0











































.

(4.4)

A controller u = Kx induces a map Tzw from the disturbance input w to the exogenous

output z via

Tzw = P11 + P12K(I − P22K)−1P21.

Thus, after the controller is interconnected with the system, the closed-loop map is Tzw.

The objective function of interest is to minimize theH2 norm [66] of Tzw which we denote

by ‖Tzw‖.

Information Constraints on the Controller

Given the system (4.1), we are interested in designing a controller K that meets certain

specifications. In traditional control problems, one requires K to be proper, causal and

stabilizing. We impose additional constraints on the controller related to decentralization.

The decentralization constraint of interest in this chapter is one where the controller mirrors

the structure of the plant, and is therefore also in the block incidence algebra IK(P) (we

will henceforth drop the subscripts and simply refer to the incidence algebra I(P)). This

translates into the requirement that input ui (which corresponds to the input at subsystem i)

only has access to states x j for j ∈↓ i thereby enforcing poset-causality constraints also on
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the controller. In this sense the controller has access to local states, and we thus refer to it

as a decentralized state-feedback controller.

Problem Statement

Given the poset-causal system (4.4) with poset P = (P,$), |P| = s, solve the optimization

problem:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖2

subject to K ∈ I(P)

K stabilizing.

(4.5)

The main problem under consideration is to solve the above stated optimal control problem

in the controller variable K. The space of solutions of K is the set of all rational proper

transfer function matrices that internally stabilize the system (4.1). In the absence of the

decentralization constraints K ∈ I(P) this is a standard, well-studied control problem that

has an efficient finite-dimensional state-space solution [66]. The main objective of this

chapter is to construct such a solution for the poset-causal case.

Notation

Given a matrix Q, let Q( j) denote the jth column of Q. We denote the ith component of the

vector Q( j) to be Q( j)i. For a poset P with incidence algebra I(P), we denote the sparsity

pattern of the jth column of the matrices in I(P) by:

I(P) j := {v|vi = 0 for j ! i} .

In the above definition v is understood to be a vector composed of |P| blocks, with sparsity

being enforced at the block level.

Given the data (A, B,C,D), we will often need to consider sub-matrices or embed a

sub-matrix into a full dimensional matrix by zero padding. Some notation for that purpose

93



we will use is the following:

1. Define Q↑ j = [Qi j]i∈↑ j (so that it is the jth column shortened to include only the

nonzero entries).

2. Also define A(↑ j) = [A(i)]i∈↑ j so that it is the sub-matrix of A containing all rows and

exactly those columns corresponding to the set ↑ j.

3. Define A(↑ j, ↑ j) = [Akl]k,l∈↑ j so that it is the (↑ j, ↑ j) sub-matrix of A (containing

exactly those rows and columns corresponding to the set ↑ j).

4. Sometimes, given a block |↑ j| × |↑ j| matrix we will need to embed it into a block

matrix indexed by the original poset (i.e. a s × s matrix) by padding it with zeroes.

Given K (a block |↑ j| × |↑ j| matrix) we define:

[K̂]lm =























Klm if l,m ∈ ↑ j

0 otherwise.

5. Ei = [ 0 . . . I . . . 0 ]T be the tall block matrix (indexed with the elements of

the poset) with an identity in the ith block row.

6. Let S ⊆ P. Define ES = [Ei]i∈S . Note that given a block s × s matrix M, ME↑ j =

M(↑ j) is a matrix containing the columns indexed by ↑ j.

7. Given matrices Ai, i ∈ P, we define the block diagonal matrix:

diag(Ai) =









































A1
. . .

As









































.

Recall that every poset P has a linear extension (i.e. a total order on P which is consistent

with the partial order $). For convenience, we fix such a linear extension of P, and all
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indexing of our matrices throughout the chapter will be consistent with this linear extension

(so that elements of the incidence algebra are lower triangular).

Example 4.2. Let P be the poset shown in Fig. 4-1(d). We continue with Example 4.1 to

illustrate notation. (Note that ↑2 = {2, 4}). As per the notation defined above,

A↑2 =























−.25

−1























A(↑2) =



























































0 0

−0.25 0

0 0

−1 −0.1



























































A(↑2, ↑2) =























−0.25 0

−1 −0.1























.

Also, if K(↑2, ↑2) =























1 2

3 4























, then K̂(↑2, ↑2) =



























































0 0 0 0

0 1 0 2

0 0 0 0

0 3 0 4



























































.

4.3 Solution Strategy

In this section we first remind the reader of a standard reparametrization of the problem

known as the Youla parametrization. Using this reparametrization, we illustrate the main

technical idea of this chapter using an example.

4.3.1 Reparametrization

Problem (4.5) as stated has a nonconvex objective function. Typically [44, 47], this is con-

vexified by a bijective change of parameters given byR := K(I−P22K)−1. When the sparsity

constraints are poset-causal (or quadratically invariant, more generally), this change of pa-

rameters preserves the sparsity constraints, and R inherits the sparsity constraints of K. The

resulting infinite-dimensional problem is convex in R.
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For poset-causal systemswith state-feedback we will use a slightly different parametriza-

tion. Firstly, we note that for poset-causal systems, the matrices A and B are both in the

block incidence algebra. As a consequence of (4.4), P21 and P22 are also in the incidence

algebra. This structure, which follows from the closure properties of an incidence algebra,

will be extensively used. Since P21, P22 ∈ I(P) the optimization problem (4.5) maybe be

reparametrized as follows. Set

Q := K(I − P22K)−1P21. (4.6)

Note that the map K .→ K(I − P22K)−1P21 is bijective (provided the inverse exists). Given

Q, K can be recovered using

K = QP−1
21 (I + P22QP

−1
21 )

−1. (4.7)

Moreover, since I, P21, P22 all lie in the incidence algebra, K ∈ I(P) if and only if Q ∈

I(P). Using this reparametrization the optimization problem (4.5) can be recast as:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(4.8)

Remarks 1. We note that P21 = (zI − A)−1, and hence (4.7), which involves P−1
21 may

potentially be improper. However, we will prove that for the optimal Q in (4.8), this

expression is proper and corresponds to a rational controller K∗.

2. For the objective function to be bounded, the optimal Q would have to render P11 +

P12Q stable. However, one also requires that the overall system is internally stable.

We relax this requirement on Q and later show that K∗ is nevertheless internally

stabilizing. Thus (4.8) is in fact a relaxation of (4.5) and thus its optimal value (we

call it v∗
2) is no larger than the optimal value of (4.5). We show that the final controller
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K∗ achieves this lower bound v∗
2 and is also internally stabilizing.

We would like to emphasize the very important role played by the availability of full

state-feedback. As a consequence of state-feedback, we have that P21 = (zI − A)−1. Thus

P21 is square, invertible (though the inverse is improper), and in the incidence algebra. It

is this very important feature of P21 that allows us to use this modified parametrization

mentioned (4.6) in the preceding paragraph. This parametrization enables us to rewrite the

problem in the form (4.8). This form will turn out to be crucial to our main separability

result (Theorem 4.2), which enables us to separate the decentralized problem into a set of

decoupled centralized problems.

A main step in our solution strategy will be to reduce the optimal control problem

to a set of standard centralized control problems, whose solutions may be obtained by

solving standard Riccati equations. The key result about centralized H2 optimal control is

as follows.

Lemma 4.1. Consider a system given by (4.4), along with the following optimal control

problem:

minimize
Q

‖P11 + P12Q‖2. (4.9)

Suppose the pair (A, B) is controllable, CTD = 0, and DTD : 0. Then the following Riccati

equation has a unique symmetric and positive definite solution:

X = CTC + ATXA − ATXB(DTD + BTXB)−1BTXA. (4.10)

Let K be obtained from this unique positive definite solution via:

K = (DTD + BTXB)−1BTXA. (4.11)
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Then the optimal solution to (4.9) is given by:

Q = −K(zI − (A − BK))−1

=























A − BK I

−K 0























.
(4.12)

(We will often refer to the trio of equations (4.10), (4.11), (4.12) by (K,Q, P) = Ric(A, B,C,D).)

Proof. The proof is based on standard spectral factorization techniques. A proof may be

found in [52, Lemma 5, Lemma 8]. !

4.3.2 Separability of Optimal Control Problem

We next illustrate the main solution strategy via a simple example. Consider the decentral-

ized control problem for the poset in Fig. 4-1(b). Using the reformulation (4.8) the optimal

control problem (4.5) may be recast as:

minimize
Q

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

P11 + P12









































Q11 0 0

Q21 Q22 0

Q31 0 Q33









































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

Note that P12(↑1) = P12, P12(↑2) = P12(2) (second column of P12), and P12(↑3) = P12(3).

Similarly Q↑1 =

[

QT
11 QT

21 QT
31

]T
, Q↑2 = Q22, and Q↑3 = Q33. Due to the column-wise

separability of theH2 norm, the problem can be recast as:

minimize
Q

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

P11(1) + P12









































Q11

Q21

Q31









































∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

+ ‖P11(2) + P12(2)Q22‖2

+ ‖P11(3) + P12(3)Q33‖2
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Since the sets of variables appearing in each of the three quadratic terms is different, the

problem now may be decoupled into three separate sub-problems, each of which is a stan-

dard centralized control problem. For instance, the solution to the second sub-problem can

be obtained by noting the realizations of P11(2) and P12(2) and then using (4.12). In this

instance,

(K,Q∗
22, P) = Ric(A22, B22,C2,D2).

In a similar way, the entire matrix Q∗ can be obtained, and by design Q∗ ∈ I(P) (and is

stabilizing). To obtain the optimal K∗, one can use (4.7). In fact, using (4.7) it is possible

to give an explicit state-space formula for K∗, this is the main content of Theorem 4.3 in

the next section.

4.4 Main Results

In this section, we present the main results of the chapter. The proofs are available in

Section 4.6.

4.4.1 Problem Decomposition and Computational Procedure

Theorem 4.2 (Decomposition Theorem). Let P be a poset and I(P) be its incidence alge-

bra. Consider a poset-causal system given by (4.4). The problem (4.8) is equivalent to the

following set of |P| independent decoupled problems:

minimize
Q

‖P11( j) + P12(↑ j)Q↑ j‖2 ∀ j ∈ P. (4.13)

Theorem 4.2 is essentially the first step towards a state-space solution. The advantage

of this equivalent reformulation of the problem is that we now have s = |P| sub-problems,

each over a different set of variables (thus the problem is decomposed). Moreover, each

sub-problem corresponds to a particular standard centralized control problem, and thus the
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optimal Q in (4.5) can be computed by simply solving each of these sub-problems.

The subproblems described in (4.13) have the following interpretation. Once a con-

troller K, or equivalentlyQ is chosen a map Tzw from the exogenous inputs w to the outputs

z is induced. Let us denote by Tzw(1) to be the map from the first input z1 to all the outputs

w (this corresponds to the first column of Tzw). Similarly, the map from zi to w for i ∈ P

is given by Tzw(i). These subproblems correspond to the computation of the optimal maps

T ∗(i)
zw for all i ∈ P from the ith input zi to the output w. The decomposability of theH2 norm

implies that these maps may be computed separately, and the performance of the overall

system is simply the aggregation of these individual maps.

Our next theorem provides an efficient computational technique to obtain the required

state-space solution. To obtain the solution, one needs to solve Riccati equations corre-

sponding to the sub-problems we saw in Theorem 4.2. We combine these solutions to

form certain simple block matrices, and after simple LFT transformations, one obtains the

optimal controller K∗.

Before we state the theorem, we introduce some relevant notation. Let

(K(↑ j, ↑ j),Q( j), P( j)) = Ric (A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)) ∀ j ∈ P.

The matrix

Aj
c := A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j) ∀ j ∈ P

corresponding to the closed loop state transition matrix will appear often. We introduce

two matrices related to the above solution, namely:

A = diag(A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j))

K = diag(K(↑ j, ↑ j)).
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We will see later on that A is the closed-loop state transition matrix under a particular

indexing of the states. We introduce three matrices related to structure of the poset, namely:

Π1 =



























































E1 0 . . . 0

0 E1 . . . 0
...
...
. . .

0 0 E1



























































,

Π2 = diag
([

E2 . . . E|↑ j|
])

,

R =
[

E↑1 . . . E↑s

]

.

(4.14)

(In Π1, the jth diagonal block E1 has |↑ j| number of block rows. To be precise, it is a

(
∑

k∈↑ j nk) × nj matrix with the first nj × nj block as the identity and the rest zeroes.) These

matrices also have a natural interpretation. In writing the overall states of the closed loop in

vector form, we first write the states of subsystem 1 (i.e. x1) of the plant, then the states of

the controller for subsystem 1 (i.e. q(1)), then subsystem 2 plant states and controller states,

and so on. In this indexing,Π1 is a projection operator that projects onto the coordinates of

all the state variables x1, . . . , x2. Π2 is simply the matrix that projects onto the orthogonal

complement, i.e. the controller variables q(1), . . . , q(s). The optimal controller and other

related objects can be expressed in terms of the following matrices:

AΦ = ΠT2AΠ2,

BΦ = ΠT2AΠ1,

CΦ = RΠ2,

CQ = −RK.

(4.15)

We illustrate this notation further by means of a numerical example in Section 4.5.4.

Theorem 4.3 (Computation of Optimal Controller). Consider the poset-causal system of

the form (4.4), with (Aii, Bii) stabilizable for all i ∈ P. Consider the following Riccati
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equations:

(K(↑ j, ↑ j),Q( j), P( j)) = Ric (A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)) ∀ j ∈ P.

Then the optimal solution to the problem (4.5) is given by the controller:

K∗ =























AΦ − BΦCΦ BΦ

CQ(Π2 − Π1CΦ) CQΠ1























. (4.16)

Moreover, the controller K∗ ∈ I(P) and is stabilizing.

Recall that ni denotes the degree of the ith sub-system in (4.1). Let nmax = maxi ni be the

largest degree of the sub-systems. Let n(↑↑i) =
∑

j∈↑↑i n j. Let σP =
∑

j∈P |↑↑ j| (note that this

is a purely combinatorial quantity, dependent only on the poset). As we mentioned in the

introduction, one of the advantages of state-space techniques is that they provide graceful

degree bounds for the optimal controller. As a consequence of Theorem 4.3 we have the

following:

Corollary 4.2 (Degree Bounds). The degree dK∗ of the optimal controller is bounded above

by

dK∗ ≤
∑

j∈P

n(↑↑ j).

In particular, dK∗ ≤ σPnmax.

4.4.2 Structure of the Optimal Controller

Having established the computational aspects, we now turn to some structural aspects of

the optimal controller. Theorem 4.4 sheds some light on the same. We first introduce a

pair of very important objects (Φ, Γ), called the propagation filter and the differential filter,
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respectively. Define the block s × s transfer function matrices (Φ, Γ) via:

Φ =























AΦ BΦ

CΦ I























Γ =























AΦ − BΦCΦ BΦ

−CΦ I























. (4.17)

Note that both Φ and Γ are invertible (since their “D” matrices are equal to I), and in

fact, they are inverses of each other, i.e., ΓΦ = ΦΓ = I. We sometimes denote the entries

Φi j = Φi← j and similarly Γi j = Γi← j to emphasize a certain interpretation of these quantities.

We note that Φi←i = Γi←i = I (this can be seen from the fact that the corresponding entries

in the “C” matrices of the transfer functions is zero). We show (Lemma 4.4 in the Section

4.6), that Φ, Γ ∈ I(P). Moreover, the fact that Φ−1 = Γ in conjunction with Corollary 4.1

gives the following expression:

Γi← j =
∑

pi j∈[ j→i]

∏

{l,k}∈pi j

(−Φl←k). (4.18)

We will show that Φl←k, in fact, corresponds to a specific filter that propagates local

signals upstream. For example, in Fig. 4-1(a), if x1 is the state at subsystem 1, Φ21x1 is

the prediction of state x2 at subsystem 1. On the other hand, Γ has an interesting dual in-

terpretation. As one proceeds “upstream” through the poset, more information is available,

and consequently the prediction of the global state becomes more accurate. The transfer

function Γ plays the role of computing the differential improvement in the prediction of the

global state. For this reason, we call it the differential filter. Interestingly, it is intimately

related to the notion of a Möbius inversion on a poset, a generalization of differentiation

to posets. We briefly discuss these ideas in the ensuing discussion. Before stating the next

theorem, we introduce the transfer function matrix KΦ, which is defined column-wise via:

KΦ( j) = K̂(↑ j, ↑ j)Φ( j).
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Theorem 4.4 (Structure of Optimal Controller). The optimal controller (4.16) is of the

form:

u[t] = −KΦΓx[t]

= −
∑

j∈P

K̂(↑ j, ↑ j)Φ( j)(Γx) j[t].

Remark Let us denote the vector e( j) = Φ( j)(Γx) j. We will interpret e( j) as the differential

improvement in the prediction of the global state x at subsystem j. Denoting K̂(↑ j, ↑ j)

by Kj, note that the control law takes the form u[t] =
∑

j∈P Kje( j). This structural form

suggests that the controller uses the differential improvement of the global state at the

different subsystems as the atoms of local control laws, and that the overall control law is

an aggregation of these local control laws.

4.4.3 Interpretation of Φ and Γ

Due to the information constraints in the problem, at subsystem j only states in ↓ j are

available, states of other subsystems are unavailable. A reasonable architecture for the

controller would involve predicting the unknown states at subsystem j from the available

information. We first note that at a particular subsystem it may be possible to compute only

a partial prediction of the state. This is illustrated by the following example.

Example 4.3. Consider the system shown in Fig. 4-2 with dynamics









































x1

x2

x3









































[t + 1] =









































A11 0 0

0 A22 0

A31 A32 A33

















































































x1

x2

x3









































[t + 1] +









































B11 0 0

0 B22 0

B31 B32 B33
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








































































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u1

u2

u3









































[t + 1].

Note that subsystem 1 has no information about the state of subsystem 2. Moreover,

the state x1 or input u1 does not affect the dynamics of 2 (their respective dynamics are

uncoupled). Hence the only sensible prediction of x2 at subsystem 1 (which we denote by
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



0
x2

x3(2)









x1

0
x3(1)









x1

x2

x3





Figure 4-2: Local state information at the different subsystems. The quantities x3(1) and
x3(2) are partial state predictions of x3.

x2(1)) is x2(1) = 0. However, both the states x1, x2 and inputs u1, u2 affect x3 and u3. Let us

denote x3(1) to be the prediction of state x3 at subsystem 1. Since x2 and u2 are unknown,

the state x3(1) can at best be a partial prediction of x3 (i.e. x3(1) is the prediction of the

component of x3 that is affected by subsystem 1). Similarly x3(2) is only a partial prediction

of x3. Indeed, one can show that x3(1)+ x3(2) is a more accurate prediction of the state x3,

and when suitably designed, their sum converges to the true state x3.

In this chapter we will not discuss how the state predictions are computed, we defer that

to Chapter 5. However, we mention that Γ has an interesting related role. At subsystem

j the state x j becomes available for the first time (with respect to the subposet ↓ j). The

quantity (Γx) j measures the differential improvement in the knowledge of state x j, i.e. the

difference between the true state x j and its best prediction from downstream information.

We next examine the role of Φ. Consider a system of the form:

q[t + 1] = Hq[t],

where q ∈ Rn. Given q1 it is possible to compute q2, . . . , qn by propagation by noting that
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(zI − H)q = 0. Rewriting these equations, we obtain that

−ET
{2,...,n}HE1q1 + E

T
{2,...,n}(zI − H)E{2,...,n}









































q2
...

qn









































= 0

to obtain








































q2
...

qn









































= (zI − H2)−1H1q1, (4.19)

where H2 = ET
{2,...,n}HE{2,...,n} and H1 = E

T
{2,...,n}HE1. The map ΦH = (zI − H2)−1H1 from q1

to q2, . . . , qn is simply a propagation of the “upstreatm” states based on q1.

Recall that in the solution procedure, we solved problems of the form

(K(↑ j, ↑ j),Q( j), P( j)) = Ric (A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)) ,

where the K(↑ j, ↑ j) are static gains. Suppose that in the closed loop system there are

signals q( j) at subystems j ∈ P with q( j) ∈ R|↑ j| that evolve according to the following

local relationship:

q( j)[t + 1] = (A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j)) q( j)[t]. (4.20)

Note that the evolution of the q( j) are mutually decoupled. Let the first component of q( j)

be denoted by qj( j) and the remaining |↑↑ j| components be denoted by q↑↑ j( j). Then by

using the preceding argument, one can then compute q↑↑ j( j) based on qj( j) via propagation,

this would simply be given by applying formula (4.19). Rewriting this in state-space form,
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we obtain that the required transfer function between qj( j) and q↑↑ j( j) is given by























AΦ( j) BΦ( j)

E↑↑ j 0























. (4.21)

It is easy to see that this is precisely the jth column of Φ (applying the concatenation

formula for transfer functions, we can recover the formula for Φ), and thus Φi← j is simply

a computation of q↑↑ j( j) based on qj( j) via propagation. In this sense, Φ plays the role of

propagating decoupled local signals.

In Chapter 5, we will establish that the differential improvements in the local state pre-

dictions obey the above decoupled relationship (4.20) as a consequence of an elegant sep-

aration principle. (Thus q( j) will correspond to the differential improvement in the state

prediction at subsystem j). As we already mentioned (Γx) j is the differential improvement

in x j at subsystem j. Since Φ plays the role of propagating decoupled local signals, it fol-

lows thatΦi j(Γx) j is the differential improvement in the prediction of the state xi for i ∈ ↑↑ j

at subsystem j. We illustrate this with an example
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
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Figure 4-3: Local state information at the different subsystems for a 4-chain.

Example 4.4. Consider the poset shown in Fig. 4-3. Consider a poset causal system

consistent with this poset. The system is composed of four subsystems, let us call them S 1,
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S 2, S 3 and S 4. Let us denote xi( j) to be the prediction of state xi at subsystem j. Note that

if i ≺ j then xi( j) = xi since subsystem j has access to all downstream states. Note that the

differential improvement in the state x1 at S 1 is simply x1, so that (Γx)1 = x1. Furthermore,

at subsystem S 2, the best downstream prediction of x2 is x2(1). The prediction at S 2 itself

is x2 (the true state is available here). The differential improvement in the prediction of x2

at S 2 is given by (Γx)2 = x2 − x2(1). Similarly at subsystems S 3 and S 4 the differential

improvements in x3 and x4 respectively are (Γx)3 = x3 − x3(2), and (Γx)4 = x4 − x4(2).

Furthermore Φ42(Γx)2 = x4(2) − x4(1) is the differential improvement in the prediction of

state x4 at S 2. A complete list of the differential improvements is shown in Table I. The

vector Γx corresponds to the diagonal entries in Table I.

Subsystem/State S 1 S 2 S 3 S 4
Improvement in x1 x1 0 0 0
Improvement in x2 x2(1) x2 − x2(1) 0 0
Improvement in x3 x3(1) x3(2) − x3(1) x3 − x3(2) 0
Improvement in x4 x4(1) x4(2) − x4(1) x4(3) − x4(2) x4 − x4(3)

Table 4.1: Table showing the differential improvement in the different state predictions.

Remark The observant reader will notice that the formulae for the differential improve-

ments bear a remarkable resemblance to finite difference formulae. Indeed Γ is intimately

related to the Möbius inversion formula on a poset [1], [39] a concept that generalizes the

notion of differentiation (more precisely finite differences) to arbitrary posets. The states

in the optimal controller q in fact correspond to these generalized finite differences of state

predictions of the form Φi j(Γx) j as will be explained in the next subsection. We do not

dwell on the deeper relationship to the Möbius inversion and its role in the architecture of

the controller in this chapter, and defer that discussion to Chapter 5.
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4.4.4 Role of Controller States and the Closed Loop

Before we interpret the prediction structure further, let us first examine the controller states

q. Note that q ∈ R
∑

j∈P n(↑↑ j) is a vector with |P| blocks, each block of size n(↑↑ j). We can

divide the states in the following way: to subsystem 1 we assign the first |↑↑1| states (we

will represent them by q(1). It is a vector corresponding to prediction of states associated

to ↑↑1. Thus qi(1) is related to the prediction of the state at the ith subsystem of ↑↑1, etc.

(more precisely it will correspond to the differential improvement in the prediction of the

state). Similarly, to the second subsystem we assign the next |↑↑2| states and so on. More

formally, we let

q = [qj(i)]i∈P, j∈↑↑i,

so that q(i) corresponds to the states of the controller associated with the ith subsystem. This

q(i) is a vector of length |↑↑i| and qj(i) is the state associated with prediction improvements

of x j using xi for j ∈ ↑↑i.

We interpret the role of the controller states qi( j). Recall from our previous discussion

that the differential improvement in the predictions may be computed using Φ and Γ. At

subsystem j, the differential improvement in the prediction of state xi is given by Φi j(Γx) j.

Moreover, for i ≺ j, these differential improvements are zero because the precise state xi

is available at both subsystems i and j. The states of the controller are precisely these

differential improvements in the prediction of the state:

qi( j) = Φi j(Γx) j. (4.22)

More compactly, Φ(i)(Γx)i is the differential improvement in the global state at subsystem

i.

Remark If j is a minimal element on the poset, (Γx) j = xi, and the Φi j(Γx) j = qi( j)
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correspond to (possibly partial) state predictions.

Indeed the optimal controller only needs to have these differential improvements to con-

struct the global control law.

We emphasize at this juncture that while the formula for the optimal controller stated in

Theorem 4.3 and the structural form described in Theorem 4.4 are proved in this chapter,

we will formally prove the following two assertions in the next chapter:

• The fact that Γ has the role of computing differential improvements in the prediction

of the state,

• That the controller states q in fact correspond precisely to these differential improve-

ments.

Note that when the system (4.4) is connected with the controller (4.16), one obtains the

closed-loop dynamics (in the absence of external disturbances):
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. (4.23)

By performing a change of coordinates of the state variableswith respect to Γ =
[

Π1 Π2 − Π1CΦ
]

,

we obtain the following dynamics:

(Π1(x − CΦq) + Π2q) [t + 1] = A (Π1(x − CΦq) + Π2q) [t]. (4.24)

The reader may easily verify that given the vector q = [qi( j)] j∈P,i∈↑↑ j,CΦ acts on q to produce

the vector:

CΦq =

















∑

j∈↓↓i

qi( j)

















j∈P

.

As mentioned above, qi(k) represents the differential improvement in the prediction of state

xi at subsystem k. It follows then that from information available about xi(k) for k ∈ ↓↓ j,
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the best prediction of state the state at i is
∑

k∈↓↓ j qi(k). Hence the vector

e(i) :=






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
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xi −
∑

k∈↓↓i qi(k)

q↑↑i(i)
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

corresponds to the differential improvement in the prediction of the collection of states

x↑i at subsystem i. Let us stack all the vectors e(i) for i ∈ P in a single vector to obtain

e := [e(i)]i∈P. In this setup, the matrices Π1 and Π2 (defined in (4.14)) act very naturally on

the vector e:

• Action of Π1: This is a projection onto the first components of the e(i) so that Π1e =

[xi −
∑

k∈↓↓i qi(k)]i∈P. Note that Π1e = Γx, i.e. the vector of differential improvements

in the state xi at subsystem i for all i ∈ P.

• Action of Π2: This is a projection onto the remaining components so that Π2e =

[q↑↑i(i)]i∈P.

The optimal control law can also be expressed in terms of the state variables using

(4.16):

u = CQ(Π1(x −CΦq) + Π2q)

=
∑

i∈P

K̂(↑i, ↑i)Φ(i)(Γx)i (by Theorem 4.4).
(4.25)

Note that Φ(i)(Γx)i is a vector containing the differential improvement in the prediction

of the global state at subsystem i. Each term K̂(↑i, ↑i)Φ(i)(Γx)i may be viewed as a local

control law acting on the local differential improvement in the predicted state. The overall

control law has the elegant interpretation of being an aggregation of these local control

laws.

Example 4.5. Let us consider the poset from Fig. 4-1(d), and examine the structure of the

controller. (For simplicity, we let Kj = K̂(↑ j, ↑ j), the gains obtained by solving the Riccati
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equations). The control law may be decomposed into local controllers as:

u = K1
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Each term in the above expression has the natural interpretation of being a local control

signal corresponding to differential improvement in predicted states, and the final con-

troller can be viewed as an aggregation of these.

Note that zeros in the above expression imply no improvement on the local state. For

example, at subsystem 2 there is no improvement in the predicted value of x3 because the

state x2 does not affect subsystem 3 due to the poset-causal structure. There is no improve-

ment in the predicted value of state x3 at subsystem 4 either, because the best available

prediction of x3 from downstream information ↓↓4 is x3 itself. While this interpretation has

been stated informally here, it has been made precise in Chapter 5.

4.4.5 A Separation Principle

Note that closed-loop dynamics are given by (4.23). Upon changing coordinates, one ob-

tains (4.24), a block-diagonal realization of the closed-loop dynamics. Writing out these
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dynamics more explicitly, one obtains:
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(4.26)

The dynamics for the differential improvement in the state predictions at the different

subsystem are thus decoupled and evolve independently. This constitutes an elegant sepa-

ration principle.

4.5 Discussion and Examples

4.5.1 The Nested Case

Consider the poset on two elements P = ({1, 2} ,$) with the only order relation being 1 $ 2

(Fig. 4-1(a)). This is the poset corresponding to the communication structure in the “Two-

Player Problem” considered in [51]. We show that their results are a specialization of our

general results in Section 4.4 restricted to this particular poset.

We begin by noting that from the problem of designing a nested controller can be recast

as:
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By Theorem 4.2 this problem can be recast as:
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We wish to compare this to the results obtained in [51]. It is possible to obtain precisely

this same decomposition in the finite time horizon where the H2 norm can be replaced

by the Frobenius norm and separability can be used to decompose the problem. For each
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of the sub-problems, the corresponding optimality conditions may be written (since they

correspond to simple constrained-least squares problems). These optimality conditions

correspond exactly to the decomposition of optimality conditions they obtain (the crucial

Lemma 3 in their paper). We point out that the decomposition is a simple consequence of

the separability of the Frobenius norm.

Let us now examine the structure of the optimal controller via Theorem 4.4. Note that

↑1 = {1, 2} and ↑2 = {2}. Based on Theorem 4.3, we are required to solve (P(1),K) =

Ric(A, B,C,D), and (P(2), J) = Ric(A22, B22,C2,D2). Noting that in this example Γ2←1 =

−Φ2←1, a straightforward application of Theorem 4.4 yields the following:

u1[t] = −(K11 + K12Φ2←1)x1[t]

u2[t] = −(K21 + K22Φ2←1)x1[t] − J(x2[t] −Φ21x1[t]),

which is precisely the structure of the optimal controller given in [51] (though they present

the results in a finite-time horizon framework). It is possible to show (as Swigart et. al

indeed do in [51]) that Φ2←1 is an predictor of x2 based on x1. Thus the controller for u1

predicts the state of x2 from x1, uses the estimate as a surrogate for the actual state, and

uses the gain K21 in the feedback loop. The controller for u2 (perhaps somewhat surpris-

ingly) also estimates the state x2 based on x1 using x̂2 = Φ21x1 (this can be viewed as a

“simulation” of the controller for u1). The prediction error for state 2 is then given by

x2 − x̂2 = x2 − Φ21x1. The control law for u2 may be rewritten as

u2 = −(K21x1 + K22 x̂2 + Je2).

Thus this controller uses predictions of x2 based on x1 along with prediction errors in the

feedback loop. We will see in a later example, that this prediction of states higher up in

the poset is prevalent in such poset-causal systems, which results in somewhat larger order

114



controllers.

Analogous to the results in [51], it is possible to derive the results in this chapter for the

finite time horizon case (this is a special case corresponding to FIR plants in our discrete-

time setup). We do not devote attention to the finite time horizon case in this chapter, but

just mention that similar results follow in a straightforward manner.

4.5.2 Discussion Regarding Computational Complexity

Note that the main computational step in the procedure presented in Theorem 4.3 is the

solution of the s sub-problems. The jth sub-problem requires the solution of a Riccati

equation of size at most |↑ j|nmax = O(s) (when the degree nmax is fixed). Assuming the

complexity of solving a Riccati equation using linear algebraic techniques is O(s4) [13]

the complexity of solving s of them is at most O(s5). We wish to compare this with the

only other known state-space technique that works on all poset-causal systems, namely

the results of Rotkowitz and Lall [44]. In this paper, they transform the problem to a

standard centralized problem using Kronecker products. In the final computational step,

one would be required to solve a single large Riccati equation of size O(s2), resulting in a

computational complexity of O(s8).

4.5.3 Discussion Regarding Degree Bounds

It is insightful to study the asymptotics of the degree bounds in the setting where the sub-

systems have fixed degree and the number of sub-systems s grows. As an immediate con-

sequence of the corollary, the degree of the optimal controller (assuming that the degree of

the sub-systems nmax is fixed) is at most O(s2) (since n(↑ j) ≤ s). In fact, the asymptotic

behaviour of the degree can be sub-quadratic. Consider a poset ({1, . . . , s} ,$) with the

only order relations being 1 $ i for all i. Here |↑1| = s, and |↑i| = 1 for all i ! 1. Hence,
∑

j |↑ j| − s ≤ s, and thus d∗ ≤ snmax. In this sense, the degree of the optimal controller is

governed by the poset parameter σP.
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4.5.4 Numerical Example

In this section, we consider a numerical example for the poset shown in Fig. 4-1(d). The

system has one state and one input per subsystem, and we synthesize the optimal controller.

The data for the is the same as in Example 4.1 with the matrices A, B,C,D as given in (4.2).

For this problem the relevant matrices that are used in constructing the controller are:

Π1 =

[

E1 E5 E7 E9
]

R =



























































1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 1 1



























































Π2 =

[

E2 E3 E4 E6 E8
]

.

(Recall that Ei is the 9 × 1 ith unit vector.) Note that ↑1 = {1, 2, 3, 4} , ↑2 = {2, 4} , ↑3 =

{3, 4} , ↑4 = {4}. Accordingly, the Riccati subproblems that we need to solve are given by

(K(↑1, ↑1),Q(1), P(1)) = Ric(A, B,C,D),

(K(↑2, ↑2),Q(2), P(2)) = Ric













































A22 A24

A42 A44























,























B22 B24

B42 B44























,
[

C2 C4
]

,
[

D2 D4
]























,

(K(↑3, ↑3),Q(3), P(3)) = Ric













































A33 A34

A43 A44























,























B33 B34

B43 B44























,
[

C3 C4
]

,
[

D3 D4
]























,

(K(↑4, ↑4),Q(4), P(4)) = Ric(A44, B44,C4,D4).
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Upon solving these, we obtain

K(↑1, ↑1) =



























































−.5340 −.0230 −.0139 .0021

−.2701 −.2470 −.1277 −.0155

−.2710 −.1205 −.2289 −.0155

.0315 −.3028 −.3125 −.0352



























































K(↑2, ↑2) =























−0.2983 −0.0180

−0.3507 −0.0407























K(↑3, ↑3) =























−.2747 −.0180

−.3620 −.0407























K(↑4, ↑4) = −.0501.

From these, it is possible to construct A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j) for j ∈ {1, 2, 3, 4},

and from that construct A = diag(A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j)) given by

A =

















































































































































.0340 .0230 .0139 −.0021 0 0 0 0 0

−.1959 .0200 .1416 .0134 0 0 0 0 0

−.1959 .1435 .0428 .0134 0 0 0 0 0

.0435 −.3067 −.3170 −.0359 0 0 0 0 0

0 0 0 0 .0483 .0180 0 0 0

0 0 0 0 −.3510 −.0412 0 0 0

0 0 0 0 0 0 .0747 .0180 0

0 0 0 0 0 0 −.3633 −.0412 0

0 0 0 0 0 0 0 0 −.0499

















































































































































.

Using (4.15) one readily obtains AΦ and BΦ to be

AΦ =











































































.0200 .1416 .0134 0 0

.1435 .0428 .0134 0 0

−.3067 −.3170 −.0359 0 0

0 0 0 −.0412 0

0 0 0 0 −.0412











































































BΦ =











































































−.1959 0 0 0

−.1950 0 0 0

.0435 0 0 0

0 −.3510 0 0

0 0 −.3633 0











































































.
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Note that given K(↑2, ↑2) ( a 2 × 2 matrix) one needs to construct K̂(↑2, ↑2) (a 4 × 4

matrix) by zero padding. For instance, we have

K̂(↑2, ↑2) =



























































0 0 0 0

0 −0.2983 0 −0.0180

0 0 0 0

0 −0.3507 0 −0.0407



























































.

From these, one constructs CQ using (4.15) to be

CQ =



























































.5340 .0230 .0139 −.0021 0 0 0 0 0

.2701 .2470 .1277 .0155 .2983 .0180 0 0 0

.2710 .1205 .2289 .0155 0 0 .2747 .0180 0

−.0315 .3028 .3125 .0352 .3507 .0407 .3620 .0407 .0501



























































.

We use these quantities to obtain the controller K∗ using formula (4.16). The controller

K =























AK BK

CK DK























,

has the following realization:

AK =











































































0.0200 0.1416 0.0134 0 0

0.1435 0.0428 0.0134 0 0

−0.3067 −0.3170 −0.0359 0 0

0.3510 0 0 −0.0412 0

0 0.3633 0 0 −0.0412










































































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BK =











































































−0.1959 0 0 0

−0.1959 0 0 0

0.0435 0 0 0

0 −0.3510 0 0

0 0 −0.3633 0











































































CK =



























































0.0230 0.0139 −0.0021 0 0

−0.0513 0.1277 0.0155 0.0181 0

0.1205 −0.0458 0.0155 0 0.0180

−0.0479 −0.0495 −0.0149 −0.0094 −0.0094



























































DK =



























































0.5340 0 0 0

0.2701 0.2983 0 0

0.2710 0 0.2747 0

−0.03154 0.3507 0.3620 0.0512



























































.

Note that the optimal controller is of degree 5. This matches the bound obtained in Corol-

lary 4.2 exactly. Note also that the matrix DK is in the incidence algebra (and so is the

controller K itself, as can be verified from the transfer function). Finally, this controller

can be verified to be stabilizing. Let hopen, hcentralized, hdecentralized be the open loop, optimal

centralized closed loop and optimal decentralized closed loop H2 norms. We obtain the

following values:

hopen = 4.8620

hcentralized = 2.2675

hdecentralized = 2.2892.
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4.6 Proofs of the Main Results

Proof of Theorem 4.1. Note that one direction is trivial. Indeed if the (Aii, Bii) are stabiliz-

able, one can pick a diagonal controller with diagonal elements Kii such that Aii + BiiKii is

stable for all i ∈ P. This constitutes a stabilizing controller.

For the other direction let

K =























AK BK

CK DK























be a poset-causal controller for the system. We will first show that without loss of gen-

erality, we can assume that AK , BK,CK ,DK are block lower triangular (so that K has a

realization where all matrices are block lower triangular).

First, note that since K ∈ I(P), DK ∈ I(P). Recall, that we assumed throughout that

the indices of the matrices in the incidence algebra are labeled so that they are consistent

with a linear extension of the poset, so that DK is lower triangular. Note that the controller

K is a block s × s transfer function matrix which has a realization of the form:

K =



























































AK BK(1) . . . BK(s)

CK(1) DK(1, 1) . . . DK(1, s)
...

...
. . .

CK(s) DK(s, 1) . . . DK(s, s)



























































Since the controller K ∈ I(P), we have that Ks j = 0 for all j ! s (recall that s is the

cardinality of the poset). This vector of transfer functions (given by the last column of K

with the (s, s) entry deleted) is given by the realization:

K̄s :=









































CK(1)
...

CK(s − 1)









































(zI − AK)−1BK(s) +









































DK(1, s)
...

DK(s − 1, s)









































= 0.

Since this transfer function is zero, in addition to DK( j, s) = 0 for all j = 1, . . . , s− 1, it
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must also be the case that the controllable subspace of (AK , BK(s)) is contained within the

unobservable subspace of
(

[

CK(1)T . . . CK(s − 1)T
]T
, AK

)

. By the Kalman decompo-

sition theorem [12, pp. 247], there is a realization of this system of the form:

K̄s =























Ā B̄

C̄ D̄























,

where (Ā, B̄, C̄, D̄) are of the form:

Ā =









































A11 0 0

A21 A22 0

A21 A32 A33









































B̄ =









































0

0

B3









































C̄ =
[

C1 0 0
]

D̄ = 0.

(4.27)

As an aside, we remind the reader that this decomposition has a natural interpretation. For

example, the subsystem












































A11 0

A21 A22























,























0

0























,
[

C1 0
]























corresponds to the observable subspace, where the system is uncontrollable, etc. (The usual

Kalman decomposition as stated in standard control texts is a block 4 × 4 decomposition

of the state-transition matrix. Here we have a smaller block 3 × 3 decomposition because

of the collapse of the subspace where the system is required to be both controllable and

observable).

Thus this decomposition allows us to infer the specific block structure (4.27) on the
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matrices (Ā, B̄, C̄, D̄). As a result of this block structure, there is a realization of the overall

controller (AK , BK,CK ,DK), where all the matrices have the block structure



























































M1,1 . . . M1,s−1 0
...

. . .
...

Ms−1,1 . . . Ms−1,s−1 0

Ms,1 . . . Ms,s−1 Ms,s



























































.

One can now repeat this argument for the upper (s − 1) × (s − 1) sub-matrix of K. By

repeating this argument for first s − 1, s − 2, . . . , 1 we obtain a realization of K where all

four matrices are block lower triangular.

Note that given the controller K (henceforth assumed to have a lower triangular realiza-

tion), the closed loop matrix Acl is given by

Acl =























A + BDK BCK

BK AK























.

By assumption the (open loop) system is poset-causal, hence A and B are block lower

triangular. As a result, each of the blocks A+BDK , BCK , BK, AK are block lower triangular.

A straightforward permutation of the rows and columns enables us to put Acl into block

lower triangular form where the diagonal blocks of the matrix are given by























Aj j + Bj jDKj j B j jCKj j

BKj j AKj j























. (4.28)

Note that the eigenvalues of this lower triangular matrix (and thus of Acl, since permutations

of rows and columns are spectrum-preserving) are given by the eigenvalues of the diagonal

blocks. The matrix Acl is stable if and only if all its eigenvalues are within the unit disk

in the complex plane, i.e. the above blocks are stable for each j ∈ P. Note that (4.28) is
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obtained as the closed-loop matrix precisely by the interconnection of























Aj j B j j

I 0























with the controller






















AKj j BKj j

CKj j DKj j























.

Hence, (4.28) (and thus the overall closed loop) is stable if and only if (Aj j, Bj j) are stabi-

lizable for all j ∈ P, and (AKj j , BKj j ,CKjj ,DKjj) are chosen to stabilize the pair. !

Proof of Theorem 2. If G = [G1, . . .Gk] is a matrix with Gi as its columns, then

‖G‖2F =

k
∑

i=1

‖Gi‖
2
F,

where ‖ · ‖F denotes the Frobenius norm. This separability property of the Frobenius

norm immediately implies the following separability property for the H2 norm: If H =

[H1, . . .Hk] is a transfer function matrix with Hi as its columns, then

‖H‖2 =

∫

C

‖H(z)‖2Fdz =
k

∑

i=1

∫

C

‖Hi(z)‖2Fdz =
k

∑

i=1

‖Hi‖
2,

(In the above C denotes the unit circle in the complex plane). The separability property of

theH2 norm can be used to simplify (4.9). Recall that P11( j),Q( j) denote the jth columns

of P11 and Q respectively. Using the separability we can rewrite (4.9) as

minimize
Q

∑

j∈P ‖P11( j) + P12Q( j)‖2

subject to Q( j) ∈ I(P) j
(4.29)
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The formulation in (4.29) can be further simplified by noting that for Qj ∈ I(P) j,

P12Q( j) = P12(↑ j)Q↑ j. (4.30)

The advantage of the representation (4.30) is that, in the right hand side the variable

Q↑ j is unconstrained. Using this we may reformulate (4.29) as:

minimize
Q

∑

j∈P ‖P11( j) + P12(↑ j)Q↑ j‖2 (4.31)

Since the variables in the Q↑ j are distinct for different j, this problem can be separated into

s sub-problems as follows:

minimize
Q

‖P11( j) + P12(↑ j)Q↑ j‖2

for all j ∈ P.
(4.32)

!

Note that each sub-problem is a standard H2 optimal centralized control problem, and

can be solved using canonical procedures. Once the optimalQ is obtained by solving these

sub-problems, the optimal controller may be synthesized using (4.7). The following lemma

describes the solutions to the individual sub-problems (4.13) in Theorem 4.2.

Lemma 4.2. Let (A, B,C,D) be as given in (4.1) with A, B in the block incidence algebra

I(P). Let

(K(↑ j, ↑ j),Q( j), P( j)) = Ric(A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)). (4.33)

Then the optimal solution of each sub-problem (4.13) is given by:

(Q↑ j)∗ =























A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j) E1

−K(↑ j, ↑ j) 0























. (4.34)
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(We remind the reader that in the above E1 is the block |↑ j| × 1 matrix which picks out

the first column corresponding of the block |↑ j| × |↑ j| matrix before it.)

Proof. Let P11, P12 be as described in (4.4). Consider the following optimization problem:

minimizeQ̄ ‖P11(↑ j) + P12(↑ j)Q̄‖2. (4.35)

We note that the first column of Q̄ is precisely Q↑ j and the first column of the overall

matrix in the objective function is precisely P11( j) + P12(↑ j)Q↑ j. By the separability of the

H2 norm (4.35) may be reformulated as:

minimizeQ↑ j ,Q̄′ ‖P11( j) + P12(↑ j)Q↑ j‖2 + ‖P11(↑↑ j) + P12(↑ j)Q̄
′

‖2. (4.36)

(Here, Q̄′ is the matrix obtained by deleting the first column of Q̄). As a result of this

decomposition property, the optimal Q↑ j can be seen to be the first column of the optimal

Q̄. Note that the solution to (4.13) can be obtained from (4.10), (4.11), (4.12) by solving

(K(↑ j, ↑ j), Q̄∗, P( j)) = Ric(A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)),

with

Q̄∗ =























A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j) I

−K(↑ j, ↑ j) 0























.

Since (Q↑ j)∗ is the first column of Q̄∗, we obtain the required expression. !

Lemma 4.3. The optimal solution to (4.8) is given by

Q∗ =























A Π1

CQ 0























. (4.37)
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Proof. We note that Lemma 4.2 gives an expression for the individual columns of Q∗.

Using Lemma 4.2 and the LFT formula for column concatenation:

[

G1 G2
]

=









































A1 0 B1 0

0 A2 0 B2

C1 C2 D1 D2









































,

we obtain the required expression. !

Lemma 4.4. The transfer function matricesΦ, Γ and KΦ are in the incidence algebraI(P).

Proof. Let us define block s × 1 transfer functions as follows:

Φ( j) =























AΦ( j) BΦ( j)

E↑↑ j I























(4.38)

KΦ( j) =























AΦ( j) BΦ( j)

−K̂(↑ j, ↑ j)E↑↑ j −K̂(↑ j, ↑ j)E j























(4.39)

Note that KΦ( j) = K̂(↑ j, ↑ j)Φ( j). Also, note that if i is such that j ! i then the ith entry of

Φ( j) is zero since the corresponding row of E↑↑ j is zero. By similar reasoning, KΦ( j) also

has this property. Thus, when we construct the matrices

Φ =

[

Φ(1) . . . Φ(s)
]

KΦ =
[

KΦ(1) . . . KΦ(s)
]

by column concatenation, we see that both Φ ∈ I(P) and KΦ ∈ IK(P). Since Γ = Φ−1, we

have Γ ∈ I(P). !
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Lemma 4.5. The following matrix identities are true:

ΠT2AΠ1 = BΦ

(ΠT1 + CΦΠT2 )AΠ1 = A + BCQΠ1

(ΠT1 +CΦΠ
T
2 )A(Π2 − Π1CΦ) = BCQ(Π2 − Π1CΦ)

ΠT2A(Π2 − Π1CΦ) = AΦ − BΦCΦ.

(4.40)

Proof. Note that the first relation follows directly from the definition, as stated in the third

equality in (4.15). Next, we point out that ΠT1 + CΦΠ
T
2 = R. Hence,

(ΠT1 +CΦΠT2 )A = RA

=

[

A1cE↑1 . . . AscE↑s

]

Π1

= AR + BCQ.

Since ARΠ1 = A, we have the second relation.

For the third relation we note again that

(ΠT1 +CΦΠ
T
2 )A(Π2 − Π1CΦ) = RA(Π2 − Π1CΦ)

= (AR + BCQ)(Π2 − Π1CΦ)

= ARΠ2 − (ARΠ1)RΠ2 + BCQ(Π2 − Π1CΦ) (since CΦ = RΠ1)

= ARΠ2 − ARΠ2 + BCQ(Π2 − Π1CΦ) (since ARΠ1 = A)

= BCQ(Π2 − Π1CΦ).

For the fourth relation, note that

ΠT2A(Π2 − Π1CΦ) = ΠT2AΠ2 − ΠT2AΠ1CΦ

= AΦ − BΦCΦ.
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!

Lemma 4.6. The matrix A is stable.

Proof. Recall that A = diag(A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j)). Since A(↑ j, ↑ j) and B(↑ j, ↑ j)

are lower triangular with Akk, Bkk, k ∈ ↑ j along the diagonals respectively, we see that

the pair (A(↑ j, ↑ j), B(↑ j, ↑ j)) is stabilizable by Assumption 1 (simply picking a diagonal K

which stabilizes the diagonal terms would suffice to stabilize (A(↑ j, ↑ j), B(↑ j, ↑ j))). Hence,

there exists a stabilizing solution to Ric(A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)) and the corre-

sponding controller K(↑ j, ↑ j) is stabilizing. Thus A(↑ j, ↑ j) − B(↑ j, ↑ j)K(↑ j, ↑ j)) is stable,

and thus so is A. !

Given transfer functions M and K, their feedback interconnection is usually described

through a linear fractional transformation of the form f (M,K) = M11+M12K(I−M22K)−1M21.

State space formulae for this interconnection are standard [66, pp. 179] and will be useful

for evaluating several quantities in what follows.

Lemma 4.7. Given transfer function matrices M and K with realizations

M =









































A B1 B2

C1 D11 D12

C2 D21 D22









































, K =























AK BK

CK DK























,

the Linear Fractional Transformation (LFT) f (M,K) = M11 + M12K(I − M22K)−1M21 is

given by the state-space formula

f (M,K) =









































A + B2R̂−1DKC2 B2R̂−1CK B1 + B2R̂−1DKD21

BKR−1C2 AK + BKR−1D22CK BKR−1D21

C1 + D12DKR−1C2 D12R̂−1CK D11 + D12DKR−1D21









































, (4.41)

where R̂ = I − DKD22 and R = I − D22DK.
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Proof. The proof is standard, see for example [66, pp. 179] and the references therein. !

Proof of Theorem 4.3. Consider again the optimal control problem (4.5):

minimize
K

‖P11 + P12K(I − P22K)−1P21‖2

subject to K ∈ I(P)

K stabilizing.

(4.42)

Let v∗
1 be the optimal value of (4.42). Consider, on the other hand the optimization problem:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(4.43)

Let v∗
2 be the optimal value of (4.43). Recall that the optimal solution Q

∗ of (4.43) was

obtained in Lemma 4.3 via (4.37). We note that if K∗ is an optimal solution to (4.42) then

the corresponding Q̄ := K∗(I − P22K∗)−1P21 is feasible for (4.43). Hence v∗
2 ≤ v∗

1. We will

show that the controller in (4.16) is optimal by showing that Q̄ = Q∗ (so that v∗
1 = v∗

2).

We will also show that K∗ ∈ I(P) and is internally stabilizing. Since it achieves the lower

bound v∗
2 and is internally stabilizing, it must be optimal.

Given K∗ as per (4.16), one can evaluate Q̄ := K∗(I−P22K∗)−1P21 using (4.41) to obtain:

Q̄ =









































A + BCQΠ1 BCQ(Π2 − Π1CΦ) I

BΦ AΦ − BΦCΦ 0

CQΠ1 CQ(Π2 − Π1CΦ) 0









































.

Recall that Q∗ (4.37) is the optimal solution to (4.8) (which constitutes a lower bound

to the problem we are trying to solve). We are trying to show that it is achievable by

explicitly producing K∗ such that Q̄ := K∗(I − P22K∗)−1P21 and Q̄ = Q∗, thereby proving

the optimality of K∗.

While Q∗ in (4.37) and Q̄ obtained above appear different at first glance, their state-
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space realizations are actually equivalent modulo a coordinate transformation. Recall that

Π2 is a matrix (composed of standard unit vectors) that spans the orthogonal complement of

the column span of Π1. As a result the matrix
[

Π1 Π2

]

is a permutation matrix. Define

the matrices

Λ :=
[

Π1 Π2

]
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.

Note that Λ is a square, invertible matrix. Changing state coordinates on Q∗ using Λ

via:

A .→ Λ−1AΛ

Π1 .→ Λ−1Π1

CQ .→ CQΛ

along with the relations (4.40) from Lemma 4.5, we see that the transformed realization of

Q∗ is equal to the realization of Q̄, and hence Q∗ = Q̄.

Using (4.4) for the open loop, (4.16) for the controller and the LFT formula (4.41) to

compute the closed loop map, one obtains that the closed-loop state transition matrix is

given by
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$ A.

By Lemma 4.6, the closed loop is internally stable.

By the column concatenation formula and (4.38) we have
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Using the state-space coprime factorization formula [65, pp. 52] it is straightforward to

verify that for the expression for K∗ in (4.16), K∗ = KΦΦ−1. Since by Lemma 4.4 both

Φ ∈ I(P) and KΦ ∈ I(P), we have K∗ ∈ I(P). !

Proof of Theorem 4.4. In the preceding proof, we established that KΦ( j) = −K̂(↑ j, ↑ j)Φ( j)

and that K∗ = KΦΦ−1. This directly gives the first expression in the statement of the

theorem. The second expression is a simple manipulation of the first expression. !

4.7 Conclusions

In this chapter we provided a state-space solution to the problem of computing an H2-

optimal decentralized controller for a poset-causal system. We introduced a new decom-

position technique that enables one to separate the decentralized problem into a set of

centralized problems. We gave explicit state-space formulae for the optimal controller and

provided degree bounds on the controller. We illustrated our technique with a numerical

example. Our approach also enabled us to provide insight into the structure of the optimal

controller. We introduced a pair of transfer functions (Φ, Γ) and showed that they were inti-

mately related to the prediction structure. While some architectural aspects of the controller

were hinted at, the emphasis in this chapter was much more on the computational aspects

of the problem. In the next chapter, we will see a detailed treatment of the architectural

issues.
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Chapter 5

A General Controller Architecture

5.1 Introduction

While understanding computational aspects of controller synthesis is important, it is equally

important to understand structural aspects of controller design. Understanding structural as-

pects provides important insight into design principles, physical implementation, and also

a theoretical perspective that enables the way forward to tackle more complex problems.

Indeed, structural properties for optimal poset-causal controllers (that we will study in this

chapter) may be used as valuable design principles when dealing with more complicated,

non-poset-like communication architectures. With this motivation in mind, we next explore

architectural issues for controller design of poset-causal systems.

While the previous chapter was devoted to a state-space solution to the H2-optimal

control problem, in this chapter we are concerned with answering the following question:

“What is a reasonable architecture of controllers for poset-causal systems? What should be

the role of controller states, and what computations should be involved in the controller?”

This chapter focuses on answering this architectural question. The main aspects discussed

in this chapter are the following:

• A controller architecture that involves natural concepts from order theory and control
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theory as building blocks,

• A natural coordinate transformation of the state variables yeilds a novel separation

principle,

• A proof that the optimalH2 controller (with state-feedback) studied in Chapter 4 has

precisely the proposed controller structure,

The controller structure that we propose in this chapter is of the form U = ζ(G ◦ µ(X)).

Here the matrix X has the interpretation of being a collection of local predictions of the

state at different subsystems, and U the local predictions of the inputs. As we will see

later, the operators µ and ζ are generalized notions of differentiation and integration on the

poset so that µ(X) may be interpreted as the differential improvement or “correction” in

the prediction of the local state. The quantity G ◦ µ(X) may therefore be interpreted as a

local “differential contribution” to the overall control signal. The overall control law then

aggregates all these local contributions by “integration” along the poset using ζ.

In Chapter 4, some structural aspects of the optimal controller were hinted at. Specif-

ically, we introduced a pair of transfer functions Φ, Γ, in terms of which the optimal con-

troller was interpreted. In this chapter, we relate these transfer functions to ζ and µ, and

make their interpretation explicit.

An outline for this chapter is as follows: In Section 5.2 we introduce the necessary

preliminaries for the ensuing discussion. In Section 5.3 we introduce the basic building

blocks involved in the controller architecture. In Section 5.4 we propose the architecture,

establish the separability principle and explain its optimality property with respect to the

H2 norm.
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5.2 Preliminaries

In this chapter we use the standard definitions and notations related to posets introduced in

Chapter 2. As usual, a poset is denoted by P = (P,$) and its incidence algebra by I(P).

Typical examples of posets to keep in mind are shown in Fig. 5-1.

1 1 1 1

2 2

2 2

3

3

3

4

(a) (b) (c) (d)

Figure 5-1: Hasse diagrams of some posets.

We again consider the following discrete-time state-space system:

x[t + 1] = Ax[t] + w[t] + Bu[t]

z[t] = Cx[t] + Du[t]

y[t] = x[t].

(5.1)

In this chapter we present the discrete time case only, however, we wish to emphasize that

analogous results hold in continuous time in a straightforward manner. In this chapter we

consider what we will call poset-causal systems.

As in Chapter 4, we think of this system as being divided into s sub-systems, with

sub-system i having some states xi[t] ∈ Rni , and we let N =
∑

i∈P ni be the total degree

of the system. The control inputs at the subsystems are ui[t] ∈ Rmi for i ∈ {1, . . . , s}. In

this chapter, to simply facilitate convenient notation, we will often assume ni = 1, and

mi = 1. We emphasize that this is only done to simplify the presentation, the results hold

for arbitrary block sizes ni and mi. The external output is z[t] ∈ Rp. The signal w[t] is
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a disturbance signal. The states and inputs are partitioned in the natural way such that

the sub-systems correspond to elements of the poset P with x[t] = [x1[t] |x2[t] |. . . |xs[t] ]T ,

and u[t] = [u1[t] |u2[t] |. . . |us[t] ]T . This naturally partitions the matrices A, B,C,D into

appropriate blocks so that A =
[

Ai j
]

i, j∈P
, B =

[

Bi j
]

i, j∈P
, C =

[

Cj
]

j∈P
(partitioned into

columns), D =
[

Dj
]

j∈P
. (We will throughout deal with matrices at this block-matrix level,

so that Ai j will unambiguously mean the (i, j) block of the matrix A.) Using these block

partitions, one can define the incidence algebra at the block matrix level in the natural

way. We denote by IA(P),IB(P) the block incidence algebras corresponding to the block

partitions of A and B. Often, matrices will have different (but compatible) dimensions and

the block structure will be clear from the context. In these cases, we will abuse notation

and will drop the subscript and simply write I(P).

The system (5.1) may be viewed as a map from the inputs w, u to outputs z, x via

z = P11w + P12u

x = P21w + P22u

where

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


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


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. (5.2)

(We refer the reader to [66] as a reminder of standard LFT notation used above). In this

chapter we will assume that A ∈ I(P) and B ∈ I(P). Indeed, this assumption ensures that

the plant P22(z) = (zI − A)−1B ∈ I(P).

We remind the reader that we call such systems poset-causal due to the following anal-

ogous property among the sub-systems. If an input is applied to sub-system i via ui at some

time t, the effect of the input is seen by the states x j for all sub-systems j ∈↑ i (at or after

time t). Thus ↑ i may be seen as the cone of influence of input i. We refer to this causality-
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like property as poset-causality. This notion of causality enforces (in addition to causality

with respect to time), a causality relation between the subsystems with respect to a poset.

Infomation Constraints in Controller

In this chapter, we will be interested in the design of poset-causal controllers of the form:

K =























AK BK

CK DK


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

















. (5.3)

We will require that the controller also be poset-causal, i.e. that K ∈ I(P). In later sections

we will present a general architecture for controllers with this structure with some elegant

properties.

The decentralization constraint of interest in this chapter is one where the controller

mirrors the structure of the plant, and is therefore also in the block incidence algebra IK(P)

(we will henceforth drop the subscripts and simply refer to the incidence algebra I(P)).

Equivalently, the notion of poset-causality for a controller may be define as follows:

Definition 5.1. Let P be a poset. A control law (5.3) is said to be poset-causal if ui uses

as input only on x j for j ∈↓ i (i.e. downstream information).

Note that requiring K ∈ I(P) is equivalent to enforcing poset-causality constraints on

the controller in the sense of Definition 5.1.

Remark Note that the control law for ui may be possibly dynamic, so that the states x j

for j ∈ ↓i may be used to compute predictions of other unknowns states (which we call

local states at i). The control input ui may then depend on the x j and the predictions that

were computed (based on the known states). In fact, the controller may also depend on the

local state predictions obtained from subsystem j for j ∈ ↓i (since the information available

at j is a subset of the information available at i). We call the collection of all states and

state predictions from ↓i to be the downstream information at i. We will later propose a
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controller architecture that indeed uses all the downstream information in a very structured

way.

5.2.1 Notation

Since we are dealing with poset-causal systems (with respect to the poset P = (P,$)),

most vectors and matrices will be naturally indexed with respect to the set P (at the block

level). Recall that every poset P has a linear extension (i.e. a total order on P which is

consistent with the partial order $). For convenience, we fix such a linear extension of P,

and all indexing of our matrices throughout the chapter will be consistent with this linear

extension (so that elements of the incidence algebra are lower triangular).

Given a matrix M, Mij will as usual denote the (i, j)th entry. The ith column will be

denoted by Mi and the ith row will be denoted by M(i). Given a block |P| × |P| matrix,

we will sometimes need to extract rows and columns corresponding to certain subsets of

P. If S , T ⊆ P then M(S ) is the sub-matrix containing the columns whose indices belong

to S , and M(S , T ) is the sub-matrix containing rows and columns indexed by S and T

respectively. We will also need to deal with the inverse operation: we will be given an

|S | × |S | matrix K (indexed by some subset S ⊆ P) and we will wish to embed it into a

|P| × |P| matrix by zero-padding the locations corresponding to row and column locations

in P \ S . We will denote this embedded matrix by K̂. Finally, given a vector q of length

|P|, the vector q↑i is the sub-vector with components indexed in the set ↑i (q↑↑i, q↓i etc. are

defined similarly).

5.3 Ingredients of the Architecture

The controller architecture that we propose is composed of three main ingredients:

• The notion of local variables,

• A notion of a local product, denoted by “◦”,
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• A pair of operators ζ, µ that operate on the local variables in a way that is consistent

with the order-theoretic structure of the poset. These operators, called the zeta func-

tion and theMöbius function respectively, are classical objects and play a central role

in much of order theory, number theory and combinatorics [39].

5.3.1 Local Variables and Local Products

We begin with the notion of global variables.

Definition 5.2. We call a function z : P → R a global variable.

Remark Typical global variables that we encounter will be the overall state x and the input

u. When ni = 1 and mi = 1, the state x and input u may be viewed as global variables as

defined above. For arbitrary block sizes, the definition of a global variable (and some of

the other definitions that follow) must be suitably altered in an obvious way.

Note that the overall system is composed of s = |P| subsystems. One can imagine each

subsystem maintaining a copy (more precisely a prediction) of the global variable. We call

these predictions local variables.

Definition 5.3. Let z be a global variable. We call a map Zi : ↑i → R the local variable

at i associated to z.

Remark We think of Zi as a vector in R|P|. Note that only the components in ↑i ⊆ Pmatter,

and we set the remaining elements to be zero, these elements are not relevant. We collect the

local variables (viewed as columns) Zi, i ∈ P formally into a single matrix variable (called

the matrix representation) Z :=
[

Z1 . . .Zs
]

. We will use the indexing Zi = [Zij] j∈P, so that

Zij denotes the local prediction of z j at subsystem i. We will use this indexing exclusively

for local variables so that unambiguously whenever this notation occurs, it refers to a local

quantity.
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Because of the way local variables are constructed, the matrix Z is in the incidence

algebra. Only the indices of Zij where i $ jmatter, the remaining elements of Z are formally

set to zero and are never to be looked at. Hence, we can identify the space of local variables

with the incidence algebra so that we can denote the space of local variables also by I(P).

By abuse of terminology, we will refer to Z itself as the local variable. The two local

variables we will encounter are X (local state variables) and U (local input variables).

Example 5.1. We illustrate the concepts of global variables and local variables with an

example. Consider the poset shown in Fig. 5-1(d). Then we can define the local variable x

and a corresponding (matrix representation of) global variable X as follows:
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We define the following important product:

Definition 5.4. LetG = {G(1), . . . ,G(s)} be a collection of maps G(i) : ↑i× ↑i → R. To

make the multiplication of G(i) with Xi compatible, we view G(i) as matrices of size |P|× |P|

with support on the rows and columns in ↑i, and zeros elsewhere. Let X be a local variable.

We define the local product G ◦ X columnwise via

(G ◦ X)i # G(i)Xi for all i ∈ P. (5.4)

Remark We call the matrices G(i) the local gains. Local products give rise to decoupled

local relationships in the following natural way. Let X, Y be local variables. If they are

related via Y = G ◦ X then the relationship between X and Y is said to be decoupled. This

is because, by definition,

Yk = G(k)Xk for all k ∈ P.
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Thus the maps relating the pairs (Xk, Yk) are decoupled across all k ∈ P (i.e. Yk depends

only on Xk and not on X j for any other j ! k). Note that if Y = G ◦ X, then Y is again a

local variable, and in its corresponding matrix representation, only the entries Yij for i $ j

are relevant, the remaining entries are zero.

Example 5.2. Continuing with Example 5.1, let us define the local gains by

G = {G(1),G(2),G(3),G(4)} ,

where,
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Then
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.

Definition 5.5. Let M ∈ Rs×s be a matrix and X ∈ I(P) a local variable. We define

Y = MX to be the usual matrix multiplication of matrices M and X but restricted to entries
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i $ j, i.e.

Yij =























∑

k∈P MjkXki for i $ j

0 otherwise.

Throughout this chapter products of matrices and local variables of the form MX are

always viewed as objects in I(P) so that the output is a local variable with zeroes at indices

where i ! j. The product XM as a local variable in I(P) is similarly defined.

5.3.2 The Möbius and Zeta operators

We first remind the reader of two important order-theoretic notions, namely zeta functions

and Möbius functions. These are both well-known concepts in order theory that generalize

discrete integration and finite differences (i.e. discrete differentiation) to posets.

Definition 5.6. Let P = (P,$). The zeta matrix ζ is defined to be the matrix ζ : P×P →

R such that ζ(i, j) = 1 whenever j $ i and zeroes elsewhere. The Möbius operator is

µ := ζ−1.

These matrices may be viewed as operators acting on functions on the poset f : P → R

(the functions being expressed as row vectors). The matrices ζ, µ, which are members of

the incidence algebra, act as linear transformations on f in the following way:

ζ :R|P| → R|P| µ : R|P| → R|P|

f .→ f ζT f .→ fµT .

Note that ζ( f ) is also a function on the poset given by

(ζ( f ))i =
∑

j$i

f j. (5.5)

This may be naturally interpreted as a discrete integral of the function f over the poset.
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The role of the Möbius function is the opposite: it is a generalized finite difference (i.e.

a discrete form of differentiation over the poset). If f : P → R is a local variable then the

function µ( f ) : P → R may be computed recursively by:

(µ( f ))i =























fi for i a minimal element,

fi −
∑

j≺i (µ( f )) j otherwise.
(5.6)

Example 5.3. Consider the poset in Figure 5-1(c). The zeta function and the Möbius

function are given by:
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.

If f =
[

f1 f2 f3
]

, then

ζ( f ) =
[

f1 f1 + f2 f1 + f2 + f3
]

µ( f ) =
[

f1 f2 − f1 f3 − f2
]

.

11

2 2

3

3

4

f1 f1

f2 − f1 f2 − f1

f3 − f2

f3 − f1

f4 − f3 − f2 + f1

f =





f1

f2

f3



 f =









f1

f2

f3

f4









Figure 5-2: Two posets with their Möbius functions. The functions f are functions on the
posets, and the values of µ( f ) at element i are indicated next the the relevant elements.

We now define modified versions of the zeta and Möbius operators that extend the
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actions of µ and ζ from global variables x to local variables X. Let ζ and µ be matrices as

defined in Definition 5.6.

Definition 5.7. Let X =
[

X1, . . . , Xs
]

be a local variable. Define the operators

µ : I(P) → I(P) and ζ : I(P) → I(P)

acting via

ζ(X) = XζT µ(X) = XµT , (5.7)

where the multiplication is to be interpreted restricted toI(P) (i.e. in the sense of Definition

5.5).

Lemma 5.1. The operators ζ and µ may be written more explicitly as

ζ(X)ij #
∑

k$i

Xkj µ(X)ij # X
i
j −

∑

k≺i

µ(X)kj . (5.8)

Proof. The proofs follow in a straightforward fashion from (5.5) and (5.6). !

Note that if Y = µ(X) then Y = [Yij]i$ j is also a local variable in I(P). As before, we

only define the entries Yij when i $ j and formally set the remaining entries to zero so that

Y has a matrix representation. By abuse of notation, let ζ(X) :=
[

ζ(X)1, . . . , ζ(X)s
]

and

µ(X) :=
[

µ(X)1, . . . , µ(X)s
]

. The entries corresponding to subsystem j are denoted by ζ(X) ji

and µ(X) ji . Note that ζ has the natural interpretation of aggregating or integrating the local

variables Xk for k ∈ P, whereas µ performs the inverse operation of differentiation of the

local variables.

Example 5.4. We illustrate the action of µ acting on a local variable. Consider the local
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variable X from Example 5.1. It is easy to verify that

µ(X) =


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










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x1 0 0 0

x2(1) x2 − x2(1) 0 0

x3(1) 0 x3 − x3(1) 0

x4(1) x4(2) − x4(1) x4(3) − x4(1) x4 − x4(3) − x4(2) + x4(1)
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





.

Lemma 5.2. The operators (µ, ζ) are inverses of each other so that for all local variables

X ∈ I(P),

ζ(µ(X)) = µ(ζ(X)) = X.

Proof. We show that for i $ j, µ(ζ(X))ij = Xij (the other proof is similar). We prove this

by induction on i. Note that for minimal i this is indeed true and assume (as the induction

hypothesis) it is true for all k ≺ i. From (5.8),

µ(ζ(X))ij = ζ(X)ij −
∑

k≺i

µ(ζ(X))kj

= ζ(X)ij −
∑

k≺i

Xkj (by induction hypothesis)

= Xij.

!

Since ζ and µ may be interpreted as integration and differentiation operators, the above

statement may be viewed as a “poset” version of the fundamental theorem of calculus. We

mention one more important property of these operators.

Lemma 5.3. Let A, X ∈ I(P). Then µ(AX) = Aµ(X), and ζ(AX) = Aζ(X).

Proof. Let Y be the local variable defined as Y = AX. From Definition 5.7, µ(Y) = YµT =
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(AX)µT . Since µ(Y) is a local variables µ(Y)ij = 0 for j ! i. Hence, for j $ i we have

µ(Y)ij =
∑

k∈P

Yikµ
j
k

=
∑

k$i,k$ j

Yikµ
j
k (since Y, µ ∈ I(P))

=
∑

k$ j

Yikµ
j
k (since j $ i)

=
∑

k$ j

∑

k$p$i

AipX
p
k µ

j
k (since A, X ∈ I(P))

=
∑

p:p$i

Aip
∑

k:k$p,k$ j

Xp
k µ

j
k (switching order of summation)

=
∑

p$i

Aipµ(X)
p
j

=
[

Aµ(X)
]i
j .

The proof for ζ is identical. !

5.4 Proposed Architecture

5.4.1 Local States and Local Inputs

Having defined local and global variables, we now specialize these concepts to our state-

space system (5.1). We will denote x j to be the true state at subsystem j. We denote x j(i) to

be a prediction of state x j at subsystem i. Recall the information constraints at subsystem i:

• Information about ↑↑i: This state information is unavailable, so a (possibly partial)

prediction of x j for j ∈ ↑↑i is formed. We denote this prediction by x j(i). Computing

these predictions is the role of the controller states.

• Information about ↓i: Complete state information about x j for j ∈ ↓i is available, so

that x j(i) = x j. Moreover, the predictions from downstream xk( j) for all k ∈ P and
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j $ i are also available.

• State information about uncomparable elements is not available and irrelevant.

These ideas can be formalized by defining a local (state) variable X such that Xij captures

the best available information about the state x j at subsystem i.

Definition 5.8. Let x, the state of the system (at some time t) be viewed as a global

variable. Define the local variable X ∈ I(P) to be the local state with respect to x. It

satisfies following properties:

1. Xii = xi, the true value of the state,

2. If i ≺ j, then Xij is a prediction of x j.

The local state variable may be split as

X = Xc + Xp, (5.9)

where Xc is a strictly lower triangular matrix with entries Xicj = x j(i) if i ≺ j, and Xp =

diag(x) is a diagonal matrix. Note that Xc corresponds to the controller states whose role is

to compute the state predictions, and Xp corresponds to the plant states.

Example 5.5. Consider the poset shown in Fig. 5-1(d). The matrix X shown in Example

5.1 satisfies the conditions for a being a local state variable. The free variables in this

example are x2(1), x3(1), x4(1), x4(2), x4(3). The plant states are x1, x2, x3, x4.

In this way, the local state X will correspond to partial predictions of the state x. We

now clarify the notion of a partial prediction with an example.

Example 5.6. Consider the system shown in Fig. 5-3 with dynamics
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Figure 5-3: Local state information at the different subsystems. The quantities x3(1) and
x3(2) are partial state predictions.

Note that subsystem 1 has no information about the state of subsystem 2. Moreover,

the state x1 or input u1 does not affect the dynamics of 2 (their respective dynamics are

uncoupled). Hence the only sensible prediction of x2 at subsystem 1 is x2(1) = 0 (the

situation for u2(1) is identical). However, both the states x1, x2 and inputs u1, u2 affect x3

and u3. Since x2 and u2 are unknown, the state x3(1) can at best be a partial prediction

of x3 (i.e. x3(1) is the prediction of the component of x3 that is affected by subsystem 1).

Similarly x3(2) is only a partial prediction of x3. Indeed, one can show that x3(1)+ x3(2) is

a more accurate prediction of the state x3, and when suitably designed, their sum converges

to the true state x3.

State Innovations

We now give a natural interpretation of the operator µ(X) in terms of the state corrections

with the help of an example.

Example 5.7. Consider the poset shown in Fig. 5-4, and let us inspect the predictions of

the state x6 at the various subsystems. The prediction of x6 at 1 is x6(1) and the prediction

of x6 at 2 is x6(2). The differential improvement in the prediction at subsystem 2 regarding

the state x6 is x6(2) − x6(1) (we also refer to this as a “correction”). At subsystems 3 and
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1

2 3 4

5 6

x6(1)

x6(2) − x6(1) x6(3) − x6(1)

x6(4) − x6(1)

0

x6 − (x6(2) + x6(3) + x6(4))

+2x6(1)

Figure 5-4: Poset showing the differential improvement of the prediction of state x6 at
various subsystems.

4, the formulae for the corrections are similar. The correction in x6 at subsystem 5 is zero.

These corrections are depicted in Fig. 5-4.

Local Inputs

Recall that the subsystems need to keep track of not only the states, but also of the inputs

at the different subsystems. For example, if i and j are distinct subsystems, a prediction of

uj is needed at i in order to produce a reasonable prediction of x j. To this end we define

the local variables U =
[

U1, . . . ,Us
]

such that Ui
j = uj(i) is a prediction of the input uj at

subsystem i. Moreover, Ui
i = ui (the true input at subsystem i). These definitions of Ui

j are

analogous to those of Xij in Definition 5.8. In a natural way µ acts on U to produce µ(U),

which provides information about differential improvement in the prediction of the inputs.

5.4.2 Control Law

We now formally propose the following control law:

U = ζ(G ◦ µ(X)). (5.10)

This control law may be interpreted as follows. The quantity µ(X) is a differentiation-like

operation on the poset that computes local improvements or corrections in the prediction
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of the global state. The quantity G ◦ µ(X) is a local correction based on the corrections.

Finally, using ζ the local corrections are again aggregated along the poset via “integration”.

We make the following remarks about this control law.

Remarks 1. Note that a control law of the form (5.10) mimics a centralized controller.

Suppose that G(i) = K for all i ∈ P (so that G is “constant” across i ∈ P). Then the

control law reduces to U = ζ(Kµ(X)) = KX. Suppose all the subsystems have access

to the global state so that Xi = x. Then Ui = Kx, i.e. each subsystem implements a

centralized control law.

2. We note that (5.10) specifies U which amounts to specifying the input Ui
i = ui at

subsystem i ∈ P. It also specifies Ui
j = uj(i) for i ≺ j which is the prediction of the

input uj at an upstream subsystem i.

3. The equation (5.10) describes a general controller architecture parametrized by the

gainsG. Specification of a controller is equivalent to specifying the local gain matri-

ces G(i) in G.

4. SinceG(i) is supported (i.e. non-zero) only on rows and columns in ↑i, the controller

is feasible with respect to the information constraints and ui depends only on x j and

xk( j) for j ≺ i. Such a matrix may be represented using the notation G(i) = F̂(i),

where F(i) ∈ R|↑i|×|↑i|.

5. The control law (5.10) may be alternatively written as Ui =
∑

k$i G(k)µ(X)k. The

control law has the following interpretation. If i is a minimal element of the poset

P, then µ(X)i = Xi, the vector of partial predictions of the state at i. The local

control law uses these partial predictions with the gain G(i). If i is a non-minimal

element it aggregates all the control laws from ↓↓i and adds a correction term based

on the correction in the global state-predictionµ(X)i. This correction term is precisely

G(i)µ(X)i.
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Example 5.8. Consider a poset causal system where the underlying poset is shown in Fig

5-1(d). The controller architecture described above is of the form Ui =
∑

k≺i G(k)µ(X)k

(where Ui is a vector containing the predictions of the global input at subsystem i). Noting

that Ui
i = ui, we write out the control law explicitly to obtain:
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



















x1

x2(1)

x3(1)

x4(1)



























































+G(2)



























































0

x2 − x2(1)

0

x4(2) − x4(1)



























































+G(3)



























































0

0

x3 − x3(1)

x4(3) − x4(1)



























































+

G(4)



























































0

0

0

x4 − x4(2) − x4(3) + x4(1)



























































.

5.4.3 State Prediction

Recall that at subsystem i the states x j for j ∈ ↑↑i are unavailable and must be predicted.

Typically, one would predict those states via an observer, however, those states are unob-

servable; only the state xk for k ∈ ↓i are observable, and in fact directly available. In this

situation, rather than using an observer, one constructs a predictor to predict the unobserv-

able variables; these correspond to the controller states Xc.

To compute the predictions Xic at subsystem i one uses the plant state Xip. In addition,

one also uses the downstream states x j for j ≺ i. It is convenient to represent the down-

stream states as a matrix Xd defined as:

[Xd]i j =























xi if i ≺ j

0 otherwise.
(5.11)

Remark Note that Xd is not a local variable, it is to be viewed as a (upper triangular)
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matrix. In fact, if we define Z via

[Z]i j =























1 if i ≺ j

0 otherwise,
(5.12)

then Xd = XpZ.

Example 5.9. For the poset in Fig. 5-1(d),

Xd =



























































0 x1 x1 x1

0 0 0 x2

0 0 0 x3

0 0 0 0



























































.

The downstream input matrix Ud is similarly defined via Ud = UpZ.

Consider the (poset-causal) system

x[t + 1] = Ax[t] + Bu[t]. (5.13)

The following dynamics on the local states imitate the above equation using only locally

available information (i.e. states x j and inputs uj for j $ i) to yield predictions.

Xi[t + 1] = A(Xic + Xip + Xid)[t] + B(U
i[t] + Ui

d)[t].

This may be compactly written as the following difference equation on I(P):

X[t + 1] = A(Xc + Xp + Xd)[t] + B(U + Ud)[t]. (5.14)

This equation makes transparent the dependence of the local state X = Xc + Xp on different

terms. The term AXc corresponds to the dynamical evolution of the predictions, The term
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AXp corresponds to the use of the plant state xi as an input to predict the upstream states

states x j(i). Similarly the term AXd represents the use of downstream state information xk

for k ≺ i in predicting upstream states. The terms involving the true and predicted inputs

(involving Ud and U = Uc + Up) have a similar interpretation.

We define µ acting on the matrix Xd via µ(Xd) = XdµT . We view µ(Xd) as a local

variable by restricting attention to entries indexed by µ(Ud)ij for i $ j.

Lemma 5.4. Let Xd be as defined in (5.11). Then µ(Xd) = 0.

Proof. Note that since µ(Xd) = XdµT (restricted to I(P)), the formula (5.8) holds. Using

this formula and the fact that Xd takes value zero on I(P), the conclusion follows. !

Remark Since Ud is analogously defined, µ(Ud) = 0.

5.4.4 Separation Principle

Applying µ to (5.14) we obtain the following modified closed-loop dynamics in the new

variables µ(X):

µ(X)[t + 1] = Aµ(X)[t] + Bµ(U)[t]. (5.15)

Let us define A + BG = {A + BG(1), . . . , A + BG(s)} . From (5.10), and the fact that

µ(ζ(Z)) = Z we will momentarily see that the modified closed-loop dynamics are:

µ(X)[t + 1] = (A + BG) ◦ µ(X)[t]. (5.16)

These dynamics describe how the differential improvements in the state evolve. If one

picks U such that µ(U) stabilizes µ(X), the differential improvements all converge to zero

and the state predictions become accurate asymptotically. We show that (5.10) achieves

this with an appropriate choice of local gains.

Theorem 5.1. Let F(i) be chosen such that A(↑i, ↑i) + B(↑i, ↑i)F(i) is stable for all i ∈ P.

Then the control law (5.10) with G(i) = F̂(i) renders (5.15) stable.
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Proof. Since U = ζ(G ◦ µ(X)) it follows that

µ(U) = µ (ζ(G ◦ µ(X)))

= G ◦ µ(X).

As a consequence, µ(U)i = F̂(i)µ(X)i for all i ∈ P. Hence the closed-loop dynamics (5.15)

become:

µ(X)i[t + 1] =
(

A + BF̂(i)
)

µ(X)i[t].

Recalling that µ(X) is a local variable so that µ(X)i (viewed as a vector) is non-zero only

on ↑i it is easy to see that these dynamics are stabilized exactly when F(i) are picked such

that A(↑i, ↑i) + B(↑i, ↑i)F(i) are stable.

!

The dynamics of the different subsystems µ(X)i are decoupled, so that the gains G(i)

may be picked independent of each other. This may be viewed as a separation principle.

Henceforth, we will assume that the gains G(i) have been picked in this manner. Since

the closed loop dynamics of the states xi( j) are related by a invertible transformation (i.e.

X = ζ(µ(X))) if the modified closed-loop dynamics (5.16) are stabilized, so are the closed-

loop dynamics (5.14).

We assume for the remainder of the chapter that the gainsG(i) are picked so thatG(i) =

F̂(i) (so that G(i) is nonzero only on the rows and columns indexed by ↑i), and such that

F(i) is picked so that A(↑i, ↑i) + B(↑i, ↑i)F(i) is stable. Let us denote F̂ =
{

F̂(1), . . . , F̂(s)
}

.
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5.4.5 Controller Realization

We now describe two explicit controller realizations. The natural controller realization

arises from the closed-loop dynamics (5.14) along with the control law (5.10) to give:

X[t + 1] = AX[t] + AXd[t] + B(U[t] + Ud[t]) (5.17)

U[t] = ζ(F̂ ◦ µ(X))[t]. (5.18)

We remind the reader thatUd = diag(U)Z. As explained earlier, the plant states correspond

to the diagonal entries of X whereas the controller states correspond to Xij for j : i.

While the above corresponds to a natural description of the controller, it is possible to

specify an alternative realization. This is motivated from the following observtation. The

control input U depends only on µ(X). Hence, rather than implementing controller states

that track the state predictions X, it is natural to implement controller states that compute

the corrections µ(X) directly.

Let us define q(i) = µ(X)i
↑↑i (so that the vector q(i) has only those components of µ(X)

i
j

such that i ≺ j), and qj(i) = µ(X)ij. Note also that µ(X)
j
j = x j −

∑

k≺ j q j(k) from (5.8).

Let us define Acl( j) = A(↑ j, ↑ j) + B(↑ j, ↑ j)F( j). The closed-loop dynamics at subsystem j

(corresponding to the jth column of (5.16) reduce to:























x j −
∑

k≺ j q j(k)

q( j)























[t + 1] =























Acl11( j) Acl12( j)

Acl21( j) Acl22( j)













































x j −
∑

k≺ j q j(k)

q( j)























[t]. (5.19)

Note that from (5.10) (keeping in mind that µ(X)ij = 0 if j ! i, and that uj = U j
j), the
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control law assumes the form:

uj =
∑

k$ j

F̂( j)(k)µ(X)k

=
∑

k$ j

F( j)(k)























xk −
∑

l≺k qk(l)

q(k)























[t].

(Recall that F( j)(k) is the jth row of the matrix F(k)).

It may be verified from (5.19) and (5.10) that the explicit controller for subsystem j ∈ P

assumes the following form:

q( j)[t + 1] = Acl22( j)q( j)[t] + A
cl
21( j)

















x j −
∑

k≺ j

q j(k)

















[t]

uj[t] =
∑

k$ j

F( j)(k)























xk −
∑

l≺k qk(l)

q(k)























[t].

(5.20)

5.4.6 Structure of the Optimal Controller

Consider again the poset-causal system considered in (5.2). Consider the optimal control

problem:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖2

subject to K stabilizes P

K ∈ I(P).

(5.21)

The solution K∗ is the H2-optimal controller that obeys the poset-causality information

constraints described Section 5.2. The solution to this optimization problem was presented

in Theorem 4.3 in Chapter 4. We now establish the relationship between the optimal con-

troller K∗ and the proposed controller architecture.

In Theorem 4.3, we obtain matrices K(↑i, ↑i) by solving a system of decoupled Riccati

equations via (K(↑ j, ↑ j),Q( j), P( j)) = Ric(A(↑ j, ↑ j), B(↑ j, ↑ j),C(↑ j),D(↑ j)).
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Theorem 5.2. The controller (5.20) with gains F(i) = K(↑i, ↑i) for all i ∈ P is the optimal

solution to the control problem (5.21).

Proof. Recall that the optimal controller is given by (4.16). We will show that when we

pick F(i) = K(↑i, ↑i), we recover this controller. By (4.15) diag(Acl( j)) = A, and hence

diag(Acl22( j)) = AΦ and diag(A
cl
21( j)) = BΦ. Also note that:

















∑

k≺ j

q j(k)

















j∈P

= CΦq. (5.22)

Letting q be the vectorization of q( j) for j ∈ P via q = [q( j)] j∈P, we may rewrite the

dynamics in (5.20) as

q[t + 1] = AΦq[t] + BΦ(x[t] −CΦq[t]). (5.23)

Further, note that the vectorization of the control law equation in (5.20) yields

u =























∑

k$ j

K( j)(↑k, ↑k)























xk −
∑

l≺k qk(l)

q(k)













































j∈P

= CQΠ2q + CQΠ1(x − CΦq).

As a result, the control law may be written as:

u = CQΠ2q +CQΠ1(x −CΦq). (5.24)

Combining (5.23), (5.24), we obtain that

u =























AΦ − BΦCΦ BΦ

CQ(Π2 − Π1CΦ) CQΠ1























q,

which is precisely the same expression as (4.16). Since this corresponds to the optimalH2

controller, we have the required result. !
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Theorem 5.2 establishes that the controller architecture proposed in this chapter is also

optimal in the sense of theH2 norm.

5.4.7 Φ and Γ revisited

In Section 4.4.2 in Chapter 4, we introduced a pair of transfer function matrices (Φ, Γ) (see

(4.17)). In Section 4.4.3 we briefly mentioned an interpretation ofΦ and Γ and provided an

intuitive explanation for the structural form of the optimal controller derived in Theorem

4.4. We now re-examine these explanations more formally. We begin by interpreting Γ.

As a consequence of the separation theorem, we have that the local variables µ(X)

satisfy the decoupled relationship (5.16). Defining µ(X) ji = qi( j), we saw that the evolution

of µ(X) may be rewritten as (5.19), where F( j) = K(↑ j, ↑ j) as determined by the solution

to the Riccati equation. Also Acl22( j) = AΦ( j), and Acl21( j) = BΦ( j). Recalling that µ(X) jj =

x j −
∑

k≺ j q j(k) and µ(X)
j
↑↑ j = q( j), from (5.19) we have that for each j ∈ P

µ(X) j
↑↑ j[t + 1] = AΦ( j)µ(X)

j
↑↑ j[t] + BΦ( j)

















x j −
∑

k≺ j

µ(X)kj

















[t]

µ(X) jj[t] =

















x j −
∑

k≺ j

µ(X)kj

















[t].

Rewriting this in transfer function form we obtain

[

µ(X) jj
]

j∈P
=























AΦ − BΦCΦ BΦ

−CΦ I























x

= Γx.

Thus Γx =
[

µ(X) jj
]

j∈P
, the diagonal entries of µ(X). Hence the role of Γ is to compute the

diagonal entries of µ(X).

Note that we showed in (5.19) that the dynamics of the local variables µ(X) j are decou-
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pled and satisfy

µ(X) j[t + 1] =
(

A + BK̂(↑ j, ↑ j)
)

µ(X) j[t].

It is thus possible to compute µ(X) j
↑↑ j from µ(X)

j
j by noting that:

µ(X) j
↑↑ j = (zI − Acl22( j))

−1Acl21( j)µ(X)
j
j.

(This simply corresponds to computing µ(X) j
↑↑ j by propagating µ(X)

j
j using the its dynam-

ical equation). Using the notation of Chapter 4 where Φ( j) represents the jth column of Φ,

the above equation may be rewritten as

µ(X) j = Φ( j)µ(X) jj.

This clarifies the role of Φ; it is to compute the off-diagonal entries of µ(X) by propagating

the diagonal entries. Note that this form of propagation is possible as a consequence of the

crucial fact that the dynamics of the local variables µ(X) are decoupled.

In Theorem 4.4 in Chapter 4 we showed that the optimal controller was of the form:

u[t] = −
∑

j∈P

K̂(↑ j, ↑ j)Φ( j)(Γx) j[t].

This can be related to the controller architectureU = ζ(G◦µ(X)). Note that the u =
[

U j
j

]

j∈P

(i.e. u corresponds to the diagonal entries of the local variable U). Extracting the diagonal

entries of the control law (and using the fact that µ(X) is in the incidence algebra and G( j)

is non-zero only on the rows and columns corresponding to ↑ j) we obtain that

u[t] =
∑

j∈P

G( j)µ(X) j[t].

As pointed out earlier,

Φ( j)(Γx) j = µ(X) j,
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and G( j) = −K̂(↑ j, ↑ j) so that the controller form reduces to

u[t] = −
∑

j∈P

K̂(↑ j, ↑ j)Φ( j)(Γx) j,

which is exactly the controller form stated in Theorem 4.4.

The role of the controller states in the optimal controller (4.16) is also now clear. The

controller states q compute the differential improvements µ(X), since qi( j) = µ(X) ji .

5.5 A Block-Diagram Interpretation

It is possible to interpret the results of this chapter via a simple block-diagram approach.

We remind the reader that X and U are the local state and input variables and that Xd

and Ud are the downstream components. We define Xf = X + Xd and Uf = U + Ud.

The quantities vec(Xf ) and vec(Uf ) represent the standard vectorizations of Xf and Uf

respectively. We use ⊗ to represent the standard Kronecker product of matrices [26]. In our

approach, the signals X and U (recall that they are both in I(P)) will also be vectorized. In

this vectorization, we only consider the non-zero elements (i.e. elements in I(P)) so that

vec(X) is a vector of length
∑

i |↑i|, and vec(U) is similarly defined. We also remind the

reader that the plant is described by the transfer function:

G(z) = (zI − A)−1B.

The elementary blocks that appear in our block-diagram representation are the following:

• The plant G, which maps the inputs u to the states x,

• The transfer functions which play the role of predicting the local state variables Xi

from the states x j and inputs uj for j ∈ ↓i via (5.14). We call all these transfer

functions collectively the “simulator”, because their role may be interpreted as that
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of simulating upstream states,

• The map µ̄ which takes as input vec(X) and computes vec(µ(X)),

• The local gains F(1), . . .F(s),

• The map ζ̄ which takes as input vec(µ(U)) and computes vec(U).

In the closed-loop system all these transfer functions are interconnected as shown in Fig.

5-5.

.

.

.

.

.

.

.

.

.

.

.

.

G

µ̄
ζ̄

F (1)

F (2)

F (s)

.

.

.

Simulator

x1

xs

u1

us

X
1

X
s

µ(X)1

µ(X)sµ(U)s

µ(U)1
U

1

U
s

U
s

U
1

Gvec

Figure 5-5: A block-diagram representation of the control architecture.

Note that the matrices ζ̄ and µ̄ are formally defined to be (the matrix representations) the

linear maps that map vec(X) to vec(ζ(X)) and vec(µ(X)) respectively. Note that these are

both completely defined via the maps ζ and µ. Their explicit matrix realizations are given
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next. We remind the reader of some notation from Chapter 4. The vector ei represents

the ith standard unit vector, E↑i =
[

e j
]

j∈↑i
, and if {V1. . . .Vs} is a collection of matrices then

diag(Vk)k∈P is a block diagonal matrix with the Vi along the diagonals. Let us define the

projection matrix:

Π = diag(E↑i)i∈P.

Note that if A ∈ Rs×s, then Π acts on vec(A) by projecting onto those components that are

in the incidence algebra. Using this notation, the matrices ζ̄ and µ̄ can be shown to have

the explicit realization

ζ̄ = ΠT (ζ ⊗ I)Π µ̄ = ΠT (µ ⊗ I)Π. (5.25)

Moreover, since ζ and µ are inverses of each other, the matrices ζ̄ and µ̄ are inverses of

each other. An easy way to see this is that since ζ and µ are inverses of each other ζ ⊗ I and

µ ⊗ I are inverses of each other. Moreover, both ζ ⊗ I and µ ⊗ I are block lower triangular.

Since ζ̄ and µ̄ are just principal sub-matrices of ζ ⊗ I and ζ ⊗ I (corresponding to the rows

and columns picked out by Π) these matrices are inverses of each other.

By standard algebraic manipulations it is possible to see that the variables Xf and Uf

are related by the block diagonal map:

vec(Xf ) =









































G
. . .

G









































vec(Uf ).

While this representation is appealing, we point out that redundant copies of variables

appear in Xf and Uf . Indeed, since Xf = X + Xd = X + diag(X)ζT , we see that there are

many redundant copies of the entries of diag(X) in Xf . To get rid of these redundant copies

of the variables, we instead vectorize X and U directly. The corresponding map between
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the two quantities is then given by:

vec(X) = Gvecvec(U).

HereGvec is a block matrix where the ( j, i) block is of size |↑ j| × |↑i|, and this block is given

by G(↑ j, i) and zero-padding remaining entries so that the block is of appropriate size. We

point out that at this block level, this matrix is in the incidence algebra. We illustrate this

with an example.

Example 5.10. For the poset in Fig. 5-1(a), we have

vec(X) =









































x1

x2(1)

x2









































vec(U) =









































u1

u2(1)

u2









































.

Furthermore, the map G is given by

G =























G11 0

G21 G22























,

and the map Gvec is given by:

Gvec =









































G11 0 0

G21 G22 0

G21 0 G22









































.

For this poset the matrices ζ̄ and µ̄ are given by:

ζ̄ =









































I 0 0

0 I 0

0 I I









































µ̄ =









































I 0 0

0 I 0

0 −I I









































.
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It is straightforward to verify that vec(X) = Gvecvec(U). The following important identity

may be verified for this example:

µ̄Gvecζ̄ =









































G11 0 0

G21 G22 0

0 0 G22









































,

which is a block diagonal matrix.

As indicated in Fig. 5-5, the collective map from vec(U) to vec(X) (which collects the

plant G and the simulation block into a single transfer function) is simply given by Gvec.

Thus the block-diagram in Fig. 5-5 can be simplified to Fig. 5-6. The matrix Gvec satisfies

.

.

.

.

.

.

.

.

.

µ̄
ζ̄

F (1)

F (2)

F (s)

X
1

X
s

µ(X)1

µ(X)s

µ(U)s

µ(U)1U
1

U
s

Gvec.

.

.

Figure 5-6: A simplified block-diagram representation of the control architecture.

the following important property.
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Lemma 5.5. The matrix Gvec can be block diagonalized via:

µ̄Gvecζ̄ =









































G(↑1, ↑1)
. . .

G(↑s, ↑s)









































. (5.26)

Proof. Let

Gdiag =









































G(↑1, ↑1)
. . .

G(↑s, ↑s)









































.

Since ζ̄ and µ̄ are inverses, using (5.25), it is sufficient to show that:

GvecΠT (ζ ⊗ I)Π = ΠT (ζ ⊗ I)ΠGdiag.

The matrix on the left (as also the matrix on the right) is a block |P| × |P| matrix, where the

(i, j) block may be seen to be of size |↑i|× |↑ j|. Some basic matrix manipulations reveal that

in both the matrix on the left and on the right the (i, j) block is simply G(↑i, ↑ j), thereby

establishing the required result. !

In terms of this block-diagram approach, the role of µ̄ and ζ̄ become very transparent:

it is simply to diagonalize the map Gvec. Once this diagonalization occurs, the controller

simply applies a set of diagonal gains to stabilize the closed-loop. This also illustrates the

separation principle at the block-diagram level. As mentioned in the preceding discussion,

the architecture illustrated in block-diagram Fig 5-6 is also optimal, in that appropriate

choice of the gains F(i) yield optimal controllers.

Finally, we mention that the transfer function Γ is also easy to visualize, as shown in

Fig. 5-7, it is simply the transfer from the states x to the vector [µ(X)ii]i∈P.
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Figure 5-7: A block-diagram representation of Γ.
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5.6 Conclusions

In this chapter we addressed an architectural question related to design of poset-causal

controllers. We described an intuitive architecture that involved local state prediction at the

different subsystems. Some natural ingredients involved in the control architecture included

abstract notions of integration and differentiation along the poset. The notion of integration

allowed us to fuse local state information at different subsystems. The notion of differenti-

ation, intimately related to the Möbius inversion formula, described the local corrections in

the state predictions. The proposed control law, which consisted of a combination of these

concepts, had several appealing properties. We established an elegant separation principle

for the control architecture and proved that the architecture was optimal in a formal sense.
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Chapter 6

Conclusions

6.1 Posets, Decentralization, and Computation

In this thesis we studied a class of decentralized control problems. The class under con-

sideration provided a natural way to model a generalized notion of causality or hierarchy

among subsystems of a decentralized system. Using the key technical concept of a poset,

we developed a new notion of poset-causality as a formal framework for the same. The

class of poset-causal systems enabled us to model, in a natural way, unidirectional/acyclic

information flow within systems.

We argued that this paradigm allowed us to unify, into one common theoretical frame-

work, several classes of previously studied decentralized control problems. Examples in-

clude systems with nested information, time-delayed systems, as well as certain classes of

spatially distributed systems. We showed that algebraic properties of posets (via the notion

of an incidence algebra), along with the Youla parametrization, allowed us to reformulate

seemingly non-convex optimal control problems to convex ones.

While convex formulations in the Youla domain are elegant from a theoretical point of

view, from a computational standpoint there are severe limitations. This led us to examine

more efficient state-space approaches. While state-space approaches for centralized control
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are well-studied, fairly limited literature is available for the same for decentralized control.

This led us to study state-space approaches for the class of decentralized control prob-

lems at the heart of this thesis, namely poset-causal systems. Given a poset-causal system,

we studied the problem of computing the H2-optimal poset-causal controller with state

feedback. We first identified a key separability of the problem. Using this separability, we

showed how to reduce the decentralized problem to a set of decoupled centralized prob-

lems, each of which could be solved using standard techniques. Exploiting these ideas, we

gave explicit state-space formulae for theH2-optimal controller.

Having established efficiently computable state-space formulae for poset-causal sys-

tems, we then examined the problem of controller design from an architectural viewpoint.

Exploiting posets’ rich structure, we described a natural and intuitive controller architec-

ture. Some of the essential ingredients for the same included local predictions of the global

state at various subsystems (this was the role of the controller states), a notion of integration

(this played the role of fusing downstream information at subsystems) and differentiation

(this played the role of computing innovations in the state via Möbius inversion) on posets.

The proposed controller architecture had two important properties: a separation principle

and a certain optimality property.

6.2 Future Directions

As future research it would be interesting to extend the state-space results of Chapter 4 to

more general settings. Firstly, we note that we assumed that subsystems in the system had

access to downstream state information. It is important to address the case where the full

downstream states are not available, rather only general outputs of the form yi = Cixi are

available. Some partial progress on this problem has been made by Swigart and Lall for

the so-called “Two-Player Case” with partial output feedback [53].

Another interesting direction would be to extend these state-space techniques to some
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of the classes of problems mentioned in Chapter 3. These include more general poset-

like structures described via Galois connections, systems with time-delays and spatially

invariant systems.

Finally, we mention that the state-space approaches have only been studied in the con-

text of the H2 norm in this thesis. It is also important to study the problem in the context

of other norms that capture different qualitative behavior. For example theH∞ norm is the

“robust” counterpart, and is also amenable to state-space techniques in the centralized case

[21, 16]. It would be interesting to extend these ideas for decentralized control problems.
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