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Abstract

Tensors play a central role in many modern machine learning and signal processing appli-
cations. In such applications, the target tensor is usually of low rank, i.e., can be expressed
as a sum of a small number of rank one tensors. This motivates us to consider the problem
of low rank tensor recovery from a class of linear measurements called separable measurements.
As specific examples, we focus on two distinct types of separable measurement mechanisms (a)
Random projections, where each measurement corresponds to an inner product of the tensor
with a suitable random tensor, and (b) the completion problem where measurements consti-
tute revelation of a random set of entries. We present a computationally efficient algorithm,
with rigorous and order-optimal sample complexity results (upto logarithmic factors) for tensor
recovery. Our method is based on reduction to matrix completion sub-problems and adapta-
tion of Leurgans’ method for tensor decomposition. We extend the methodology and sample
complexity results to higher order tensors, and experimentally validate our theoretical results

1 Introduction

Tensors provide compact representations for multi-dimensional, multi-perspective data in many
problem domains, including image and video processing [51, 34, 26], collaborative filtering [27, 16],
statistical modeling [3, 2], array signal processing [33, 42], psychometrics [49, 43], neuroscience
[6, 35], and large-scale data analysis [37, 44, 45, 1, 18]. In this paper we consider the problem
of tensor recovery - given partial information of a tensor via linear measurements, one wishes to
learn the entire tensor. While this inverse problem is ill-posed in general, we will focus on the
setting where the underlying tensor is simple. The notion of simplicity that we adopt is based on
the (Kruskal) rank of the tensor, which much like the matrix rank is of fundamental importance -
tensors of lower rank have fewer constituent components and are hence simple. For example, video
sequences are naturally modeled as tensors, and these third order tensors have low rank as a result
of homogeneous variations in the scene [48]. Unlike the matrix case, however, computational tasks
related to the tensor rank such as spectral decompositions, rank computation, and regularization
are fraught with computational intractability [21, 29] in the worst case.
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We focus on linear inverse problems involving tensors. Linear measurements of an unknown
tensor X are specified by y = L(X) where L is a linear operator and y ∈ Rm. Here the quantity
m refers to the number of measurements, and the minimum number of measurements 4 m required
to reliably recover X (called the sample complexity) is of interest. While in general, such problems
are ill-posed and unsolvable when m is smaller than the dimensionality of X, the situation is more
interesting when the underlying signal (tensor) is structured, and the sensing mechanism L(·) is
able to exploit this structure. For instance, similar ill-posed problems are solvable, even if m is
substantially lower than the ambient dimension, when the underlying signal is a sparse vector, or
a low-rank matrix, provided that L(·) has appropriate properties.

We focus for the most part on tensors of order 3, and show later that all our results extend to the
higher order case in a straightforward way. We introduce a class of measurement operators known
as separable measurements, and present an algorithm for low-rank tensor recovery for the same.
We focus on two specific measurement mechanisms that are special cases of separable mechanisms:

• Separable random projections: For tensors of order 3, we consider observations where the ith

measurement is of the form Li(X) := 〈a ⊗ Ai,X〉, where a is a random unit vector, Ai is a
random matrix, and ⊗ represents an outer product of the two. For higher order tensors, the
measurements are defined in an analogous manner. Here 〈·, ·〉 is the tensor inner product (to
be made clear in the sequel).

• Completion: The measurements here are simply a subset of the entries of the true tensor.
The entries need to be restricted to merely four slices of the tensor, and can be random within
these slices.

For both the random projection and completion settings, we analyze the performance of our algo-
rithm and prove sample complexity bounds.

The random sampling mechanisms mentioned above are of relevance in practical applications.
For instance, the Gaussian random projection mechanism described above is a natural candidate
for compressively sampling video and multi-dimensional imaging data. For applications where such
data is “simple” (in the sense of low rank), the Gaussian sensing mechanism may be a natural
means of compressive encoding.

The completion framework is especially relevant to machine learning applications. For instance,
it is useful in the context of multi-task learning [41], where each individual of a collection of inter-
related tasks corresponds to matrix completion. Consider the tasks of predicting ratings assigned
by users for different clothing items, this is naturally modeled as a matrix completion problem [12].
Similarly, the task of predicting ratings assigned by the same set of users to accessories is another
matrix completion problem. The multi-task of jointly predicting the ratings assigned by the users
to baskets of items consisting of both clothing items and accessories is a tensor completion problem.

Another application of tensor completion is that of extending the matrix completion framework
for contextual recommendation systems. In such a setup, one is given a rating matrix that is indexed
by users and items, and the entries correspond to the ratings given by different users to different
items. Each user provides ratings for only a fraction of the items (these constitute the sensing
operator L (·)), and one wishes to infer the ratings for all the others. Assuming that such a rating
matrix is low rank is equivalent to assuming the presence of a small number of latent variables that
drive the rating process. An interesting twist to this setup which requires a tensor based approach

4We use the terms measurements and samples interchangeably.
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is contextual recommendation - i.e. where different users provide ratings in different contexts (e.g.,
location, time, activity). Such a setting is naturally modeled via tensors; the three modes of the
tensor are indexed by users, items, and contexts. The underlying tensor may be assumed to be low
rank to model the small number of latent variables that influence the rating process. In this setting,
our approach would need a few samples about users making decisions in two different contexts (this
corresponds to two slices of the tensor along the third mode), and enough information about two
different users providing ratings in a variety of different contexts (these are two slices along the
first mode). Once the completion problem restricted to these slices is solved, one can complete the
entire tensor by performing simple linear algebraic manipulations.

Of particular note concerning our algorithm and the performance guarantees are the following:

• Sample complexity: In the absence of noise, our algorithm, named T-ReCs (Tensor
Recovery via Contractions), provably and exactly recovers the true tensor and achieves an
order-optimal sample complexity for exact recovery of the underlying tensor in the context
of random sensing, and order optimal modulo logarithmic factors in the context of tensor
completion. Specifically, for a third order tensor of rank r and largest dimension n, the
achieved sample complexity is O(nr) for recovery from separable random projections, and
O(nr log2 n) for tensor completion. (These correspond to Theorems 3.3 and 3.6 respectively.)
More generally, for order K tensors the corresponding sample complexities are O(Knr) and
O(Knr log2 n) respectively (Theorems 4.4 and 4.5).

• Factorization: Equally important is the fact that our method recovers a minimal rank fac-
torization in addition to the unknown tensor. This is of importance in applications such as
dimension reduction and also latent variable models [2] involving tensors where the factoriza-
tion itself holds meaningful interpretational value.

• Absence of strong assumptions: Unlike some prior art, our analysis relies only on rela-
tively weak assumptions - namely that the rank of the tensor be smaller than the (smallest) di-
mension, that the factors in the rank decomposition be linearly independent, non-degenerate,
and (for the case of completion) other standard assumptions such as incoherence between
the factors and the sampling operator. We do not, for instance, require orthogonality-type
assumptions of the said factors, as is the case in [2, 23].

• Computational efficiency: Computationally, our algorithm essentially reduces to linear
algebraic operations and the solution of matrix nuclear norm (convex) optimization sub-
problems, and is hence extremely tractable. Furthermore, our nuclear norm minimization
methods deal with matrices that are potentially much smaller, up to factors of n, than com-
peting methods that “matricize” the tensor via unfolding [36, 47]. In addition to recovering
the true underlying tensor, it also produces its unique rank decomposition.

• Simplicity: Our algorithm is conceptually simple - both to implement as well as to analyze.
Indeed the algorithm and its analysis follow in a transparent manner from Leurgans’ algorithm
(a simple linear algebraic approach for tensor decomposition) and standard results for low-
rank matrix recovery and completion. We find this intriguing, especially considering the
“hardness” of most tensor problems [21, 29]. Recent work in the area of tensor learning
has focused on novel regularization schemes and algorithms for learning low rank tensors;
the proposed approach potentially obviates the need for developing these in the context of
separable measurements.
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The fundamental insight in this work is that while solving the tensor recovery problem directly
may seem challenging (for example we do not know of natural tractable extensions of the “nuclear
norm” for tensors), very important information is encoded in a two-dimensional matrix “sketch”
of the tensor which we call a contraction. (This idea seems to first appear in [32], and is expanded
upon in [7, 20] in the context of tensor decomposition.) These sketches are formed by taking linear
combinations of two-dimensional slices of the underlying tensor - indeed the slices themselves may
be viewed as “extremal” contractions. For the Gaussian random projections case, the contractions
will be random linear combinations of slices, whereas for the completion setting the contractions we
work with will be the slices themselves, randomly subsampled. Our method focuses on recovering
these contractions efficiently (using matrix nuclear norm regularization) as a first step, followed by
additional processing to recover the true tensor.

1.1 Related Work and Key Differences

With a view to computational tractability, the notion of Tucker rank of a tensor has been explored;
this involves matricizations along different modes of the tensor and the ranks of the associated
matrices. Based on the idea of Tucker rank, Tomioka et al. [47] have proposed and analyzed
a nuclear norm heuristic for tensor completion, thereby bringing tools from matrix completion
[12] to bear for the tensor case. Mu et al. [36], have extended this idea further by studying
reshaped versions of tensor matricizations. However, to date, the sample complexity associated
to matrix-based regularization seem to be orders far from the anticipated sample complexity (for
example based on a count of the degrees of freedom in the problem) [36]. In this paper we resolve
this conundrum by providing an efficient algorithm that provably enjoys order optimal sample
complexity in the order, dimension, and rank of the tensor.

In contrast to the matricization approach, alternative approaches for tensor completion with
provable guarantees have appeared in the literature. In the restricted setting when the tensor
has a symmetric factorization [5] (in contrast we are able to work in the general non-symmetric
setting), the authors propose employing the Lasserre hierarchy via a semidefinite programming
based approach. Unfortunately, the method proposed in [5] is not scalable - it requires solving
optimization problems at the 6th level of the Lasserre hierarchy which makes solving even moderate-
sized problems numerically impractical as the resulting semidefinite programs grow rapidly with
the dimension. Furthermore, the guarantees provided in [5] are of a different flavor - they provide
error bounds in the noisy setting, whereas we provide exact recovery results in the noiseless setting.
Alternate methods based on thresholding in the noisy setting have also been studied in [4]. An
alternating minimization approach for tensor completion was proposed in [23]. Their approach
relies on the restrictive assumptions also - that the underlying tensor be symmetric and orthogonally
decomposable (we make no such assumptions), and neither do the sample complexity bounds scale
optimally with the dimensions or the rank. Unlike alternating minimization schemes that are
efficient but rely on careful initializations, our method directly solves convex optimization programs
followed by linear algebraic manipulations. Also relevant is [50], where the authors propose solving
tensor completion using the tensor nuclear norm regularizer; this approach is not known to be
computationally tractable (no polynomial time algorithm is known for minimizing the tensor nuclear
norm) and the guarantees they obtain do not scale optimally with the dimension and rank. Finally a
method based on the tubal rank and t-SVD of a tensor [52] has also recently been proposed, however
the sample complexity does not scale optimally. As a final point of contrast to the aforementioned
work, our method is also conceptually very simple - both to implement and analyze.
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In Table 1.1, we provide a brief comparison of the relevant approaches, their sample complexities
in both the third order and higher order settings as well as a few key features of each approach.

Reference Sample Complexity Sample Complexity Key Features
(3rd order) (Kth order)

[47] O(rn2) O(rnK−1) Tucker rank, tensor unfold-
ing

[36] O(rn2) O(rnb
K
2
c) Tucker rank, tensor unfold-

ing

[23] O(r5n
3
2 log5 n) - Kruskal rank, alternat-

ing minimization, orthog-
onally decomposable ten-
sors, symmetric setting,
completion only.

[52] O(rn2 log n) - Tensor tubal rank, comple-
tion only

[50] O(r
1
2 (n log n)

3
2 ) O(n

K
2 polylog(n)) Kruskal rank, Exact tensor

nuclear norm minimiza-
tion, computationally in-
tractable, completion only.

Our Method O(nr) (random projection) O(Knr) (random projection) Kruskal rank, separable
O(nr log2 n) (completion) O(Knr log2 n) (completion) measurements, Leurgans’

algorithm

Table 1: Table comparing sample complexities of various approaches.

The rest of the paper is organized as follows: in Section 2, we introduce the problem setup and
describe the approach and result in the most general setting. We also describe Leurgans’ algorithm,
an efficient linear algebraic algorithm for tensor decomposition, which our results build upon. In
Section 3 we specialize our results for both the random projections and the tensor completion
cases. We extend these results and our algorithm to higher order tensors in Section 4. We perform
experiments that validate our theoretical results in Section 5. In Section 6, we conclude the paper
and outline future directions.
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2 Approach and Basic Results

In this paper, vectors are denoted using lower case characters (e.g. x, y, a, b, etc.), matrices by
upper-case characters (e.g. X,Y, etc,) and tensors by upper-case bold characters (e.g. X,T ,A
etc.). Given two third order tensors A,B, their inner product is defined as:

〈A,B〉 =
∑
i,j,k

AijkBijk.

The Euclidean norm of a tensor A is generated by this inner product, and is a straightforward
extension of the matrix Frobenius norm:

‖A‖2F := 〈A,A〉.

We will work with tensors of third order (representationally to be thought of as three-way
arrays), and the term mode refers to one of the axes of the tensor. A slice of a tensor refers to a two
dimensional matrix generated from the tensor by varying indices along two modes while keeping
the third mode fixed. For a tensor X we will refer to the indices of the ith mode-1 slice (i.e., the

slice corresponding to the indices {i} × [n2]× [n3]) by S
(1)
i , where [n2] = {1, 2, . . . , n2} and [n3] is

defined similarly. We denote the matrix corresponding to S
(1)
i by X1

i . Similarly the indices of the

kth mode-3 slice will be denoted by S
(3)
k and the matrix by X3

k .
Given a tensor of interest X, consider its decomposition into rank one tensors

X =

r∑
i=1

ui ⊗ vi ⊗ wi, (1)

where {ui}i=1,...,r ⊆ Rn1 , {vi}i=1,...,r ⊆ Rn2 , and {wi}i=1,...,r ⊆ Rn3 . Here ⊗ denotes the tensor

product, so that X ∈ Rn1×n2×n3 is a tensor of order 3 and dimension n1 × n2 × n3. Without loss
of generality, throughout this paper we assume that n1 ≤ n2 ≤ n3. We will first present our results
for third order tensors, and analogous results for higher orders follow in a transparent manner. We
will be dealing with low-rank tensors, i.e. those tensors with r ≤ n1. Tensors can have rank larger
than the dimension, indeed r ≥ n3 is an interesting regime, but far more challenging and will not
be dealt with here.

Kruskal’s Theorem [30] guarantees that tensors satisfying Assumption 2.1 below have a unique
minimal decomposition into rank one terms of the form (1). The minimal number of terms is called
the (Kruskal) rank5 of the tensor X.

Assumption 2.1. The sets {ui}i=1,...,r ⊆ Rn1 and {vi}i=1,...,r ⊆ Rn2 are sets of linearly independent
vectors and the set {wi}i=1,...,r ⊆ Rn3 is a set of pairwise independent vectors

While rank decomposition of tensors in the worst case is known to be computationally in-
tractable [21], it is known that the (mild) assumption stated in Assumption 2.1 above suffices for
an algorithm known as Leurgans’ algorithm [32, 7] to correctly identify the factors in this unique
decomposition. In this paper, we will work with the following, somewhat stronger assumption:

Assumption 2.2. The sets {ui}i=1,...,r ⊆ Rn1, {vi}i=1,...,r ⊆ Rn2, and {wi}i=1,...,r ⊆ Rn3 are sets
of linearly independent vectors.

5The Kruskal rank is also known as the CP rank in the literature.
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2.1 Separable Measurement Mechanisms

As indicated above in the preceding discussions, we are interested in tensor linear inverse problems
where, given measurements of the form yi = Li (X) i = 1, 2, · · · ,m, we recover the unknown
tensor X. We focus on a class of measurement mechanisms L (·) which have a special property
which we call separability. We define the notion of separable measurements formally:

Definition 2.1. Consider a linear operator L : Rn1×n2×n3 → Rn. We say that L is separable with
respect to the third mode if there exist w ∈ Rn3 and a linear operator T : Rn1×n2 → Rn, such that
for every X ∈ Rn1×n2×n3:

L (X) =

n3∑
i=1

wiT
(
X3
i

)
.

This definition extends in a natural way for separability of operators with respect to the second
and first modes. In words, separability means that the effect of the linear operator L (·) on a tensor
can be decomposed into the (weighted) sum of actions of a single linear operator T (·) acting on
slices of the tensor along a particular mode.

In several applications involving inverse problems, the design of appropriate measurement mech-
anisms is itself of interest. Indeed sensing methods that lend themselves to recovery from a small
number of samples via efficient computational techniques has been intensely studied in the signal
processing, compressed sensing, and machine learning literature [13, 10, 40, 39, 19, 46]. In the
context of tensors, we argue, separability of the measurement operator is a desirable property for
precisely these reasons; because it lends itself to recovery up to almost optimal sample complexity
via scalable computational methods (See for example [31] for rank one measurement operators in
the matrix case). We now describe a few interesting measurement mechanisms that are separable.

1. Separable random projections: Given a matrix M ∈ Rn1×n2 and vector v ∈ Rn3 , we
define the following two notions of “outer products” of M and v:

[M ⊗ v]ijk := Mijvk [v ⊗M ]ijk := viMjk.

Hence, the kth mode 3 slice of the tensor M ⊗ v is the matrix vkM . Similarly, the ith mode
1 slice of the tensor v ⊗M is the matrix viM .

A typical random separable projection is of the form:

L (X) =

 〈A1 ⊗ a,X〉
...

〈Am ⊗ a,X〉

 (2)

where Ai ∈ Rn1×n2 is a random matrix drawn from a suitable ensemble such as the Gaussian
ensemble with each entry drawn independently and identically from N (0, 1), and a ∈ Rn3 is
also a random vector, for instance distributed uniformly on the unit sphere in n3 dimensions
(i.e. with each entry drawn independently and identically from N (0, 1) and then suitably
normalized).

To see that such measurements are separable, note that:

〈Ai ⊗ a,X〉 =

n3∑
k=1

ak〈Ai, X3
k〉,
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so that the operator T (·) from Definition 2.1 in this case is simply given by:

T (X) =

 〈A1, X〉
...

〈Am, X〉

 .
Random projections are of basic interest in signal processing, and have played a key role in
the development of sparse recovery and low rank matrix recovery literature [40, 10]. From an
application perspective they are relevant because they provide a method of compressive and
lossless coding of “simple signals” such as sparse vectors [10] and low rank matrices [40]. In
subsequent sections we will establish that separable random projections share this desirable
feature for low-rank tensors.

2. Tensor completion: In tensor completion, a subset of the entries of the tensor X are
revealed. Specifically, given a tensor X, a subset of the entries Xijk for i, j, k ∈ Ω are
revealed for some index set Ω ⊆ [n1]× [n2]× [n3] (we denote this by (X)Ω). Whether or not
the measurements are separable depends upon the nature of the set Ω. For the ith mode-1
slice let us define

Ω
(1)
i := Ω ∩ S(1)

i m
(1)
i :=

∣∣∣Ω ∩ S(1)
i

∣∣∣ .
Measurements derived from entries within a single slice of the tensor are separable. This
follows from the fact that for L (X) := (X)

Ω
(1)
i

, we have:

L (X) =

n1∑
j=1

(δi)jMΩ
(1)
i

(
X

(1)
j

)
where δi ∈ Rn1 is a vector with a one is the i index and zero otherwise, andMΩ is the operator
that acts on a matrix X, extracts the indices corresponding to the index Ω, and returns the
resulting vector. Comparing to Definition 2.1, we have w = δi and T =M

Ω
(1)
i

. As a trivial

extension, measurements obtained from parallel slices where the index set restricted to these
slices is identical are also separable.

Analogous to matrix completion, tensor completion is an important problem due to its appli-
cations to machine learning; the problems of multi-task learning and contextual recommen-
dation are both naturally modeled in this framework as described in Section 1.

3. Rank one projections Another separable sensing mechanism of interest is via rank-one
projections of the tensor of interest. Specifically, measurements of the form:

L (X) =

 〈a1 ⊗ b1 ⊗ c,X〉
...

〈am ⊗ bm ⊗ c,X〉


are also separable. Mechanisms of this form have recently gained interest in the context
of low rank (indeed rank-one) matrices due to their appearance in the context of phase
retrieval problems [14] and statistical estimation [31, 9]. We anticipate that studying rank
one projections in the context of tensors will give rise to interesting applications in a similar
spirit.
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4. Separable sketching The notion of covariance sketching (and more generally, matrix sketch-
ing) [19] allows for the possibility of compressively acquiring a matrix X via measurements
Y = AXBT , where A ∈ Rm1×p and B ∈ Rm2×p, X ∈ Rp, and m1,m2 < p. The problem of
recovering X from such measurements is of interest in various settings such as when one is
interested in recovering a covariance matrix from compressed sample paths, and graph com-
pression [19]. In a similar spirit, we introduce the notion of separable sketching of tensors
defined via:

Yqs = L (X) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

AqiBsjckXijk.

In the above A ∈ Rm1×n1 , B ∈ Rm2×n2 , c ∈ Rn3 , and Y ∈ Rm1×m2 . Note that T (Z) = AZBT ,
i.e. precisely a matrix sketch of tensor slices. The problem of recovering X from Y is thus a
natural extension of matrix sketching to tensors.

Finally, we note that while a variety of separable sensing mechanisms are proposed above,
many sensing mechanisms of interest are not separable. For instance, a measurement of the
form L(X) = 〈A,X〉 where A is a full rank tensor is not separable. Similarly, completion
problems where entries of the tensor are revealed randomly and uniformly throughout the
tensor (as apposed to from a single slice) are also not separable (although they may be thought
of as a union of separable measurements). In Section 3, we will provide sample complexity
bounds for exact recovery for the first two aforementioned measurement mechanisms (i.e.
random projections and tensor completion); the arguments extend in a natural manner to
other separable sensing mechanisms.

2.1.1 Diversity in the Measurement Set

In order to recover the low rank tensor from a few measurements using our algorithm, we need the
set of measurements to be a union of separable measurements which satisfy the following:

1. Diversity across modes: Measurements of the form (8) are separable with respect to the
third mode. For the third order case, we also need an additional set of measurements separable
with respect to the first mode 6. This extends naturally also to the higher order case.

2. Diversity across separable weights: Recalling the notion of weight vectors, w, from
Definition: 2.1, we require that for both modes 1 and 3, each mode has two distinct sets of
separable measurements with distinct weight vectors.

To make the second point more precise later, we introduce the formal notation we will use in
the rest of the paper for the measurement operators:

y
(i)
k = L(i)

k (X) =

n3∑
j=1

(
w

(i)
k

)
j
T (i)
k

(
X3
j

)
In the above, the index i ∈ {1, 3} refers to the mode with respect to which that measurement is

separable. For each mode, we have two distinct sets of measurements corresponding to two different

weight vectors w
(i)
k , with k ∈ {1, 2}. For each k and i, we may have potentially different operators

6Any two modes suffice. In this paper we will focus on separability w.r.t the first and third modes.

9



T (i)
k (though they need not be different). To simplify notation, we will subsequently assume that

T (i)
1 = T (i)

2 = T (i). Collectively, all these measurements will be denoted by:

y = L (X) ,

where it is understood that y is a concatenation of the vectors y
(i)
k and similarly L (·) is a concate-

nation of L(i)
k (·). We will see in the subsequent sections that when we have diverse measurements

across different modes and different weight vectors, and when the T (i) are chosen suitably, one can
efficiently recover an unknown tensor from an (almost) optimal number of measurements of the
form y = L (X).

2.2 Tensor Contractions

A basic ingredient in our approach is the notion of a tensor contraction. This notion will allow us to
form a bridge between inverse problems involving tensors and inverse problems involving matrices,
thereby allowing us to use matrix-based techniques to solve tensor inverse problems.

For a tensor X, we define its mode-3 contraction with respect to a contraction vector a ∈ Rn3 ,
denoted by X3

a ∈ Rn1×n2 , as the following matrix:

[
X3
a

]
ij

=

n3∑
k=1

Xijkak, (3)

so that the resulting matrix is a weighted sum of the mode-3 slices of the tensor X. We similarly
define the mode-1 contraction with respect to a vector c ∈ Rn1 as

[
X1
c

]
jk

=

n1∑
k=1

Xijkci, (4)

Note that when a = ek, a standard unit vector, X3
a = X3

k , i.e. a tensor slice. We will primarily be
interested in two notions of contraction in this paper:

• Random Contractions, where a is a random vector distributed uniformly on the unit sphere.
These will play a role in our approach for recovery from random projections.

• Coordinate Contractions, where a is a canonical basis vector, so that the resulting contractions
is a tensor slice. These will play a role in our tensor completion approach.

We now state a basic result concerning tensor contractions.

Lemma 2.1. Let X ∈ Rn1×n2×n3, with n1 ≤ n2 ≤ n3 be a tensor of rank r ≤ n1. Then the rank
of X3

a is at most r. Similarly, if r ≤ min {n2, n3} then the rank of X1
c is at most r.

Proof. Consider a tensor X =
∑r

i=1 ui⊗vi⊗wi. The reader may verify in a straightforward manner
that X3

a enjoys the decomposition:

X3
a =

r∑
i=1

〈wi, a〉uivTi . (5)

The proof for the rank of X1
c is analogous.
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Note that while (5) is a matrix decomposition of the contraction, it is not a singular value
decomposition (the components need not be orthogonal, for instance). Indeed it does not seem
“canonical” in any sense. Hence, given contractions, resolving the components is a non-trivial task.

A particular form of degeneracy we will need to avoid is situations where 〈wi, a〉 = 0 for (5). It
is interesting to examine this in the context of coordinate contractions, i.e. when a = ek, we have
X3
ek

= Xk
3 (i.e. the kth mode 3 slice), by Lemma 2.1, we see that the tensor slices are also of rank

at most r. Applying a = ek in the decomposition (5), we see that if for some vector wi ∈ Rn3 in the
above decomposition we have that the kth component of wi (i.e. (wi)k) is zero then 〈wi, ek〉 = 0,
and hence this component is missing in the decomposition of X3

k . As a consequence the rank of X3
k

drops, and in a sense information about the factors uk, vk is “lost” from the contraction. We will
want to avoid such situations and thus introduce the following definition:

Definition 2.2. Let X =
∑r

i=1 ui ⊗ vi ⊗ wi. We say that the contraction X3
a is non-degenerate if

〈wi, a〉 6= 0, for all i = 1, . . . , r.

We will extend the terminology and say that the tensor X is non-degenerate at mode 3 and
component k if the kth tensor slice is non-degenerate, i.e. component k of the vectors wi, i = 1, . . . , r
are all non-zero. The above definition extends in a natural way to other modes and components.
The non-degeneracy condition is trivially satisfied (almost surely) when:

1. The vector a with respect to which the contraction is computed is suitably random, for
instance random normal. In such situations, non-degeneracy holds almost surely.

2. When a = ek (i.e. the contraction is a slice), and the tensor factors are chosen from suit-
able random ensembles, e.g. when the low rank tensors are picked such that the rank one
components ui, vi, wi are Gaussian random vectors, or random orthogonal vectors 7.

We will also need the following definition concerning the genericity of a pair of contractions:

Definition 2.3. Given a tensor X =
∑r

i=1 ui ⊗ vi ⊗ wi, a pair of contractions X3
a , X

3
b are

pairwise generic if the diagonal entries of the (diagonal) DaD
−1
b are all distinct, where Da =

diag (〈w1, a〉, . . . , 〈wr, a〉), Db = diag (〈w1, a〉, . . . , 〈wr, b〉).

Remark We list two cases where pairwise genericity conditions hold in this paper.

1. In the context of random contractions, for instance when the contraction vectors a, b are
sampled uniformly and independently on the unit sphere. In this case pairwise genericity
holds almost surely.

2. In the context of tensor completion where a = ek1 , b = ek2 , the two diagonal matrices Da =
diag

(
(w1)k1 , . . . , (wr)k1

)
, and Db = diag

(
(w1)k2 , . . . , (wr)k2

)
. Thus the pairwise genericity

condition is a genericity requirement of the tensor factors themselves, namely that the ratios
(wi)k1
(wi)k2

all be distinct for i = 1, . . . , r. We will abuse terminology, and call such a tensor

pairwise generic with respect to mode 3 slices k1, k2. This form of genericity is easily seen to
hold, for instance when the tensor factors are drawn from suitable random ensembles such as
random normal and random uniformly distributed on the unit sphere.

7the latter is known as random orthogonal model in the matrix completion literature [39]
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The next lemma, a variation of which appears in [7, 32] shows that when the underlying tensor is
non-degenerate, it is possible to decompose a tensor from pairwise generic contractions.

Lemma 2.2. [7, 32] Suppose we are given an order 3 tensor X =
∑r

i=1 ui ⊗ vi ⊗ wi of size
n1×n2×n3 satisfying the conditions of Assumption 2.1. Suppose the contractions X3

a and X3
b are

non-degenerate, and consider the matrices M1 and M2 formed as:

M1 = X3
a(X3

b )† M2 = (X3
b )†X3

a .

Then the eigenvectors of M1 (corresponding to the non-zero eigenvalues) are {ui}i=1,...,r, and the

eigenvectors of MT
2 are {vi}i=1,...,r.

Proof. Suppose we are given an order 3 tensor X =
∑r

i=1 ui ⊗ vi ⊗ wi ∈ Rn1×n2×n3 . From the
definition of contraction (3), it is straightforward to see that

X3
a = UDaV

T Da = diag(aTw1, . . . , a
Twr)

X3
b = UDbV

T Db = diag(bTw1, . . . , b
Twr).

In the above decompositions, U ∈ Rn1×r, V ∈ Rn2×r, and the matrices Da, Db ∈ Rr×r are diagonal
and non-singular (since the contractions are non-degenerate). Now,

M1 := X3
a(X3

b )†

= UDaV
T (V †)TD−1

b U †

= UDaD
−1
b U † (6)

and similarly we obtain
MT

2 = V D−1
b DaV

†. (7)

Since we have M1U = UDaD
−1
b and MT

2 V = V D−1
b Da, it follows that the columns of U and V

are eigenvectors of M1 and MT
2 respectively (with corresponding eigenvalues given by the diagonal

matrices DaD
−1
b and D−1

b Da).

Remark Note that while the eigenvectors {ui} , {vj} are thus determined, a source of ambiguity
remains. For a fixed ordering of the ui one needs to determine the order in which the vj are to be
arranged. This can be (generically) achieved by using the (common) eigenvalues of M1 and M2 for
pairing. If the contractions X3

a , X
3
b satisfy pairwise genericity, we see that the diagonal entries of

the matrix DaD
−1
b are distinct. It then follows that the eigenvalues of M1, M2 are distinct, and

can be used to pair the columns of U and V .

2.3 Leurgans’ algorithm

We now describe Leurgans’ algorithm for tensor decomposition in Algorithm 1. In the next section,
we build on this algorithm to solve tensor inverse problems to obtain optimal sample complexity
bounds. In words, Algorithm 1 essentially turns a problem involving decomposition of tensors into
that of decomposition of matrices. This is achieved by first computing mode 3 contractions of the
given tensor X with respect to two non-degenerate and pairwise generic vectors a, b (e.g. randomly
uniformly distributed on the unit sphere). Given these contractions, one can compute matrices M1

and M2 as described in Lemma 2.2 whose eigenvectors turn out to be precisely (up to scaling) the
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vectors ui and vi of the required decomposition. Finally the wi can be obtained by inverting an
(overdetermined) system of linear equations, giving a unique and exact solution.

The correctness of the algorithm follows directly from Lemma 2.2.
In this paper, we extend this idea to solving ill-posed linear inverse problems of tensors. The

key idea is that since the contractions preserve information about the tensor factors, we focus on
recovering the contractions first. Once those are recovered, we simply need to compute eigende-
compositions to recover the factors themselves.

Algorithm 1 Leurgans’ algorithm for tensor decomposition

1: Input: Tensor X
2: Generate contraction vectors a, b ∈ Rn3 (such that non-degeneracy and pairwise genericity

holds).
3: Compute mode 3 contractions X3

a and X3
b respectively.

4: Compute eigen-decomposition of M1 := X3
a(X3

b )† and M2 := (X3
b )†Xa. Let U and V denote

the matrices whose columns are the eigenvectors of M1 and MT
2 respectively corresponding to

the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of M1 and M2.) The
eigenvectors, thus arranged are denoted as {ui}i=1,...,r and {vi}i=1,...,r.

5: Solve for wi in the (over-determined) linear system X =
∑r

i=1 ui ⊗ vi ⊗ wi, i = 1, . . . ,m.
6: Output: Decomposition X =

∑r
i=1 ui ⊗ vi ⊗ wi.

Remark Note that in the last step, instead of solving a linear system of equations to obtain the
wi, there is an alternative approach whereby one may compute mode 1 contractions and then
obtain the factors vi and wi. However, there is one minor caveat. Suppose we denote the factors
obtained from the modal contractions X3

a and X3
b by U and V1 (we assume that these factors

are normalized, i.e. the columns have unit Euclidean norm). Now, we can repeat the procedure
with two more random vectors c, d to compute the contractions X1

c and X1
d . We can perform

similar manipulations to construct matrices whose eigenvectors are the tensor factors of interest,
and thence obtain (normalized) factors V2 and W . While V1 and V2 essentially correspond to the
same factors, the matrices themselves may (i) have their columns in different order, and (ii) have
signs reversed relative to each other. Hence, while the modal contractions preserve information
about the tensor factors, they may need to be properly aligned by rearranging the columns and
performing sign reversals, if necessary.

2.4 High Level Approach

The key observation driving the methodology concerns the separability of the measurements. Given
a set of separable measurements y = L (X), from the definition of separability we have:

y = L (X) =

n3∑
i=1

wiT
(
X3
i

)
= T

(
n3∑
i=1

wiX
3
i

)
= T

(
X3
w

)
.

In words, each separable measurement L acting on the tensor can also be interpreted as a mea-
surement T acting on a contraction of the tensor. Since these contractions are low rank (Lemma
2.1), when the underlying tensor is low-rank, the following nuclear norm minimization problem
represents a principled, tractable heuristic for recovering the contraction:

minimizeZ ‖Z‖∗ subject to y = T (Z) .

13



Let us informally define T to be “faithful” if nuclear norm minimization succeeds in exactly
recovering the tensor contractions. Provided we correctly recover two contractions each along modes
1 and 3, and furthermore these contractions are non-degenerate and pairwise generic, we can apply
Leurgans’ algorithm to the recovered contractions to exactly recover the unknown tensor. This
yields the following meta-theorem:

Meta-Theorem. Given a low rank tensor X and separable measurements

y
(i)
k = L(i)

k (X) =

n3∑
j=1

(
w

(i)
k

)
j
T (i)

(
X3
j

)
, i ∈ {1, 3} , k ∈ {1, 2} .

Suppose the T (i) are faithful and for the vectors w
(i)
k , the contractions Xi

w
(i)
k

are non-degenerate and

pairwise generic. Then the proposed approach succeeds in exactly recovering the unknown tensor.

In the next section, we will make the above meta-theorem more precise, and detail the precise
sample complexities for the separable random projections and tensor completion settings. We will
see that faithfulness, non-degeneracy and pairwise genericity hold naturally in these settings.

3 Sample Complexity Results: Third Order Case

3.1 Tensor Recovery via Contractions

We start by describing the main algorithm of this paper more precisely: Tensor Recovery via

Contractions (T-ReCs). We assume that we are given separable measurements y
(3)
1 = L(3)

1 (X),

y
(3)
2 = L(3)

2 (X), y
(1)
1 = L(1)

1 (X), y
(1)
2 = L(1)

2 (X). We further assume that the measurements are
separable as:

L(3)
1 (X) =

n3∑
i=1

aiT (3)
(
X3
i

)
L(3)

2 (X) =

n3∑
i=1

biT (3)
(
X3
i

)
L(1)

1 (X) =

n1∑
i=1

ciT (1)
(
X1
i

)
L(1)

2 (X) =

n1∑
i=1

diT (1)
(
X1
i

)
.

(8)

where a, b, c, d and T (3) and T (1) are known in advance. Given these measurements our algorithm
will involve the solution of the following convex optimization problems.

minimize
Z1

‖Z1‖∗ s.t. y
(3)
1 = T (3) (Z1) (9)

minimize
Z2

‖Z2‖∗ s.t. y
(3)
2 = T (3) (Z2) (10)

minimize
Z3

‖Z3‖∗ s.t. y
(1)
1 = T (1) (Z3) (11)

minimize
Z4

‖Z4‖∗ s.t. y
(1)
2 = T (1) (Z4) (12)

Efficient computational methods have been extensively studied in recent years for solving prob-
lems of this type [25]. These matrices form the “input matrices” in the next step which is an
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adaptation of Leurgans’ method. In this step we form eigendecompositions to reconstruct first the
pair of factors ui, vi, and then the pairs vi, wi (the factors are normalized). Once these are recovered
the last step involves solving a linear system of equations for the weights λi in

L(3)
1 (X) =

r∑
i=1

λiL(3)
1 (ui ⊗ vi ⊗ wi) = y

(3)
1

The pseudocode for T-ReCs is detailed in Algorithm 2.

Algorithm 2 Tensor-Recovery via Contractions (T-ReCs)

1: Input: Separable measurements y
(3)
1 = L(3)

1 (X), y
(3)
2 = L(3)

2 (X), y
(1)
1 = L(1)

1 (X), y
(1)
2 =

L(1)
2 (X).

2: Solve convex optimization problems (9) and (10) to obtain optimal solutions Z∗1 and Z∗2 respec-
tively.

3: Compute eigen-decomposition of M1 := Z∗1 (Z∗2 )† and M2 := (Z∗2 )†Z1. Let U and V denote
the matrices whose columns are the eigenvectors of M1 and MT

2 respectively corresponding to
the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of M1 and M2.) The
eigenvectors, thus arranged are denoted as {ui}i=1,...,r and {vi}i=1,...,r.

4: Solve convex optimization problems (11) and (12) to obtain optimal solutions Z∗3 and Z∗4 re-
spectively.

5: Compute eigen-decomposition of M3 := Z∗3 (Z∗4 )† and M4 := (Z∗4 )†Z3. Let Ṽ and W̃ denote
the matrices whose columns are the eigenvectors of M3 and MT

4 respectively corresponding to
the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of M3 and M4.) The
eigenvectors, thus arranged are denoted as {ṽk}k=1,...,r and {w̃k}k=1,...,r.

6: Simultaneously reorder the columns of Ṽ , W̃ , also performing simultaneous sign reversals as
necessary so that the columns of V and Ṽ are equal, call the resulting matrix W with columns
{wi}i=1,...,r.

7: Solve for λi in the (over-determined) linear system

yi =
r∑
i=1

λiL (ui ⊗ vi ⊗ wi) .

8: Output: Recovered tensor X =
∑r

i=1 λi ui ⊗ vi ⊗ wi.

We now focus on the case of recovery from random Gaussian measurements, and then move
on to the case of recovery from partially observed samples - in these situations not only are the
measurements separable but one can also obtain provable sample complexity bounds which are
almost optimal.
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3.2 Separable Random Projections

Recall that from the discussion in Section 2 and the notation introduced in Section 2.1.1, we have
the following set of measurements:

L(3)
1 (X) =

 〈A1 ⊗ a,X〉
...

〈Am1 ⊗ a,X〉

 , L(3)
2 (X) =

 〈A1 ⊗ b,X〉
...

〈Am1 ⊗ b,X〉

 ,

L(1)
1 (X) =

 〈c⊗B1,X〉
...

〈c⊗Bm2 ,X〉

 , L(1)
2 (X) =

 〈d⊗B1,X〉
...

〈d⊗Bm2 ,X〉

 .
In the above, each Ai, Bi ∈ Rn2×n3 is a random Gaussian matrix with i.i.d N (0, 1) entries,

and a, b ∈ Rn3 , c, d ∈ Rn1 are random vectors distributed uniformly on the unit sphere. Finally,
collecting all of the above measurements into a single operator, we have y = L (X), and the total
number of samples is thus m = 2m1 + 2m2.

In the context of random tensor sensing, (9), (10), (11) and (12) reduce to solving low rank
matrix recovery problems from random Gaussian measurements, where the measurements are as
detailed in Section 2.1.

The following lemma shows that the observations L (X) can essentially be thought of as linear
Gaussian measurements of the contractions X3

a , X
3
b , X

1
c , X

1
d . This is crucial in reducing the tensor

recovery problem to the problem of recovering the tensor contractions, instead.

Lemma 3.1. For tensor X, matrix A and vector a of commensurate dimensions,

〈A⊗ a,X〉 = 〈A,X3
a〉.

Similarly, for a vector c and matrix B of commensurate dimensions

〈c⊗B,X〉 = 〈B,X1
c 〉.

Proof. We only verify the first equality, the second equality is proved in an identical manner. Let
us denote by Xk the kth mode 3 slice of X where k = 1, . . . , n3. Then we have,

〈A⊗ a,X〉 =

n3∑
k=1

ak〈A,Xk〉 = 〈A,
n3∑
k=1

akXk〉 = 〈A,X3
a〉.

As a consequence of the above lemma, it is easy to see that

〈A⊗ a,X〉 = 〈A,X3
a〉 = 〈A,

n3∑
i=1

aiX
3
i 〉 =

n3∑
i=1

ai〈A,X3
i 〉,

thus establishing separability.

Since X3
a and X3

b are low-rank matrices, the observation operators L(3)
k (X) essentially provide

Gaussian random projections of X3
a and X3

b , which in turn can be recovered using matrix-based
techniques. The following lemma establishes “faithfulness” in the context of separable random
projections.
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Lemma 3.2. Suppose m1 > 3r(n1 + n2 − r). Then the unique solutions to problems (9) and (10)
are X3

a and X3
b respectively with high probability. Similarly, if m2 > 3r(n2 +n3−r) then the unique

solutions to problems (11) and (12) are X1
c and X1

d respectively with high probability.

Proof. Again, we only prove the first part of the claim, the second follows in an identical manner.
Note that by Lemma 3.1 and Lemma 2.1, X3

a and X3
b are feasible rank r solutions to (9) and

(10) respectively. By Proposition 3.11 of [15], we have that the nuclear norm heuristic succeeds in
recovering rank r matrices from m1 > 3r(n1 + n2 − r) with high probability.

Remark In this sub-section, we will refer to events which occur with probability exceeding 1 −
exp(−C0n1) as events that occur “with high probability” (w.h.p.). We will transparently be able
to take appropriate union bounds of high probability events since the number of events being
considered is small enough that the union event also holds w.h.p. (thus affecting only the constants
involved). Hence, in the subsequent results, we will not need to refer to the precise probabilities.

Since the contractions X3
a and X3

b of the tensor X are successfully recovered and the tensor
satisfies Assumption 2.1, the second stage of Leurgans’ algorithm can be used to recover the factors
ui and vi. Similarly, from X1

c and X1
d , the factors vi and wi can be recovered. The above sequence

of observations leads to the following sample complexity bound for low rank tensor recovery from
random measurements:

Theorem 3.3. Let X ∈ Rn1×n2×n3 be an unknown tensor of interest with rank r ≤ min {n1, n2, n3}.
Suppose we obtain samples as described by (8). Suppose m1 > 3r(n1+n2−r) and m2 > 3r(n2+n3−
r). Then T-ReCs (Algorithm 2) succeeds in exactly recovering X and its low rank decomposition
(5) with high probability.

Proof. By Lemma 2.1 X3
a , X3

b , X1
c , X1

d are all rank at most r. By Lemma 3.1, the tensor observa-

tions y
(3)
1 , y

(3)
2 , y

(1)
1 , y

(1)
2 provide linear Gaussian measurements of X3

a , X3
b , X1

c , X1
d . By Lemma 3.5,

the convex problems (9), (10), (11), (12) correctly recover the modal contractions X3
a , X3

b , X1
c , X1

d .
Since the vectors a, b, c, d are chosen to be randomly uniformly distributed on the unit sphere, the
contractions X3

a , X
3
b are non-degenerate and pairwise generic almost surely (and similarly X1

c , X
1
d).

Thus, Lemma 2.2 applies and X3
a , X3

b can be used to correctly recover the factors ui, vi, i = 1, . . . , r.
Again by Lemma 2.2 X1

c , X1
d can be used to correctly recover the factors vi, wi, i = 1, . . . , r. Note

that due to the linear independence of the factors, the linear system of equations involving λi is
full column rank, over-determined, and has an exact solution. The fact that the result holds with
high probability follows because one simply needs to take the union bounds of the probabilities of
failure exact recovery of the contractions via the solution of (9), (10), (11), (12).

Remarks.

1. Theorem 3.3 yields bounds that are order optimal. Indeed, consider the number of samples
m = 2m1 + 2m2 ∼ O(r(n1 + n2 + n3)), which by a counting argument is the same as the
number of parameters in an order 3 tensor of rank r.

2. For symmetric tensors with symmetric factorizations of the form X =
∑3

l=1 λivi⊗vi⊗vi, this
method becomes particularly simple. Steps 4, 5, 6 in Algorithm 2 become unnecessary, and the
factors are revealed directly in step 3. One then only needs to solve the linear system described
in step 7 to recover the scale factors. The sample complexity remains O(nr), nevertheless.
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3. Note that for the method we propose, the most computationally expensive step is that of solving
low-rank matrix recovery problems where the matrix is of size ni × nj for i, j = 1, 2, 3. Fast
algorithms with rigorous guarantees exist for solving such problems, and we can use any of
these pre-existing methods. An important point to note is that, other methods for minimizing
the Tucker rank of a tensor by considering “matricized” tensors solve matrix recovery problems
for matrices of size ni × njnk, which can be far more expensive.

4. Note that the sensing operators 〈Ai ⊗ a, ·〉 may seem non-standard (vis-a-vis the compressed
sensing literature such as [40]), but are very storage efficient. Indeed, one needs to only store
random matrices Ai, Bi and random vectors a, b. Storing each of these operators requires
O(n1n2 + n3) space, and is far more storage efficient than (perhaps the more suggestive)
sensing operators of the form 〈Ai, ·〉, with each Ai being a random tensor requiring O(n1n2n3)
space. Similar “low rank” sensing operators have been used for matrix recovery [31, 22].

5. While the results here are presented in the case where the Ai, Bi are random Gaussian matrices
and the a, b are uniformly distributed on the sphere, the results are not truly dependent on
these distributions. The Ai, Bi need to be structured so that they enable low-rank matrix
recovery (i.e., they need to be “faithful”). Hence, for instance it would suffice if the entries
of these matrices were sub-Gaussian, or had appropriate restricted isometry properties with
respect to low rank matrices [40].

3.3 Tensor Completion

In the context of tensor completion, for a fixed (but unknown) X, a subset of the entries XΩ are
revealed for some index set Ω ⊆ [n1]× [n2]× [n3]. We assumed that the measurements thus revealed
are in a union of four slices. For the ith mode-1 slice let us define

Ω
(1)
i := Ω ∩ S(1)

i m
(1)
i :=

∣∣∣Ω ∩ S(1)
i

∣∣∣ .
These are precisely the set of entries revealed in the ith mode-1 slice and the corresponding cardi-
nality. Similarly for the kth mode-3 slice we define

Ω
(3)
k = Ω ∩ S(3)

k m
(3)
k :=

∣∣∣Ω ∩ S(3)
k

∣∣∣ . (13)

We will require the existence of two distinct mode-1 slices (say i∗1 and i∗2) from which measurements
are obtained. Indeed,

L(1)
1 (X) := (X)

Ω
(1)

i∗1

L(1)
2 (X) := (X)

Ω
(1)

i∗2

. (14)

Similarly we will also require the existence of two different slices in mode 3 8 (say k∗1 and k∗2) from
which we have measurements:

L(3)
1 (X) := (X)

Ω
(3)

k∗1

L(3)
2 (X) := (X)

Ω
(3)

k∗2

.

We will require the cardinalities of the measurements from mode 1, m
(1)
i∗1

andm
(1)
i∗2

and from mode

3, m
(3)
k∗1

and m
(3)
k∗2

to be sufficiently large so that they are faithful (to be made precise subsequently),

8We choose modes 1 and 3 arbitrarily. Any two of the 3 modes suffice.
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and this will determine the sample complexity. The key aspect of the algorithm is that it only
makes use of the samples in these four distinct slices. No other samples outside these four slices

need be revealed at all (so that all the other m
(1)
i and m

(3)
k can be zero). The indices sampled from

each slice are drawn uniformly and randomly without replacement. Note that for a specified m
(1)
i∗1

,

m
(1)
i∗2

, m
(3)
k∗1

and m
(3)
k∗2

the overall sample complexity implied is m
(1)
i∗1

+m
(1)
i∗2

+m
(3)
k∗1

+m
(3)
k∗2

.

In the context of tensor completion, (9), (10), (11) and (12) reduce to solving low rank ma-

trix completion problems for the slices S
(1)
i∗1

, S
(1)
i∗2

, S
(3)
k∗1
, S

(3)
k∗2

. Contraction recovery in this context

amounts to obtaining complete slices, which can then be used as inputs to Leurgans’ algorithm.
There are a few important differences however, when compared to the case of recovery from Gaus-
sian random projections. For the matrix completion sub-steps to succeed, we need the following
standard incoherence assumptions from the matrix completion literature [39].

Let U ,V and W represent the linear spans of the vectors {ui}=1,...,r , {vi}=1,...,r , {wi}=1,...,r. Let
PU , PV and PW respectively represent the projection operators corresponding to U ,V and W. The
coherence of the subspace U (similarly for V and W) is defined as:

µ(U) :=
n1

r
max

i=1,...,n1

‖PU (ei) ‖2,

where {ei} are the canonical basis vectors.

Assumption 3.1 (Incoherence). µ0 := max {µ(U), µ(V), µ(W)} is a positive constant independent
of the rank and the dimensions of the tensor.

Such an incoherence condition is required in order to be able to complete the matrix slices
from the observed data [39]. We will see subsequently that when the tensor is of rank r, so are
the different slices of the tensor and each slice will have a “thin” singular value decomposition.
Furthermore, the incoherence assumption will also hold for these slices.

Definition 3.1. Let X1
i = UΣV T be the singular value decomposition of the tensor slice X1

i . We

say that the tensor X satisfies the slice condition for slice S
(1)
i with constant µ

(1)
i if the element-wise

infinity (max) norm

‖UV T ‖∞ ≤ µ(1)
i

√
r

n2n3
.

The slice condition is analogously defined for the slices along other modes, i.e. S
(2)
j and S

(3)
k .

We will denote by µ
(2)
j and µ

(3)
k the corresponding slice constants. We will require our distinct slices

from which samples are obtained to satisfy these slice conditions.

Remark The slice conditions are standard in the matrix completion literature, see for instance
[39]. As pointed out in [39], the slice conditions are not much more restrictive than the incoherence
condition, because if the incoherence condition is satisfied with constant µ0 then (by a simple

application of the Cauchy-Schwartz inequality) the slice condition for S
(1)
i is also satisfied with

constant µ1(i) ≤ µ0
√
r for all i (and similarly for µ

(2)
j and µ

(3)
k ). Hence, the slice conditions can

be done away with, and using this weaker bound only increases the sample complexity bound for
exact reconstruction by a multiplicative factor of r.
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Remark Note that the incoherence assumption and the slice condition are known to be satisfied
for suitable random ensembles of models, such as the random orthogonal model, and models where
the singular vectors are bounded element-wise [39].

The decomposition (5) ties factor information about the tensor to factor information of con-
tractions. A direct corollary of Lemma 2.1 is that contraction matrices are incoherent whenever
the tensor is incoherent:

Corollary 3.4. If the tensor satisfies the incoherence assumption, then so do the contractions.
Specifically all the tensor slices satisfy incoherence.

Proof. Consider for instance the slices X3
k for k = 1, . . . , n3. By Lemma 2.1, the row and column-

spaces of each slice are precisely U and V respectively, thus the incoherence assumption also holds
for the slices.

We now detail our result for the tensor completion problem:

Lemma 3.5. Given a tensor X with rank r ≤ n1 which satisfies the following:

• Assumptions 2.2 and 3.1,

• The samples are obtained as described in (13), (14).

• Suppose the number of samples from each slice satisfy:

m
(1)
i∗1
≥ 32 max

{
µ0,
(
µ

(1)
i∗1

)2
}
r(n2 + n3) log2 n3

m
(1)
i∗2
≥ 32 max

{
µ0,
(
µ

(1)
i∗2

)2
}
r(n2 + n3) log2 n3

m
(3)
k∗1
≥ 32 max

{
µ0,
(
µ

(3)
k∗1

)2
}
r(n1 + n2) log2 n2

m
(3)
k∗2
≥ 32 max

{
µ0,
(
µ

(3)
k∗2

)2
}
r(n1 + n2) log2 n2

• The slice condition (Definition 3.1) for each of the four slices S
(1)
i∗1
, S

(1)
i∗2
, S

(3)
k∗1
, S

(3)
k∗2

hold.

Then the unique solutions to problems (9), (10), (11) and (12) are X3
k∗1
X3
k∗2

, X1
i∗1

, and X1
i∗2

respec-

tively with probability exceeding 1− C log(n2)n−β2 for some constants C, β > 0.

Proof. By Lemma 2.1 X1
i∗1

, X1
i∗2

, X3
k∗1

, X3
k∗2

are all rank at most r. By Theorem 1.1 of [39], the

convex problems (9), (10), (11), (12) correctly recover the full slices X3
k∗1

, X3
k∗2

, X1
i∗1

, X1
i∗2

with high

probability. (Note that the relevant incoherence conditions in [39] are satisfied due to Corollary 2.1
and the slice condition assumption. Furthermore the number of samples specified meets the sample
complexity requirements of Theorem 1.1 in [39] for exact recovery.)

Remark We note that in this sub-section, events that occur with probability exceeding 1 −
C log(n2)n−β2 (recall that n1 ≤ n2 ≤ n3) are termed as occurring with high probability (w.h.p.).
We will transparently be able to union bound these events (thus changing only the constants) and
hence we refrain from mentioning these probabilities explicitly.
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Theorem 3.6. Let X ∈ Rn1×n2×n3 be an unknown tensor of interest with rank r ≤ n1, such that
the tensor slices X3

k∗1
X3
k∗2

are non-degenerate and pairwise generic, and similarly X1
i∗1
, X1

i∗2
are non-

degenerate and pairwise generic. Then, under the same set of assumptions made for Lemma 3.5, the
procedure outlined in Algorithm 2 succeeds in exactly recovering X and its low rank decomposition
(1) with high probability.

Proof. The proof follows along the same lines as that of Theorem 3.3, with Lemma 3.5 allowing
us to exactly recover the slices X1

i∗1
, X1

i∗2
, X3

k∗1
, X3

k∗2
. Since these slices satisfy non-degeneracy and

pairwise genericity, the tensor factors ui, vi, wi, i = 1, . . . , r can be exactly recovered (up to scaling)
by following steps (3), (5) and (6) of Algorithm 2. Also, the system of equations to recover λ is
given by

XΩ =
r∑
i=1

λi(ui ⊗ vi ⊗ wi)Ω.

Remarks.

1. Theorem 3.6 yields bounds that are almost order optimal when µ0 and µ
(i)
k are constant

(independent of r and the dimension). Indeed, the total number of samples required is
m ∼ O(rn3 log2 n3), which by a counting argument is nearly the same number of parame-
ters in an order 3 tensor of rank r (except for the additional logarithmic factor).

2. The comments about efficiency for symmetric factorizations in the Gaussian random projec-
tions case hold here as well.

3. We do not necessarily need sampling without replacement from the four slices. Similar results
can be obtained for other sampling models such as with replacement [39], and even non-
uniform sampling [17]. Furthermore, while the method proposed here for the task of matrix
completion relies on nuclear norm minimization, a number of other approaches such as alter-
nating minimization [28, 17, 8] can also be adopted; our algorithm relies only on the successful
completion of the slices.

4. Note that we can remove the slice condition altogether since the incoherence assumption im-
plies the slice condition with µ1 = µ0

√
r. Removing the slice condition then implies an overall

sample complexity of O(r2n3 log2 n3).

4 Extension to Higher Order Tensors

The results of Section 3 can be extended to higher order tensors in a straightforward way. While
the ideas remain essentially the same, the notation is necessarily more cumbersome in this section.
We omit some technical proofs to avoid repetition of closely analogous arguments from the third
order case, and focus on illustrating how to extend the methods to the higher order setting.

Consider a tensor X ∈ Rn1×···×nK of order K and dimension n1 × · · · × nK . Let us assume,
without loss of generality, that n1 ≤ n2 ≤ . . . ≤ nK . Let the rank of this tensor be r ≤ n1 and be

21



given by the decomposition:

X =

r∑
l=1

u1
l ⊗ · · · ⊗ uKl =

r∑
l=1

K⊗
p=1

upl ,

where upl ∈ Rnp . We will be interested in slices of the given tensor that are identified by picking
two consecutive modes (k, k + 1), and by fixing all the indices not in those modes, i.e. i1 ∈
[n1], . . . , ik−1 ∈ [nk−1], ik+2 ∈ [nk+2], . . . , iK ∈ [nK ]. Thus the indices of a slice S are:

S := {i1} × · · · × {ik−1} × [nk]× [nk+1]× {ik+2} × · · · × {iK} ,

and the corresponding slice may be viewed as a matrix, denoted by XS . While slices of tensors can
be defined more generally (i.e. the modes need not be consecutive), in this paper we will only need
to deal with such “contiguous” slices. 9 We will denote the collection of all slices where modes
(k, k + 1) are contained to be:

S(k) := {{i1} × · · · × {ik−1} × [nk]× [nk+1]× {ik+2} × · · · × {iK} | i1 ∈ [n1], . . . , iK ∈ [nK ]} .

Every element of S(k) is a set of indices, and we can identify a tensor A ∈ Rn1×···×nk−1×nk+2×···×nK

with a map A : S(k) → R. Using this identification, every element of A can thus also be referenced
by S ∈ S(k). To keep our notation succinct, we will thus refer to AS as the element corresponding
to S under this identification. Thus if S = {i1}× · · · × {ik−1}× [nk]× [nk+1]×{ik+2}× · · · × {iK},
the element:

AS = Ai1,...,ik−1,ik+2,...,iK .

Using this notation, we can define a high-order contraction. A mode-k contraction of X with
respect to a tensor A is thus:

Xk
A :=

∑
S∈S(k)

ASXS . (15)

Note that since Xk
A is a sum of (two-dimensional) slices, it is a matrix. As in the third order case,

we will be interested in contractions where A is either random or a coordinate tensor. The analogue
of Lemma 2.2 for the higher order case is the following:

Lemma 4.1. Let X have the decomposition X =
∑r

l=1

⊗K
p=1 u

p
l . Then we have that the contraction

Xk
A has the following matrix decomposition:

Xk
A =

r∑
l=1

νkl u
k
l

(
uk+1
l

)T
, (16)

where νkl := 〈A,
⊗

p 6=k,k+1

upl 〉. Furthermore, if Xk
B is another contraction with respect to B, then the

eigenvectors of the matrices

M1 = Xk
A

(
Xk

B

)†
M2 =

((
Xk

B

)†
Xk

A

)T
(17)

respectively are {ukl }l=1,...,r and {uk+1
l }l=1,...,r.

9In general, a slice corresponding to any pair of modes (k1, k2) suffices for our approach. However, to keep the
notation simple we present the case where slices correspond to mode pairs of the form (k, k + 1).
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Proof. It is straightforward to verify by simply expanding the definition of Xk
A using the definition

of contraction (15):

[
Xk

A

]
jk,jk+1

=
∑

j1,...,jk−1,jk+2,...,jK

r∑
l=1

 K∏
p=1

(
upl
)
jk

Aj1,...,jk−1,jk+2,...,jK .

Rearranging terms, we get the decomposition (16). The eigenvalues of M1,M2 follow along similar
lines to the proof of Lemma 2.2.

As a consequence of the above lemma, if X is of low rank, so are all the contractions. The
notions of non-degeneracy and pairwise genericity of contractions extend in a natural way to the
higher order case. We say that a contraction Xk

A is non-degenerate if νkl 6= 0 for all l = 1, . . . , r.
Furthermore, a pair of contractions is pairwise generic if the corresponding ratios νkl are all distinct
for l = 1, . . . , r. Non-degeneracy and pairwise genericity hold almost surely when the contractions
are computed with random tensors A, B from appropriate random ensembles (e.g. i.i.d. normally
distributed entries). In much the same way as the third order case, Leurgans’ algorithm can be used
to perform decomposition of low-rank tensors using Lemma 4.1. This is described in Algorithm 3.

Algorithm 3 Leurgans’ Algorithm for Higher Order Tensors

1: Input: Tensor X.
2: for k = 1 to K − 1 do
3: Compute contractions Xk

A and Xk
B for some tensors A and B of appropriate dimensions,

such that the contractions are non-degenerate and pairwise generic.

4: Compute eigen-decompositions of M1 := Xk
A

(
Xk

B

)†
and M2 :=

(
Xk

B

)†
Xk

A. Let Ũk and

Ũk+1 denote the matrices whose columns are the eigenvectors of M1 and MT
2 respectively

corresponding to the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of
M1 and M2.)

5: If k = 1, let U1 := Ũ1 and U2 := Ũ2.
6: If k ≥ 2, simultaneously reorder the columns of Ũk, Ũk+1, also performing simultaneous sign

reversals as necessary so that the columns of Ũk obtained match with the columns of Uk

(obtained in the previous iteration), call the resulting matrices Uk, Uk+1. (The eigenvectors
corresponding to mode k + 1, thus obtained are denoted as {uk+1

l }l=1,...,r.)
7: end for
8: Solve for λl in the (over-determined) linear system

X =
r∑
l=1

λl

K⊗
k=1

ukl .

9: Output: Recovered tensor X =
∑r

l=1 λl
⊗K

k=1 u
k
l .

Finally, the notion of separable measurements can be extended to higher order tensors in a
natural way.

Definition 4.1. Consider a linear operator L : Rn1×···×nK → Rn. We say that L is separable
with respect to the kth mode if there exist W ∈ Rn1×···×nk−1×nk+2×···×nK and a linear operator
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T (k) : Rnk×nk+1 → Rn, such that for every X ∈ Rn1×···×nK :

L (X) =
∑

S∈S(k)
WS T (k)

(
Xk
S

)
.

Analogous to the third order case, we assume that we are presented with two sets of separable
measurements per mode:

y
(k)
1 = L(k)

1 (X) =
∑

S∈S(k)
(W1)S T

(k)
(
Xk
S

)
y

(k)
2 = L(k)

2 (X) =
∑

S∈S(k)
(W2)S T

(k)
(
Xk
S

)

for k = 1, . . . ,K − 1 with each of y
(k)
1 , y

(k)
2 ∈ Rmk . Once again, by separability we have:

y
(k)
1 = T (k)

(
Xk

W1

)
y

(k)
2 = T (k)

(
Xk

W2

)
,

and since the contractions Xk
W1

and Xk
W2

are low rank, nuclear norm minimization can be used to
recover these contractions via:

minimize
Z1

‖Z1‖∗ subject to y
(k)
1 = T (k) (Z1) , (18)

minimize
Z2

‖Z2‖∗ subject to y
(k)
2 = T (k) (Z2) , (19)

for each k = 1, . . . ,K − 1. After recovering the two contractions for each mode, we can then
apply (the higher order) Leurgans’ algorithm to recover the tensor factors. The precise algorithm
is described in Algorithm 4. Provided the T (k) (·) are faithful, the tensor contractions can be
successfully recovered via nuclear norm minimization. Furthermore, if the contractions are non-
degenerate and pairwise generic, the method can successfully recover the entire tensor.

4.1 Separable Random Projections

Given tensors A ∈ Rn1×···×nK1 , B ∈ RnK1+1×···×nK1+K2 , C ∈ RnK1+K2+1×···×nK1+K2+K3 of orders
K1, K2 and K3 respectively with K1 +K2 +K3 = K, we define their outer product as:

[A⊗B ⊗C]i1,...,iK := [A]i1,...,iK1
[B]iK1+1,...,iK1+K2

[C]iK1+K2+1,...,iK1+K2+K3

Note also that the inner-product for higher order tensors is defined in the natural way:

〈T ,X〉 :=
∑

i1,...,iK

[T ]i1,...,iK [X]i1,...,iK .

In this higher order setting, we also work with specific separable random projection operators,
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Algorithm 4 T-ReCs for Higher Order Tensors

1: Input: Measurements y
(k)
i = L(k)

i (X), for k = 1, . . . ,K, i = 1, 2.
2: for k = 1 to K − 1 do
3: Solve convex optimization problems (18) and (19) to obtain optimal solutions Z∗1 and Z∗2

respectively.
4: Compute eigen-decompositions of M1 := Z∗1 (Z∗2 )† and M2 := (Z∗2 )†Z∗1 . Let Ũk and Ũk+1 de-

note the matrices whose columns are the normalized eigenvectors of M1 and MT
2 respectively

corresponding to the non-zero eigenvalues, in sorted order. (Let r be the (common) rank of
M1 and MT

2 .)
5: If k = 1, let U1 := Ũ1 and U2 := Ũ2.
6: If k ≥ 2, simultaneously reorder the columns of Ũk, Ũk+1, also performing simultaneous sign

reversals as necessary so that the columns of Ũk obtained match with the columns of Uk

(obtained in the previous iteration), call the resulting matrices Uk, Uk+1. (The eigenvectors
corresponding to mode k + 1, thus obtained are denoted as {uk+1

l }l=1,...,r.)
7: end for
8: Solve for λl in the (over-determined) linear system

y
(k)
i =

r∑
l=1

λlL
(k)
i

(
K⊗
k=1

ukl

)
, k = 1, . . . ,K − 1, i = 1, 2.

9: Output: Recovered tensor X =
∑r

l=1 λl
⊗p

k=1 u
k
l .

which are defined as below:

y
(k)
1 = L(k)

1 (X) :=

 〈Ak ⊗ Γ
(k)
1 ⊗Bk,X〉

...

〈Ak ⊗ Γ
(k)
mk ⊗Bk,X〉



y
(k)
2 = L(k)

2 (X) :=

 〈Ck ⊗ Γ
(k)
1 ⊗Dk,X〉

...

〈Ck ⊗ Γ
(k)
mk ⊗Dk,X〉


(20)

(21)

In the above expressions, Ak,Ck ∈ Rn1×···×nk−1 , and Bk,Dk ∈ Rnk+2×···×nK . The tensors Ak, Bk,
Ck, Dk are all chosen so that their entries are randomly and independently distributed according to

N (0, 1) and subsequently normalized to have unit Euclidean norm. The matrices Γ
(k)
i ∈ Rnk×nk+1

for i = 1, . . . ,mk have entries randomly and independently distributed according to N (0, 1). For
each k we have 2mk measurements so that in total there are 2

∑K−1
i=1 mk measurements.

Lemma 4.2. We have the following identity:

〈Ak ⊗ Γ
(k)
i ⊗Bk,X〉 = 〈Γ(k)

i , Xk
Ak⊗Bk

〉.
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Proof. The proof is analogous to that of Lemma 3.1.

〈Ak ⊗ Γ
(k)
i ⊗Bk,X〉

=
r∑
l=1

〈Ak ⊗ Γ
(k)
i ⊗Bk,

K⊗
p=1

upl 〉

(i)
=

r∑
l=1

〈Ak,

k−1⊗
p=1

upl 〉〈Bk,

K⊗
p=k+2

upl 〉〈Γ
(k)
i , ukl ⊗ uk+1

l 〉

=

r∑
l=1

〈Ak ⊗Bk,

k−1⊗
p=1

upl

K⊗
p=k+2

upl 〉〈Γ
(k)
i , ukl ⊗ uk+1

l 〉

(ii)
=

r∑
l=1

νkl 〈Γ
(k)
i , ukl ⊗ uk+1

l 〉 (where νkl = 〈Ak ⊗Bk,
⊗

p 6=,k,k+1

upl 〉)

= 〈Γ(k)
i ,

r∑
l=1

νkl u
k
l ⊗ uk+1

l 〉

= 〈Γ(k)
i , Xk

Ak⊗Bk
〉.

The equality (i) follows from the identity 〈a ⊗ b ⊗ c, x ⊗ y ⊗ z〉 = 〈a, x〉〈b, y〉〈c, z〉 for a, b, c, x, y, z
of commensurate dimensions. The equality (ii) follows from the definition νlk in Lemma 4.1

It follows immediately from Lemma 4.2 that in (21), for each k = 1, . . . ,K − 1, L(k)
1 (·), L(k)

2 (·)
are in fact, separable so that Algorithm 4 is applicable. Recovering the contractions involves solving
a set of nuclear norm minimization sub-problems for each k = 1, . . . ,K − 1:

minimize
Z1

‖Z1‖∗

subject to y
(k)
1 =

 〈Γ
(k)
1 , Z1〉

...

〈Γ(k)
mk , Z1〉

 (22)

minimize
Z2

‖Z2‖∗

subject to y
(k)
2 =

 〈Γ
(k)
1 , Z2〉

...

〈Γ(k)
mk , Z2〉

 (23)

We have the following lemma concerning the solutions of these optimization problems:

Lemma 4.3. Suppose mk > 3r(nk + nk+1 − r). Then the unique solutions to problems (22) and
(23) are Xk

Ak⊗Bk
and Xk

Ck⊗Dk
respectively with high probability.

The proof is analogous to that of Lemma 3.5.
We have the following theorem concerning the performance of Algorithm 4.
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Theorem 4.4. Let X ∈ Rn1×···×nK be an unknown tensor of interest with rank r ≤ min {n1, . . . , nK}.
Suppose mk > 3r(nk+nk+1−r) for each k = 1, . . . ,K−1. Then the procedure outlined in Algorithm
4 succeeds in exactly recovering X and its low rank decomposition with high probability.

The proof parallels that of the proof of Theorem 3.3 and is omitted for the sake of brevity.

Remarks.

• Note that the overall sample complexity is 2
∑K

k=1mk, i.e., 6
∑K−1

k=1 r(nk + nk+1 − r). This
constitutes an order optimal sample complexity because a tensor of rank r and order K of these
dimensions has r

∑K
k=1 nk degrees of freedom. In particular, when the tensor is “square” i.e.,

n1 = · · · = nK = n the number of degrees of freedom is Knr whereas the achieved sample
complexity is no larger than 12Knr, i.e., O(Knr).

• As with the third order case, the algorithm is tractable. The main operations involve solving a
set of matrix nuclear norm minimization problems (i.e. convex programs), computing eigen-
vectors, and aligning them. All of these are routine, efficiently solvable steps (thus “polynomial
time”) and indeed enables our algorithm to be scalable.

4.2 Tensor Completion

The method described in Section 3 for tensor completion can also be extended to higher order
tensors in a straightforward way. Consider a tensor X ∈ Rn1×···×nK of order K and dimensions
n1×· · ·×nK . Let the rank of this tensor be r ≤ min {n1, . . . , nK} and be given by the decomposition:

X =

r∑
l=1

u1
l ⊗ . . .⊗ uKl =

r∑
l=1

K⊗
p=1

upl ,

where upl ∈ Rnp . Extending the sampling notation for tensor completion from the third order case,
we define Ω to be the set of indices corresponding to the observed entries of the unknown low rank
tensor X, and define:

Ω(k) := S(k) ∩ Ω m(k) := |Ω(k)|,

where S(k) ∈ Sk. Akin to the third-order case, along each pair of consecutive modes, we will need

samples from two distinguished slices. We denote the index set of these distinct slices by S
(k)
1 and

S
(k)
2 , the corresponding slices by Xk

1 and Xk
2 , the index set of the samples revealed from these slices

by Ω
(k)
1 and Ω

(k)
2 , and their cardinality by m

(k)
1 and m

(k)
2 .

It is a straightforward exercise to argue that observations obtained from each slice S
(k)
i , i = 1, 2

correspond to separable measurements, so that Algorithm 4 applies. The first step of Algorithm
4 involves solving a set of nuclear norm minimization sub-problems (two problems for each k =
1, . . . ,K − 1) to recover the slices:

minimize
Z1

‖Z1‖∗ subject to X
Ω

(k)
1

= [Z1]
Ω

(k)
1

(24)

minimize
Z2

‖Z2‖∗ subject to X
Ω

(k)
2

= [Z2]
Ω

(k)
2

(25)
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Each of these optimization problems will succeed in recovering the corresponding slices provided
incoherence, non-degeneracy and the slice conditions hold (note that these notions all extend to the
higher order setting in a transparent manner). Under these assumptions, if the entries from each

slice are uniformly randomly sampled with cardinality at least m
(i)
k > C(nk + nk+1) log2(nk+1),

i = 1, 2 for some constant C, then the unique solutions to problems (22) and (23) will be Xk
1 and

Xk
2 respectively with high probability.

Once the slices Xk
1 and Xk

2 are recovered correctly using (22), (23) for each k = 1, . . . ,K − 1

one can compute M1 := Xk
1

(
Xk

2

)†
and M2 :=

(
Xk

2

)†
Xk

1 and perform eigen-decompositions to

obtain the factors (up to possible rescaling) {ukl } and {uk+1
l }. Finally, once the tensor factors are

recovered, the tensor itself can be recovered exactly by solving a system of linear equations. These
observations can be summarized by the following theorem:

Theorem 4.5. Let X ∈ Rn1×···×nK be an unknown tensor of interest with rank r ≤ min {n1, . . . , nK}.
Suppose we obtain m

(k)
1 and m

(k)
2 random samples from each of the two distinct mode k slices for

each k = 1, . . . ,K−1. Furthermore suppose the tensor X is incoherent, satisfies the slice conditions
for each mode, and the slices from which samples are obtained satisfy non-degeneracy and pairwise
genericity for each mode. Then there exists a constant C such that if

m
(k)
i > C(nk + nk+1) log2(nk+1) i ∈ {1, 2}

the procedure outlined in Algorithm 4 succeeds in exactly recovering X and its low rank decompo-
sition with high probability.

We finally remark that the resulting sample complexity of the entire algorithm is
∑K−1

k=1 (m
(k)
1 +m

(k)
2 ),

which is O(KrnK log2(nK)).

5 Experiments

In this section we present numerical evidence in support of our algorithm. We conduct experiments
involving (suitably) random low-rank target tensors and their recovery from (a) Separable Random
Projections and (b) Tensor Completion. We obtain phase transition plots for the same, and compare
our performance to that obtained from the matrix-unfolding based approach proposed in [36]. For
the phase transition plots, we implemented matrix completion using the method proposed in [38],
since the SDP approach for exact matrix completion of unfolded tensors was found to be impractical
for even moderate-sized problems.

5.1 Separable Random Projections : Phase Transition

In this section, we run experiments comparing T-ReCs to tensor recovery methods based on “ma-
tricizing” the tensor via unfolding [36]. We consider a tensor of size 30 × 30 × 30 whose factors
U, V,W ∈ Rn×r are i.i.d standard Gaussian entries. We vary the rank r from 2 to 10, and look to
recover these tensors from different number of measurements m ∈ [2, 20]∗n. For each (r, n) pair, we
repeated the experiment 10 times, and consider recovery a “success” if the MSE is less than 10−5.
Figure 1 shows that the number of measurements needed for accurate tensor recovery is typically
less in our method, compared to the ones where the entire tensor is converted to a matrix for low
rank recovery.
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(a) Tensor recovery using T-ReCs. (n=30)
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(b) Tensor recovery using [36]. (n=30)

Figure 1: Phase transition diagram for tensor recovery using our method. White indicates a
probability of recovery of 1, while black indicates failure of exact recovery. Note that in the matrix
unfolding case, one requires more measurements compared to our method to achieve the same
probability of recovery for a given rank.

5.2 Tensor Completion: Phase Transition

We again considered tensors of size 30× 30× 30, varied the rank of the tensors from 2 to 10, and
obtained random measurements from four slices (without loss of generality we may assume they are
the first 2 slices across modes 1 and 2). The number of measurements obtained varied as n× [2, 20].
Figure 5.2 shows the phase transition plots of our method. We deem the method to be a “success”
if the MSE of the recovered tensor is less than 10−5. Results were averaged over 10 independent
trials.

5.3 Speed Comparisons

We finally compared the time taken to recover an n × n × n tensor of rank 3. Figure 3(a) shows
that, T-ReCs with four smaller nuclear norm minimizations is far more scalable computationally
as compared to the method of unfolding the tensor to a large matrix and then solving a single
nuclear norm minimization program. This follows since matricizing the tensor involves solving for
an n2 × n matrix. Our method can thus be used for tensors that are orders of magnitude larger
than competing methods.

Along lines similar to the recovery case, we compared execution times to complete a 35× 35×
35 sized tensor. Figure 3(b) shows again that the matrix completion approach takes orders of
magnitude more time than that taken by our method. We average the results over 10 independent
trials, and set r = n

5 , m = 3nr
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(a) Phase transition for tensor com-
pletion using T-ReCs. (n=30)
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(b) Phase transition for tensor com-
pletion using [36]. (n=30)

Figure 2: Phase transition plots for tensor recovery. Results are averaged over 10 independent
trials. White indicates success whereas black indicates failure.
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6 Conclusion and Future Directions

We introduced a computational framework for exact recovery of low rank tensors. A new class of
measurements, known as separable measurements was defined, and sensing mechanisms pf practical
interest such as random projections and tensor completion with samples restricted to a few slices
were shown to fit into the separable framework. Our algorithm, known as T-ReCs, built on the
classical Leurgans’ algorithm for tensor decomposition, was shown to be computationally efficient,
and enjoy almost optimal sample complexity guarantees in both the random projection and the
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completion settings. A number of interesting avenues for further research follow naturally as a
consequence of this work:

1. Robustness: Our algorithm has been analyzed in the context of noiseless measurements.
It would be interesting to study variations of the approach and the resulting performance
guarantees in the case when measurements are noisy, in the spirit of the matrix completion
literature [11].

2. Non-separable measurements: Our approach relies fundamentally on the measurements
being separable. Tensor inverse problems, such as tensor completion in the setting when
samples are obtained randomly and uniformly from the tensor do not fit into the separa-
ble framework. Algorithmic approaches for non-separable measurements thus remains an
important avenue for further research.

3. Tensors of intermediate rank: Unlike matrices, the rank of a tensor can be larger than
its (largest) dimension, and indeed increase polynomially in the dimension. The approach
described in this paper addresses inverse problems where the rank is smaller than the di-
mension (low-rank setting). Extending these methods to the intermediate rank setting is an
interesting and challenging direction for future work.

4. Methods for tensor regularization: Tensor inverse problems present an interesting di-
chotomy with regards to rank regularization. On the one hand, there is no known natural
and tractable rank-regularizer (unlike the matrix case, the nuclear norm is not known to
be tractable to compute). While various relaxations for the same have been proposed, the
resulting approaches (while polynomial time), are neither scalable nor known to enjoy strong
sample complexity guarantees. On the other hand, matrix nuclear norm has been used in the
past in conjunction with matrix unfolding, but the resulting sample complexity performance
is known to be weak. Our work establishes a third approach, we bypass the need for unfold-
ing and expensive regularization, yet achieve almost optimal sample complexity guarantees
and a computational approach that is also far more scalable. However, the method applies
only for the case of separable measurements. This raises interesting questions regarding the
need/relevance for tensor regularizers, and the possibility to bypass them altogether.
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