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Motivation

» Symmetry is common in
science and engineering.

» Symmetry in statistical
models.

» How to exploit known group
structure?

» Message: Symmetry-aware
methods provide huge
statistical and computational
gains.

Point Group = Ds

Jmol
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Applications: MAR processes

) NN([LI)

o1 = Aozo + w1 @9 = Ao + wo

vy = Avzy +ws x5 = A1xo + we

Important class of stochastic models for multi-scale processes,
e.g. oceanography, computer vision.

» What is the covariance among the leaf nodes?

» Symmetries: automorphism group of T4.

» Formally: X invariant under action of: Z, wr Z, ... wr Zo.
» Can we exploit symmetries? Haar wavelet transform ...
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Applications: Random Fields

» Physical phenomena: oceanography, hydrology,
electromagnetics

v

Poisson’s equation (stochastic input):

V2h(x) = f(x).

Green’s function: covariance process R(x, X2).

v

v

Symmetry: Laplacian, boundary conditions, R(x1, X2).

v

Symmetry-preserving discretization.



Other Applications

» Partial exchangeability: Clinical Tests

1. N patients, T groups of similar characteristics
2. Xj,..., Xy physiological responses
3. Patients within same group exchangeable (but not i.i.d.)

» Cyclostationarity: periodic phenomena such as vibrations,
sinusoidal components ...

We model symmetry of covariance ¥ via &-invariance.

Problem statement: Given & infer information about .
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Group Theory: Basics

» Finite group = (G, o)
1. G - collection of
permutations on [p]
2. o - composition
3. Closure under
composition

» Examples

1. Symmetric group: Sp.

2. Cyclic group: Z/pZ.

3. Cartesian products:
(’51 X @2.

4. Other products:
semi-direct, wreath.
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Group Theory: Group Action

Let & be a finite group (of permutation matrices), and ]Rﬁ’fp be
PSD matrices. A group action is a map

A:Gx REP — REXP
;
(I'Ig,Z) — I'IgZI'Ig.
» & “acts on” matrices by permuting indices.

Definition
Y is &-invariant if

NgXNf =%  VNge®.

» Formalizes notion of a symmetric model.
» Fixed point subspace: W = {£: MgEN) =% VMg € 6}.
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Fixed Point Subspace Projection

v

Statistical model X ~ N (0,X), X € RP*P.
Symmetry: ¥ € We.
Model Selection: Given i.i.d. samples Xj, ..

n
yn.— %ZXIX,T
i=1

v

v

v

High-D regime (n < p), " a poor estimate.

., Xp recover x.
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Fixed Point Subspace Projection

v

v

v

v

v

v

Statistical model X ~ N (0,X), X € RP*P.
Symmetry: ¥ € We.
Model Selection: Given i.i.d. samples Xj, ..., X, recover ¥L.

n
= LS XX
i=1

High-D regime (n < p), " a poor estimate.
®-empirical covariance:

3= Py (X).

Main contribution: statistical analysis of this estimator.
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Fixed Point Projection: An Example

» MAR Process invariant w.r.t. Zo wr Zo ... Wr Zo.
101
a b ¢ ¢ 2 2
b a ¢ ¢ T % %
c ¢ a b - % 7%
c ¢ b a 1 _1
2 2
A1
v _ A2
3T = Ao

A3

(a) (b)

» How to compute fixed-point subspace projection?
» Use Haar wavelet transform T

Pe(E") = TD(T*E"T) T*.

o OHHE\H
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Statistical gains: Convergence in spectral norm

v

|Z - 27| < s w.hop. it n=0(5).
However, ||Z — Pg (£7) || < s w.h.p. if n= O ("’(%) for
® = cyclic, symmetric.

Proof: Fourier transform diagonalizes circulant matrices.

v

v

v

How do we generalize?
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Group Theory: Representation

» G-invariant matrices can be simultaneously block
diagonalized.
M, 0 B; 0
0 Mz, 0 B;
Z: (active) irreducible representations

s;: dimension of B;
m;: multiplicity of B;
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Group Theory: Representation

» G-invariant matrices can be simultaneously block
diagonalized.

M, 0 B; 0
T*MT = M; .
0 Mz, 0 B;
Z: (active) irreducible representations
s;: dimension of B;
m;: multiplicity of B;

» Theorem: |X — Pg (X7) || < 6 w.h.p. provided

_ S log p
n=0 <maX {Teaix m;é2’ Teaix m; &2 }) '
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Statistical gains: Convergence in /,, norm

|
z- 5. < 0 y/E2).
| —Ps (") |le., <O (,/ logp ) for & = cyclic.

Proof idea: Reynolds averaging

v

v

v

Pe (X)) = 5 Zn "]
6]

= Average over edge orbits.
For cyclic group edge orbits are of size p.

v

v

How do we generalize?
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Edge Orbit Parameters

» Combinatorial parameters:

The edge orbit of (i, j) is O(i, ) := {(9(i), g(j)) | g € &Y.

The degree dj; is the max. number of times any variable
appears in O(i, j).

1.0 = min;;[O(i, )
2. Og := min; ‘Ot(j:;/)l_
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Edge Orbit Parameters

» Combinatorial parameters:

The edge orbit of (i, j) is O(i, ) := {(9(i), g(j)) | g € &Y.

The degree dj; is the max. number of times any variable
appears in O(i, j).

1. 0= min,-y,- |O(I,])|
2. Og := min; ‘Ogj”)l.

» Theorem: We have w.h.p. that

/logp logp
J— n PR — PR —
X — Ps (X )||gw§(9(max{ N0’ N0, .

» Delicate issues: non-i.i.d. averaging, sample reuse.
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Application: Covariance Estimation
» Covariance Estimation: Bickel-Levina thresholding

3 := threshold; (£").

If £ has at most d nonzeros per row/column,

A d?lo
I — S|l < 4/ ngpw.h.p.
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Application: Covariance Estimation
» Covariance Estimation: Bickel-Levina thresholding

3 := threshold; (£").

If > has at most d nonzeros per row/column,

o d?lo
I — S|l < 4/ ng Py hp.

» Symmetry-aware thresholding: Consider & = cyclic

3 = threshold; (Pg (X))
If = has at most d nonzeros per row/column,

d?logp

Y - Sell <
| sl o

w.h.p.

» Rates in previous slides give results for general groups.
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Application: Gaussian Graphical Model Selection

» Zeros of ¥~ encode conditional independence relations.
» /4-regularized log-'hood [Yuan and Lin, Ravikumar et al.]:
6 := argmin tr(£"©) — log det(©) + 1in||O |, -
oes?,
6, £~ have same zero pattern w.h.p. if n = O (d?log p),
where d is degree of graph.
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Application: Gaussian Graphical Model Selection

» Zeros of ¥~ encode conditional independence relations.
» /4-regularized log-'hood [Yuan and Lin, Ravikumar et al.]:

6 := argmin tr(£"©) — log det(©) + 1in||O |, -
oes?,
6, £~ have same zero pattern w.h.p. if n = O (d?log p),
where d is degree of graph.

» If ¥ is &-invariant for & = cyclic :

Op ;= argmin t(X"©) — logdet(©) + un||O|l¢, -
0esh . NWe

©s, X' have same zero pattern w.h.p. if n= O (%)_

» Again, rates in previous slides = scaling in general groups.
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Computational Gains

» When T known Pg(-) efficiently computable.

16/18



Computational Gains

» When T known Pg(-) efficiently computable.
» Exploiting symmetries in convex optimization:

If objective and constraint functions &-invariant, then
solution in fixed-point subspace.

= reduction in problem size.

= improved numerical conditioning.
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Computational Gains

» When T known Pg(-) efficiently computable.
» Exploiting symmetries in convex optimization:

If objective and constraint functions &-invariant, then
solution in fixed-point subspace.

= reduction in problem size.

= improved numerical conditioning.

» For example

argmin tr(X"©) — logdet(®) + pn||©|¢,
0esh . NWe
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Experiments
Gaussian model invariant with respect to cyclic group, p = 50.
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Conclusion

v

Statistical models with symmetries.
Fixed-point projection as means of regularization.

Improved rates for several model selection and estimation
tasks.

Computational benefits.
Current efforts: approximately symmetric models.

v

v

v

v

http://arxiv.org/abs/1111.7061
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