Group Symmetry and Covariance Regularization

Parikshit Shah University of Wisconsin

Joint work with Venkat Chandrasekaran

Motivation

- Symmetry is common in science and engineering.
- Symmetry in statistical models.
- How to exploit known group structure?
- Message: Symmetry-aware methods provide huge statistical and computational gains.

Applications: MAR processes

Important class of stochastic models for multi-scale processes, e.g. oceanography, computer vision.

- What is the covariance among the leaf nodes?
- ▶ Symmetries: automorphism group of T_d .
- ▶ Formally: Σ invariant under action of: \mathbb{Z}_2 wr \mathbb{Z}_2 ... wr \mathbb{Z}_2 .
- Can we exploit symmetries? Haar wavelet transform ...

Applications: Random Fields

- Physical phenomena: oceanography, hydrology, electromagnetics
- Poisson's equation (stochastic input):

$$\nabla^2 \phi(x) = f(x).$$

- ▶ Green's function: covariance process $R(x_1, x_2)$.
- ▶ Symmetry: Laplacian, boundary conditions, $R(x_1, x_2)$.

Symmetry-preserving discretization.

Other Applications

- Partial exchangeability: Clinical Tests
 - 1. *N* patients, *T* groups of similar characteristics
 - 2. X_1, \ldots, X_N physiological responses
 - 3. Patients within same group exchangeable (but not i.i.d.)
- Cyclostationarity: periodic phenomena such as vibrations, sinusoidal components ...

We model symmetry of covariance Σ via \mathfrak{G} -invariance.

Problem statement: Given \mathfrak{G} infer information about Σ .

Group Theory: Basics

- ▶ Finite group $\mathfrak{G} = (G, \circ)$
 - 1. *G* collection of permutations on [*p*]
 - 2. o composition
 - Closure under composition
- Examples
 - 1. Symmetric group: S_p .
 - 2. Cyclic group: $\mathbb{Z}/p\mathbb{Z}$.
 - 3. Cartesian products: $\mathfrak{G}_1 \times \mathfrak{G}_2$.
 - 4. Other products: semi-direct, wreath.

Group Theory: Group Action

Let $\mathfrak G$ be a finite group (of permutation matrices), and $\mathbb R_+^{p\times p}$ be PSD matrices. A group action is a map

$$\mathcal{A}: G \times \mathbb{R}_{+}^{\rho \times \rho} \to \mathbb{R}_{+}^{\rho \times \rho}$$
$$\left(\Pi_{g}, \Sigma\right) \mapsto \Pi_{g} \Sigma \Pi_{g}^{T}.$$

▶ 𝔥 "acts on" matrices by permuting indices.

Definition

Σ is &-invariant if

$$\Pi_g \Sigma \Pi_g^T = \Sigma \qquad \forall \Pi_g \in \mathfrak{G}.$$

- Formalizes notion of a symmetric model.
- ► Fixed point subspace: $W_{\mathfrak{G}} = \{\Sigma : \Pi_g \Sigma \Pi_g^{\mathsf{T}} = \Sigma \quad \forall \Pi_g \in \mathfrak{G}\}.$

Fixed Point Subspace Projection

- ▶ Statistical model $X \sim \mathcal{N}(0, \Sigma)$, $\Sigma \in \mathbb{R}^{p \times p}$.
- ▶ Symmetry: $\Sigma \in W_{\mathfrak{G}}$.
- ▶ Model Selection: Given i.i.d. samples $X_1, ..., X_n$ recover Σ .

$$\Sigma^n := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$$

- ▶ High-D regime $(n \ll p)$, Σ^n a poor estimate.
- ▶ ७-empirical covariance:

$$\hat{\Sigma}:=\mathcal{P}_{\mathfrak{G}}\left(\Sigma^{n}\right).$$

Main contribution: statistical analysis of this estimator.

Fixed Point Subspace Projection

- ▶ Statistical model $X \sim \mathcal{N}(0, \Sigma)$, $\Sigma \in \mathbb{R}^{p \times p}$.
- ▶ Symmetry: $\Sigma \in W_{\mathfrak{G}}$.
- ▶ Model Selection: Given i.i.d. samples $X_1, ..., X_n$ recover Σ .

$$\Sigma^n := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$$

- ▶ High-D regime $(n \ll p)$, Σ^n a poor estimate.
- Ø-empirical covariance:

$$\hat{\Sigma} := \mathcal{P}_{\mathfrak{G}}(\Sigma^n)$$
.

Main contribution: statistical analysis of this estimator.

Fixed Point Projection: An Example

▶ MAR Process invariant w.r.t. \mathbb{Z}_2 wr \mathbb{Z}_2 ... wr \mathbb{Z}_2 .

- How to compute fixed-point subspace projection?
- Use Haar wavelet transform T:

$$\mathcal{P}_{\mathfrak{G}}(\Sigma^n) = T\mathcal{D}(T^*\Sigma^nT)T^*.$$

Statistical gains: Convergence in spectral norm

- ▶ $\|\Sigma \Sigma^n\| \le \delta$ w.h.p. if $n = O(\frac{p}{\delta^2})$.
- ▶ However, $\|\Sigma \mathcal{P}_{\mathfrak{G}}(\Sigma^n)\| \le \delta$ w.h.p. if $n = O\left(\frac{\log p}{\delta^2}\right)$ for $\mathfrak{G} = \text{cyclic}$, symmetric.
- Proof: Fourier transform diagonalizes circulant matrices.
- ▶ How do we generalize?

Group Theory: Representation

 6-invariant matrices can be simultaneously block diagonalized.

$$T^*MT = \left[egin{array}{ccc} M_1 & & 0 \\ & \ddots & \\ 0 & & M_{|\mathcal{I}|} \end{array}
ight] \qquad M_i = \left[egin{array}{ccc} B_i & & 0 \\ & \ddots & \\ 0 & & B_i \end{array}
ight].$$

 \mathcal{I} : (active) irreducible representations

 s_i : dimension of B_i

 m_i : multiplicity of B_i

▶ **Theorem**: $\|\Sigma - \mathcal{P}_{\mathfrak{G}}(\Sigma^n)\| \leq \delta$ w.h.p. provided

$$n = \mathcal{O}\left(\max\left\{\max_{i \in \mathcal{I}} \frac{s_i}{m_i \delta^2}, \max_{i \in \mathcal{I}} \frac{\log p}{m_i \delta^2}\right\}\right)$$

Group Theory: Representation

 6-invariant matrices can be simultaneously block diagonalized.

$$T^*MT = \left[egin{array}{ccc} M_1 & & 0 \ & \ddots & \ 0 & & M_{|\mathcal{I}|} \end{array}
ight] \qquad M_i = \left[egin{array}{ccc} B_i & & 0 \ & \ddots & \ 0 & & B_i \end{array}
ight].$$

 \mathcal{I} : (active) irreducible representations

 s_i : dimension of B_i

 m_i : multiplicity of B_i

▶ **Theorem**: $\|\Sigma - \mathcal{P}_{\mathfrak{G}}(\Sigma^n)\| \leq \delta$ w.h.p. provided

$$n = \mathcal{O}\left(\max\left\{\max_{i \in \mathcal{I}} \frac{s_i}{m_i \delta^2}, \max_{i \in \mathcal{I}} \frac{\log p}{m_i \delta^2}\right\}\right).$$

Statistical gains: Convergence in ℓ_{∞} norm

- $\blacktriangleright \|\Sigma \Sigma^n\|_{\ell_\infty} \le O\left(\sqrt{\frac{\log p}{n}}\right).$
- $\blacktriangleright \ \|\Sigma \mathcal{P}_{\mathfrak{G}}\left(\Sigma^{n}\right)\|_{\ell_{\infty}} \leq O\left(\sqrt{\frac{\log p}{pn}}\right) \text{ for } \mathfrak{G} = \text{cyclic.}$
- Proof idea: Reynolds averaging

$$\mathcal{P}_{\mathfrak{G}}\left(\Sigma^{n}\right) = rac{1}{|\mathfrak{G}|} \sum_{g \in \mathfrak{G}} \Pi_{g} \Sigma^{n} \Pi_{g}^{T}.$$

- ⇒ Average over edge orbits.
- For cyclic group edge orbits are of size p.
- How do we generalize?

Edge Orbit Parameters

Combinatorial parameters:

The edge orbit of (i, j) is $\mathcal{O}(i, j) := \{(g(i), g(j)) \mid g \in \mathfrak{G}\}.$

The degree d_{ij} is the max. number of times any variable appears in $\mathcal{O}(i,j)$.

- 1. $\mathcal{O} := \min_{i,j} |\mathcal{O}(i,j)|$
- 2. $\mathcal{O}_d := \min_{i,j} \frac{|\mathcal{O}(i,j)|}{d_{ij}}$.
- ► Theorem: We have w.h.p. that

$$\|\Sigma - \mathcal{P}_{\mathfrak{G}}(\Sigma^n)\|_{\ell_{\infty}} \leq \mathcal{O}\left(\max\left\{\sqrt{\frac{\log p}{n\mathcal{O}}}, \frac{\log p}{n\mathcal{O}_d}\right\}\right).$$

▶ Delicate issues: non-i.i.d. averaging, sample reuse.

Edge Orbit Parameters

Combinatorial parameters:

The edge orbit of (i, j) is $\mathcal{O}(i, j) := \{(g(i), g(j)) \mid g \in \mathfrak{G}\}.$

The degree d_{ij} is the max. number of times any variable appears in $\mathcal{O}(i,j)$.

- 1. $\mathcal{O} := \min_{i,j} |\mathcal{O}(i,j)|$
- 2. $\mathcal{O}_d := \min_{i,j} \frac{|\mathcal{O}(i,j)|}{d_{ij}}$.
- ▶ Theorem: We have w.h.p. that

$$\|\Sigma - \mathcal{P}_{\mathfrak{G}}(\Sigma^n)\|_{\ell_{\infty}} \leq \mathcal{O}\left(\max\left\{\sqrt{\frac{\log p}{n\mathcal{O}}}, \frac{\log p}{n\mathcal{O}_d}\right\}\right).$$

▶ Delicate issues: non-i.i.d. averaging, sample reuse.

Application: Covariance Estimation

Covariance Estimation: Bickel-Levina thresholding

$$\hat{\Sigma} := \text{threshold}_t(\Sigma^n)$$
.

If Σ has at most d nonzeros per row/column,

$$\|\Sigma - \hat{\Sigma}\| < \sqrt{\frac{d^2 \log p}{n}}$$
w.h.p.

ightharpoonup Symmetry-aware thresholding: Consider $\mathfrak{G}=\operatorname{cyclic}$

$$\hat{\Sigma}_{\mathfrak{G}} := \operatorname{threshold}_{t} \left(\mathcal{P}_{\mathfrak{G}} \left(\Sigma^{n} \right) \right).$$

If Σ has at most d nonzeros per row/column,

$$\|\Sigma - \hat{\Sigma}_{\mathfrak{G}}\| < \sqrt{\frac{d^2 \log p}{pn}}$$
w.h.p.

Rates in previous slides give results for general groups.

Application: Covariance Estimation

Covariance Estimation: Bickel-Levina thresholding

$$\hat{\Sigma} := \text{threshold}_t(\Sigma^n)$$
.

If Σ has at most d nonzeros per row/column,

$$\|\Sigma - \hat{\Sigma}\| < \sqrt{\frac{d^2 \log p}{n}}$$
w.h.p.

Symmetry-aware thresholding: Consider 𝒪 = cyclic

$$\hat{\Sigma}_{\mathfrak{G}} := \operatorname{threshold}_{t} (\mathcal{P}_{\mathfrak{G}} (\Sigma^{n})).$$

If Σ has at most d nonzeros per row/column,

$$\|\Sigma - \hat{\Sigma}_{\mathfrak{G}}\| < \sqrt{rac{d^2 \log p}{pn}}$$
w.h.p.

Rates in previous slides give results for general groups.

Application: Gaussian Graphical Model Selection

- ▶ Zeros of Σ^{-1} encode conditional independence relations.
- ▶ ℓ₁-regularized log-l'hood [Yuan and Lin, Ravikumar et al.]:

$$\hat{\Theta} := \underset{\Theta \in \mathcal{S}_{++}^p}{\mathsf{arg\,min}} \; \mathsf{tr}(\Sigma^n \Theta) - \mathsf{log\,det}(\Theta) + \mu_n \|\Theta\|_{\ell_1}.$$

 $\hat{\Theta}$, Σ^{-1} have same zero pattern w.h.p. if $n = O\left(d^2 \log p\right)$, where d is degree of graph.

▶ If Σ is \mathfrak{G} -invariant for $\mathfrak{G} = \operatorname{cyclic}$:

$$\hat{\Theta}_{\mathfrak{G}} := \underset{\Theta \in \mathcal{S}_{++}^{p} \cap W_{\mathfrak{G}}}{\text{arg min}} \operatorname{tr}(\Sigma^{n}\Theta) - \log \det(\Theta) + \mu_{n} \|\Theta\|_{\ell_{1}}.$$

 $\hat{\Theta}_{\mathfrak{G}}, \ \Sigma^{-1}$ have same zero pattern w.h.p. if $n = O\left(\frac{d^2 \log p}{p}\right)$

lacktriangle Again, rates in previous slides \Rightarrow scaling in general groups.

Application: Gaussian Graphical Model Selection

- ▶ Zeros of Σ^{-1} encode conditional independence relations.
- ▶ ℓ₁-regularized log-l'hood [Yuan and Lin, Ravikumar et al.]:

$$\hat{\Theta} := \underset{\Theta \in \mathcal{S}_{++}^p}{\text{arg min }} \operatorname{tr}(\Sigma^n \Theta) - \log \det(\Theta) + \mu_n \|\Theta\|_{\ell_1}.$$

 $\hat{\Theta}$, Σ^{-1} have same zero pattern w.h.p. if $n = O\left(d^2 \log p\right)$, where d is degree of graph.

▶ If Σ is \mathfrak{G} -invariant for $\mathfrak{G} = \operatorname{cyclic}$:

$$\hat{\Theta}_{\mathfrak{G}} := \mathop{\arg\min}_{\Theta \in \mathcal{S}_{++}^{\rho} \cap W_{\mathfrak{G}}} \operatorname{tr}(\Sigma^{n}\Theta) - \log \det(\Theta) + \mu_{n} \|\Theta\|_{\ell_{1}}.$$

 $\hat{\Theta}_{\mathfrak{G}}, \, \Sigma^{-1}$ have same zero pattern w.h.p. if $n = O\left(\frac{d^2 \log p}{p}\right)$.

► Again, rates in previous slides ⇒ scaling in general groups.

Computational Gains

- ▶ When T known $\mathcal{P}_{\mathcal{G}}(\cdot)$ efficiently computable.
- Exploiting symmetries in convex optimization:

If objective and constraint functions &-invariant, then solution in fixed-point subspace.

- \Rightarrow reduction in problem size.
- ⇒ improved numerical conditioning.
- For example

$$\underset{\Theta \in \mathcal{S}_{++}^{p} \cap W_{\mathfrak{G}}}{\operatorname{arg\,min}} \operatorname{tr}(\Sigma^{n}\Theta) - \log \det(\Theta) + \mu_{n} \|\Theta\|_{\ell_{1}}$$

Computational Gains

- ▶ When T known $\mathcal{P}_{\mathcal{G}}(\cdot)$ efficiently computable.
- Exploiting symmetries in convex optimization:

If objective and constraint functions &-invariant, then solution in fixed-point subspace.

- \Rightarrow reduction in problem size.
- \Rightarrow improved numerical conditioning.
- For example

$$\underset{\Theta \in \mathcal{S}_{++}^{p} \cap W_{\mathfrak{G}}}{\operatorname{arg\,min}} \operatorname{tr}(\Sigma^{n}\Theta) - \log \det(\Theta) + \mu_{n} \|\Theta\|_{\ell_{1}}$$

Computational Gains

- ▶ When T known $\mathcal{P}_{\mathcal{G}}(\cdot)$ efficiently computable.
- Exploiting symmetries in convex optimization:

If objective and constraint functions &-invariant, then solution in fixed-point subspace.

- \Rightarrow reduction in problem size.
- ⇒ improved numerical conditioning.
- For example

$$\underset{\Theta \in \mathcal{S}_{++}^{\rho} \cap W_{\mathfrak{G}}}{\operatorname{arg\,min}} \operatorname{tr}(\Sigma^{n}\Theta) - \log \det(\Theta) + \mu_{n} \|\Theta\|_{\ell_{1}}$$

Experiments

Gaussian model invariant with respect to cyclic group, p = 50.

Inverse covariance corresponding to a cycle graph, invariant with respect to cyclic group, p=50.

Conclusion

- Statistical models with symmetries.
- Fixed-point projection as means of regularization.
- Improved rates for several model selection and estimation tasks.
- Computational benefits.
- Current efforts: approximately symmetric models.

http://arxiv.org/abs/1111.7061