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Abstract— Stochastic games are an important class of games
that generalize Markov decision processes to game theoretic
scenarios. We consider finite state two-player zero-sum sto-
chastic games over an infinite time horizon with discounted
rewards. The players are assumed to have infinite strategy
spaces and the payoffs are assumed to be polynomials. In this
paper we restrict our attention to a very special class of games
for which the single-controller assumption holds. It is shown
that minimax equilibria and optimal strategies for such games
may be obtained via semidefinite programming.

I. INTRODUCTION

Markov decision processes (MDPs) are very widely used
system modeling tools where a single agent attempts to make
optimal decisions at each stage of a multi-stage process so
as to optimize some reward or payoff [1]. Game theory is
a system modeling paradigm that allows one to model a
problem where several (possibly adversarial) decision makers
make individual decisions to optimize their own payoff [2].
In this paper we study stochastic games [3,4] that allow
one to combine the modeling power of MDPs and games.
Stochastic games may be viewed as competitive MDPs where
several decision makers make decisions at each stage to
maximize their own reward. Each state of a stochastic game
is a simple game, but the decisions made by the players affect
not only their payoff, but also the transition to the next state.

Notions of optimality in games have been extensively
studied, and are very well understood. The most popular
notion of optimality is the notion of a Nash equilibrium.
While these equilibria are hard to compute in general,
in certain cases they may be computed efficiently. Games
involving two players and finite action spaces are known
to have mixed strategy Nash equilibria. Moreover, Nash
equilibria for such games may be computed efficiently via
linear programming. Stochastic games were introduced by
Shapley [4] in 1953. In his paper, he showed that the notion
of a Nash equilibrium may be extended to stochastic games
with finite state spaces and strategy sets. He also proposed
a value iteration-like algorithm to compute the equilibria.
Shapley showed that associated to this notion of equilibrium,
there is a notion of value associated to the stochastic game.
This value is a vector indexed by the state, and corresponds to
the optimal payoff for the players given the initial state of the
game. It was shown in 1981 by Parthasarathy and Raghavan
[3,5] that the value and optimal strategies for stochastic
games satisfying the single controller assumption could be
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computed efficiently via linear programming (thus proving
that such problems with rational data could be computed in
a finite number of steps).

While computational techniques for finite games are rea-
sonably well understood, there has been some recent interest
in the class of infinite games [6,7]. In this important class,
players have access to an infinite number of pure strategies,
and the players are allowed to randomize over these choices.
In a recent paper [6], Parrilo describes a technique to
solve two player, zero-sum infinite games with polynomial
payoffs via semidefinite programming. It is natural to wonder
whether the techniques from finite stochastic games can be
extended to infinite stochastic games (i.e. finite state sto-
chastic games where players have access to infinitely many
pure strategies). In particular, since finite, single-controller,
zero-sum games can be solved via linear programming, can
similar infinite stochastic games be solved via semidefinite
programming? The answer is affirmative, and this paper
focuses on establishing this result. The linear program that
solves the finite action stochastic game satisfying (SC) (a
condition defined below) can be extended to an infinite
dimensional optimization problem when the actions are
uncountably infinite. The main contribution of this paper is
the establishment of the following properties of the infinite
dimensional optimization problem:

1) Its optimal solutions correspond to minimax equilibria.
2) The problem can be solved efficiently by semidefinite
programming.

Section II of this paper provides a formal description of
the problem and introduces the basic notation used in the
paper. It also briefly describes some elegant results about
polynomial nonnegativity, moment sequences of nonnegative
measures, and their connection to semidefinite programming.
Section III states and proves the main result of this paper.
Finally, we state some natural extensions of this problem,
conclusions, and directions of future research.

II. PRELIMINARIES
A. Problem formulation

We consider the problem of solving two-player zero-
sum stochastic games via mathematical programming. The
game consists of finitely many states with two adversarial
players making simultaneous decisions. Each player receives
a payoff that depends on the actions of both players and the
state (i.e. each state can be thought of as a particular zero-
sum game). The transitions between the states are random (as
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in a finite state Markov decision process), and the transition
probabilities in general depend on the actions of the players
and the current state. The process runs over an infinite
horizon. Player 1 attempts to maximize his reward over the
horizon (via a discounted accumulation of the rewards at
each stage) while player 2 tries to minimize his payoff to
player 1. If (a},a?,...) and (a},a3,...) are sequences of
actions chosen by players 1 and 2 resulting in a sequence of
states (s1, S2,...) respectively, then the reward of player 1
is given by:

oo
Zﬁkr(sk,alf,ag).
k=1

The game is completely defined via the specification of the
following data:

1) The (finite) state space S = {1,...,S}.

2) The sets of actions for players 1 and 2 given by A
and As.

3) The payoff function, denoted by 7(s,ai,as), for a
given set of state s and actions a; and ag (of players
1 and 2).

4) The probability transition matrix p(s’; s, a1, as) which
provides the conditional probability of transition from
state s to s’ given players’ actions.

5) The discount factor 8 (6 < 1).

Throughout this paper we make the following important
assumption about the probability transition matrix:

Assumption SC

The probability transition to state s’ conditioned upon the
current state being s depends only on s, s, and the action a;
of player 1 for every s and s’. This probability is independent
of the action of player 2. Thus, p(s'; s, a1,a2) = p(s'; s,a1).
This is known as the single-controller assumption.

In this paper we will be concerned with the case
where the action spaces of the two players A; and As are
uncountably infinite sets. For the sake of simplicity we will
often consider the case where A = As = [0,1] C R. The
results easily generalize to the case where the strategy sets
are finite unions of arbitrary intervals of the real line. For
the sake of simplicity, we also assume that the action sets
are the same for each state, though this assumption may also
be relaxed. We will denote by a; and aq, the actual actions
chosen by players 1 and 2 from their respective action
spaces. The payoff function is assumed to be a polynomial
in the variables a; and as with real coefficients:

E E TU al a2

=0 j=0

r(s,a1,az)

Finally, we assume that the transition probability p(s’; s, a1)
is a polynomial in the action a;.

The decision process runs over an infinite horizon, thus
it is natural to restrict one’s attention to stationary strategies
for each player, i.e. strategies that depend only on the state
of the process and not on time. Moreover, since the process
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involves two adversarial decision makers, it is also natural
to look for randomized strategies (or mixed strategies) rather
than pure strategies so as to recover the notion of a minimax
equilibrium. A mixed strategy for player 1 is a finite set of
probability measures p = [u(1),. .., u(S)] supported on the
action set A;. Each probability measure corresponds to a
randomized strategy for player 1 in some particular state,
for example p(k) corresponds to the randomized strategy
that player 1 would use when in state k. Similarly, player
2’s strategy will be represented by v = [v(1),...,v(N)].
(A word on notation: Throughout the paper, indices in
parentheses will be used to denote the state. Bold letters will
be used indicate vectorization with respect to the state, i.e.
collection of objects corresponding to different states into a
vector with the i entry corresponding to state i. The Greek
letters &, p, v will be used to denote measures. Subscripts
on these Greek letters will be used to denote moments of the
measures. For example ¢;(i) denotes the j** moment of the
measure & corresponding to state ¢.)
A strategy I leads to a probability matrix P(u) such that
fA i,a1)du(t). Thus, once player 1 fixes a
strategy 1, the probablhty transition matrix is fixed, and can
be obtained by integrating each entry in the matrix with
respect to the measure p. (Since the entries are polynomials,
upon integration, these entries depend affinely on the mo-
ments p(4)). Given strategies p and v, the reward collected
by player 1 in some stage s is given by:

/,41 /A2 5, a1, az)dp(s)dv(s).

The reward collected over the infinite horizon (for fixed
strategies u(s) and v(s)) starting at state s, vg(s, u(s), v(s)),
is given by the system of equations:

v (s, 1(5), v(5)) = 7(s, (), v(s))+
8% ves (fa, P35, a1)dnls) ) vals', s,

Vectorizing vg(s, u(s), v(s)), we obtain
(I = pP(u)~"
v(1)),...

r(s, u(s)

v(s"))

r(p,v),
(S, 1(8),v(9))] €

Vﬁ(:uvl/) =

where r(u,v) = [r(1, u(1),
RS.

The problem is to find equilibrium strategies ;. and 19
which satisfy the saddle point property:

va(p,v?) < va(u®, %) < va(p,v)

for all mixed strategies u,r. (Mixed strategies that satisfy
this saddle point property achieve the Nash equilibrium.)
One may note that vg(u,v) is a vector in R® indexed by
the initial state of the Markov process. Hence the above
inequality is a vector inequality and is to be interpreted
componentwise.

B. SDP Characterization of Nonnegativity and Moments

Let A be some interval on the real line. The set of
univariate polynomials that are nonnegative on A has an
exact semidefinite description. The set of (finite) vectors
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in R™ which correspond to moment sequences of measures
supported on A also has an exact semidefinite description.
We briefly review these notions here and introduce some
related notation [6].

Let R[x] denote the set of univariate polynomials with
real coefficients. Let p(z) = > ,_,prz"® € Rz]. We say
that p(x) is nonnegative on A if p(z) > 0 for every
x € A. We denote the set of nonnegative polynomials of
degree n which are nonnegative on A by P(A). (To avoid
cumbersome notation, we exclude the degree information
in the notation. Moreover the degree will usually be clear
from the context.) The polynomial p(x) is said to be a sum
of squares if there exist polynomials ¢ (z),. .., qr(z) such
that p(x) = Zle q(x)?. Tt is well known that a univariate
polynomial is a sum of squares if and only if p(z) € P(R).

Let 1 denote a measure supported on the set A. The i‘"
moment of the measure u is denoted by

ui:/xid,u.
A

Let ji = [uo,...,pun] be a vector in R"T1, We say that
[t is a moment sequence of length n + 1 if it corresponds
to the first n + 1 moments of some nonnegative measure
1 supported on the set A. The moment space, denoted by
M(A) is the subset of R"™! which corresponds to moments
of nonnegative measures supported on the set A. We say
that a nonnegative measure p is a probability measure if its
zeroth order moment iy = 1. The set of moment sequences
of length n + 1 corresponding to probability measures is
denoted by Mp(A).

Let 8™ denote the set of n X n symmetric matrices and
define the linear operator H : R?"~1 — 8™ as:

aq aq a9 N Qp,
az a2 a3 An+1
H : —
a2n—1 ap  Ap41 a2n—1

Thus H is simply the linear operator that takes a vector and
constructs the associated Hankel matrix which is constant
along the antidiagonals. We will also frequently use the
adjoint of this operator, the linear map H* : S* — R?"~1:

mii1
mi1 M2 Min 2Mi1s
mio moo e maon
HE - — | ma2 +2m3
min Map Mnpn

mnn

This map flattens a matrix into a vector by adding all the
entries along antidiagonals. One can give a semidefinite
characterization of polynomials that are nonnegative on an
interval. Since in this paper we are typically considering the
interval to be [0, 1] we give an explicit semidefinite charac-
terization of P([0,1]). We define the following matrices:

Ll:|:jn><n:|7 L2:|:01><n:|7

O1><n In><n
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where I, stands for the n x n identity matrix.

Lemma 1: The polynomial p(x) = Ziﬁo prx® is nonneg-
ative on [0,1] if and only if there exist matrices Z € Sl
and W € 8™, Z = 0,WW = 0 such that

Po
1
| =HY(Z+ §(L1WL2T + LoWLT) — LyWLY).
Pan
Proof: See [6]. ]

In this paper, we will also be using a very important classical
result about the semidefinite representation of moment spaces
[10,11]. We give an explicit characterization of M([0, 1])
and Mp([0,1]).

Lemma 2: The vector i = [ug, pi1, .- -, f2n)” is a valid
set of moments for a nonnegative measure supported on [0, 1]
if and only if

]T

H() = 0

LLTH(E) Ly + LYH(E)Ly) — LYH() Ly = 0.

Moreover, it is a moment sequence corresponding to a

probability measure if and only if in addition to (1) it satisfies
po = 1.

Proof: A proof may be found in [10]. [ ]

1)

III. INFINITE STRATEGY GAMES

A. Problem Setup

In this paper we consider stochastic games in which each
player can choose from uncountably many different actions.
In particular, each player can choose actions from the set
[0, 1]. The number of states |S| = .S is assumed to be finite.
The payoff function r(s,a1,az) is a polynomial in a; and
ag for each s € S. In finite action stochastic games one
tries to determine probability vectors f and g (for players
1 and 2 respectively) representing probability distributions
(mixed strategies) over the finite sets A; and Ao (see [3]).
In this paper these are replaced by probability measures
u(s) and v(s). These measures represent mixed strategies
over the uncountable action spaces. (We remind the reader
that for each player there are S measures, each measure
corresponding to a mixed strategy in a particular state. For
example p(s) corresponds to the mixed strategy player 1
would adopt when the game is in state s.)

B. Preliminary Results

In this section we establish that the problems (P’) and
(D’) (stated below) are exact duals and that they are ef-
ficiently computable via their SDP counterparts (SP) and
(SD). In subsection C we prove that the solution to the
problem (P’) provides the optimal cost to go and an optimal
strategy for player 2 and that the optimal solution to (D’)
provides an optimal strategy for player 1. Consider the
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optimization problem:

(P) Minimize ) s v(s)
v(s),v(s)
@ v(s) > [, ca,7(8a1,a2)dv(s)+
B gesp(s'ss,a1)v(s’) forall s € S a1 € Ay

(b) v(s) is a measure supported on A, for all s € S

It is infinite dimensional since it involves optimization over
the space of probability measures. A feasible set of measures
v(s) correspond to a security strategy where player 2 would
have to pay no more than v(s) to player 1 for a given
initial state s. Note that the constraints (a) are a system of
polynomial inequalities with coefficients that depend on the
measure v only via finitely many moments. More concretely,
let r(s,a1,a2) = 3375 rij(s )ai al, be the payoff polyno-
mial. Then [r(s,a1,az)dv(s) = 3, ; 7i;(s)ajv;(s). Using
this observation, this problem may be rewritten as:

(P') Minimize ) _gv(s)
v(s),v(s)

(c) v(s) = 32, i (s)ajv;(s)—
B yesp(s'ss,a1)v(s") € P(A;) forall s € S

(d) v(s) € M(As), and 1vy(s) =1 for all s € S.

Consider also the optimization problem (D’) stated below.
We will establish that (P’) and (D’) form a primal-dual pair
of polynomial optimization problems.

(D')  Maximize ) s a(s)

a(s),&(s)
(e) Z” rij(s)&i(s)al —a(s) >0 Vay € Ay,s €S
(f)  &(s) e M(Ay) VseS

(9 > fA — Bp(s,s,a1))dé(s) =1 Vs’ € S.

The constraints (c) give a system of polynomial inequali-
ties in aj, one inequality per state. Fix some state s. Let the
degree of the inequality for that state by ds. Let [a1]q, =
[1,a1,a2,...a$]. The first term in constraint (c) can be
rewritten in vector form as:

2.5

where R(s) is a matrix that contains the coefficients of the
polynomial r(s,a1,az2). We define a value vector for the
game by v* = [v*(1),...,v*(S)]T which will turn out
to be the discounted value of the stochastic game (which
is dependent on the initial state). The second term in the
constraint (c) which depends on the probability transition
p(s’;s,a1) is also a polynomial in a; whose coefficients

= (s)" R(s)" [a1]a,,

a1VJ
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depend on the coefficients of p(s’; s, a;) and v. Specifically
s

Y p(s'ss.an)o(s’) = v Q(s) [atla.,
s'=1
for some matrix Q(s) which contains the coefficients of
p(s’;s,a1).
Lemma 3: Let A = Ay = [0,1]. Let E, € R%*9 be
the matrix which has a 1 in the (1, s) position. Then the
semidefinite program (SP) given by:

(SP) Minimize ) s v(s)
v(s),v(s)

(h)  H*(Zs+ 1 (L1W LT + LyW,LT) — LyW,LY)
=E;v— ﬂQ( )Wv—R(s)i(s) VseS

(7) H@(s) =0 VseS8

(7) 3 (La"H@)(s)La + LI H()(s)La)
_L2TH( )(S)LQ =0 VseS

(k)  elvos)=1 VseS

()  Zo,W,=0 VseS

exactly solves the polynomial optimization problem (P’).
Proof: The polynomial in inequality (c) has the coeffi-
cient vector E,v—(Q(s)v— R(s)(s). The proof follows as
a direct consequence of Lemma 1 concerning the semidef-
inite representation of polynomials nonnegative over [0, 1],
and Lemma 2 concerning the semidefinite representation of
moment sequences of nonnegative measures supported on
[0, 1]. [ |
The dual of (SP) is given by the following semidefinite
program:

(SD) Maximize ) g a(s)
a(s),€(s)
(m)  H*(As + (L1 BsLY + LyBsLY) — LyBsLY) =

A
Rzz_(s) —as)e; VseS

(n)  H(E(s) =0 VseS
(0) 5 (LA"H(E(s)) Lo + LI H(E(s) L1) —
LoyTH(E(s))La =0 VseS

() (B = BQ(s)"E(s) =

(q) A,,B,=0 VseS.

Lemma 4: The dual SDP (SD) is equivalent to the poly-
nomial optimization problem (D’):

Proof: This again follows as a consequence of lemmas

1 and 2. ]

Remarks 1. Note that in the dual problem, the moment
sequences do not necessarily correspond to probability mea-
sures. Hence, to convert them to probability measures, one
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needs to normalize the measure. Upon normalization, one
obtains the optimal strategy for player 1.

2. The solution of the SDPs give moment sequences cor-
responding to the optimal measures. The optimal measures
themselves can be chosen to be atomic and may be recovered
by standard techniques that rely only on linear algebra (see

(101, [6D).

Lemma 5: The polynomial optimization problems (P’)
and (D') are strong duals of each other.

Proof: We prove this by showing that the semidefinite

program (SP) satisfies Slater’s constraint qualification and
that it is bounded from below. The result then follows from
the strong duality of the equivalent semidefinite programs
(SP) and (SD).
First pick p(s) and v(s) to be the uniform distribution on
[0,1] for each state s € S. One can show [10] that the
moment sequence of y is in the interior of the moment space
of [0, 1]. As a consequence, constraints (i) and (j) are strictly
positive definite. Using the strategies 1 and v, evaluate the
discounted value of this pair of strategies as:

va(p,v) = [I = BP(u)] " r(p, v).

Choose v > vg. The polynomial inequalities given by (c) are
all strictly positive and thus constraints (1) are strictly positive
definite. The equality constraints are trivially satisfied.
To prove that the problem is bounded below, we note that
r(s,a1,asz) is a polynomial and that the strategy spaces for
both players are bounded. Hence,
aiEAlil}tszAz T(& a“ az)

is finite and provides a trivial lower bound for v(s). ]

Lemma 6: Let 7*(s) and £*(s) be optimal moment se-
quences for (P’) and (D’) respectively. Let v*(s) and £*(s)
be the corresponding measures supported on A; and As
respectively. The following complementary slackness results
hold for the optima of (P') and (D'):

WeB05.1

C. Main Theorem

Let p* be the optimal value of (P’), and d* be the optimal
value of (D’). Let v*(s) and £*(s) be the optimal measures
recovered in (P’) and (D'). Let

. £ (s)

() =
Ja, A€ (s)

so that p* is a normalized version of &* (i.e. p* is a
probability measure). Let v* be the the vector of value
functions obtained via the optimal solution of (P’).

Theorem 1: The optimal solutions to the primal-dual pair
(P"), (D') satisfy the following:

1) p*=d*.

2) v* =wvg(p*,v").

3) va(u*,v*) satisfies the saddle-point inequality:

va(p,v*) < va(p',v*) < vg(u',v) 4
for all mixed strategies p, v/
Proof:
1) Follows from the strong duality of the primal-dual pair
(P') = (D).

2) Using Lemma 6 equation (3) in normalized form (i.e.
dividing throughout by &5(s)) we obtain

fA2 fA (s al,ag Ydp* (s)dv*(s)+

ﬁz,v fA s,a1)du*(s) VseS.
Upon simplification and vectorization of v*(s) one
obtains

v = T‘(/L*,I/*) +5P(M*)V*

Using a Bellman equation argument or by simply
iterating this equation (i.e. substituting repeatedly for
v*) it is easy to see that v* = vg(u*, v*).

3) Consider inequality (c) it at its optimal value. We have
for every state s:

v*(s) > fa2€A2 r(s,a1,az)dv*(s)+

(s) 4, d&¥ (s fA fAl s,a1,a2)dE* (s)dv*(s)+ B oesp(sss,ar)v(s).
BZS, v*(s") [, p A, s,a1)dé*(s) VseS Integrating with respect to some arbitrary probability
(2) measure u(s) (with support on A;), we get:
. . . fAz fA (s,a1,a92)du(s)dv*(s)+
o"(5) [, hhS%@Wf£> ﬁ&whssmWW®
3) Thus,
Pr.oof: The iesult'follows from. the strong (iuality of v*(s) > (s, u(s), v* (s))+
thej equivalent semidefinite reprfesentatioils of the pririial-QUal B ves fA p(s's s, ar)v*(s")dpu(s).
pair (P’) — (D’). The Lagrangian function for (P’) is given !
by: Iter(ating )this equation, we obtain vg(u*, v =v* >
. g vg(u,v*) for every strategy p. This completes one
L(& o) =infy {370 v(s) = [, [v(s) = [, 7(s,01,02)d0(s)  Gde of the saddle point inequality.

=B g v(s)p(s'; 5, a1)]dE(s) + 3, ( (A = vo(s))}-

L(&, o) must satisfy weak duality, i.e. d* < p*. At optimality
p* =Y, v*(s) for some vector v*. However, strong duality
holds, i.e. p* = d*. This forces the first complementary
slackness relation. The second relation is obtained similarly
by considering the Lagrangian of the dual problem. [ ]

Using the normalized version of equation (4), we get:

= Ja, Ja, 7(s,01, a2)dp*(s)dv* (s)
= 7(s, 17 (s), v (s))-

If we integrate inequality (e) in problem (D’) with

a(s)

HO)
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I-a

Fig. 1. A two state stochastic game with transition probabilities dependent
only on the action of player 1. The payoffs associated to the states
are indicated in the corresponding nodes. The edges are marked by the
corresponding state transition probabilities.

respect to any arbitrary probability measure v(s) with
support on As we obtain

a*(s)
—— < (s, 17 (s), v(s))-
& (s)
Thus r(s, p*(s),v*(s)) < r(s, u*(s),v(s)) for every
s. Multiplying throughout by (I — BP(u*)) ™%, we get
va(p*,v*) < vg(p*,v). This completes the other side
of the saddle point inequality.

D. Example

Consider the two player discounted stochastic game with
B = 0.5, § = {1,2} with payoff function r(1,a;,as) =
(a1—az2)? and r(2,a1,a2) = —(a;—az)?. Let the probability
transition matrix be given by:

aq 1—a1

2 2
1—a7 ay

P(a1) =

The polynomial optimization problem that computes the min-
imax strategies and the equilibrium values is the following:

Minimize v(1) + v(2)

v(1) > a? — 2a101(1) + v2(1)+

Blaiv(l) + (1 —a1)v(2)) Vaq €[0,1]
v(2) > —a? + 2a111(2) — 12(2)+
B((1 —a?)v(1) +a3v(2)) Vap €[0,1]

[Lova (1), wa(D)]", [1,m1(2),2(2))" € M([0,1)).

Solving the SDP and its dual we obtain the following optimal
cost-to-go and optimal moment sequences:

v* = [.298, —.158]7
(1) = [1,.614,.614]7 [*(2) = [1,.5,.25]7
7*(1) = [1,.614,.377)7  7*(2) = [1,.614, .614]7.

The corresponding measures obtained using standard tech-
niques are supported at only finitely many points and are
given by the following:

p*(1) = .386 d(a1) + .614 6(ay — 1)
u(2) = b(ar — 5)

WeB05.1

v*(1) = §(az — .614)
v*(2) = .386 6(az) + .614 6(ap — 1).

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a technique for solv-
ing two-player, zero-sum finite state stochastic games with
infinite strategies and polynomial payoffs when the single-
controller assumption holds. We show that the problem can
be reduced to solving a system of univariate polynomial
inequalities and moment constraints. We use techniques from
the classical theory of moments and sum-of-squares to reduce
the problem to a semidefinite programming problem. By
solving a primal-dual pair of semidefinite programs, we
obtain minimax equilibria and optimal strategies for the
players.

It is known that finite-state, finite action, two-player zero-
sum games which satisfy the orderfield property [12] may be
solved via linear programming. The single-controller case,
games with perfect information, switching controller sto-
chastic games, separable reward-state independent transition
(SER-SIT) games and additive games satisfy this property.
We intend to extend these cases to the infinite strategy case
with polynomial payoffs. General finite action stochastic
games which do not satisfy the orderfield property are still
amenable to computation via value iteration type techniques
from dynamic programming. We plan to extend these results
to the polynomial case as well.
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