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Abstract— Stochastic games are an important class of games
that generalize Markov decision processes to game theoretic
scenarios. We consider finite state two-player zero-sum sto-
chastic games over an infinite time horizon with discounted
rewards. The players are assumed to have infinite strategy
spaces and the payoffs are assumed to be polynomials. In this
paper we restrict our attention to a very special class of games
for which the single-controller assumption holds. It is shown
that minimax equilibria and optimal strategies for such games
may be obtained via semidefinite programming.

I. INTRODUCTION

Markov decision processes (MDPs) are very widely used

system modeling tools where a single agent attempts to make

optimal decisions at each stage of a multi-stage process so

as to optimize some reward or payoff [1]. Game theory is

a system modeling paradigm that allows one to model a

problem where several (possibly adversarial) decision makers

make individual decisions to optimize their own payoff [2].

In this paper we study stochastic games [3, 4] that allow

one to combine the modeling power of MDPs and games.

Stochastic games may be viewed as competitive MDPs where

several decision makers make decisions at each stage to

maximize their own reward. Each state of a stochastic game

is a simple game, but the decisions made by the players affect

not only their payoff, but also the transition to the next state.

Notions of optimality in games have been extensively

studied, and are very well understood. The most popular

notion of optimality is the notion of a Nash equilibrium.

While these equilibria are hard to compute in general,

in certain cases they may be computed efficiently. Games

involving two players and finite action spaces are known

to have mixed strategy Nash equilibria. Moreover, Nash

equilibria for such games may be computed efficiently via

linear programming. Stochastic games were introduced by

Shapley [4] in 1953. In his paper, he showed that the notion

of a Nash equilibrium may be extended to stochastic games

with finite state spaces and strategy sets. He also proposed

a value iteration-like algorithm to compute the equilibria.

Shapley showed that associated to this notion of equilibrium,

there is a notion of value associated to the stochastic game.

This value is a vector indexed by the state, and corresponds to

the optimal payoff for the players given the initial state of the

game. It was shown in 1981 by Parthasarathy and Raghavan

[3, 5] that the value and optimal strategies for stochastic

games satisfying the single controller assumption could be
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computed efficiently via linear programming (thus proving

that such problems with rational data could be computed in

a finite number of steps).

While computational techniques for finite games are rea-

sonably well understood, there has been some recent interest

in the class of infinite games [6, 7]. In this important class,

players have access to an infinite number of pure strategies,

and the players are allowed to randomize over these choices.

In a recent paper [6], Parrilo describes a technique to

solve two player, zero-sum infinite games with polynomial

payoffs via semidefinite programming. It is natural to wonder

whether the techniques from finite stochastic games can be

extended to infinite stochastic games (i.e. finite state sto-

chastic games where players have access to infinitely many

pure strategies). In particular, since finite, single-controller,

zero-sum games can be solved via linear programming, can

similar infinite stochastic games be solved via semidefinite

programming? The answer is affirmative, and this paper

focuses on establishing this result. The linear program that

solves the finite action stochastic game satisfying (SC) (a

condition defined below) can be extended to an infinite

dimensional optimization problem when the actions are

uncountably infinite. The main contribution of this paper is

the establishment of the following properties of the infinite

dimensional optimization problem:

1) Its optimal solutions correspond to minimax equilibria.

2) The problem can be solved efficiently by semidefinite

programming.

Section II of this paper provides a formal description of

the problem and introduces the basic notation used in the

paper. It also briefly describes some elegant results about

polynomial nonnegativity, moment sequences of nonnegative

measures, and their connection to semidefinite programming.

Section III states and proves the main result of this paper.

Finally, we state some natural extensions of this problem,

conclusions, and directions of future research.

II. PRELIMINARIES

A. Problem formulation

We consider the problem of solving two-player zero-

sum stochastic games via mathematical programming. The

game consists of finitely many states with two adversarial

players making simultaneous decisions. Each player receives

a payoff that depends on the actions of both players and the

state (i.e. each state can be thought of as a particular zero-

sum game). The transitions between the states are random (as
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in a finite state Markov decision process), and the transition

probabilities in general depend on the actions of the players

and the current state. The process runs over an infinite

horizon. Player 1 attempts to maximize his reward over the

horizon (via a discounted accumulation of the rewards at

each stage) while player 2 tries to minimize his payoff to

player 1. If (a1
1, a

2
1, . . .) and (a1

2, a
2
2, . . .) are sequences of

actions chosen by players 1 and 2 resulting in a sequence of

states (s1, s2, . . .) respectively, then the reward of player 1
is given by:

∞
∑

k=1

βkr(sk, ak
1 , ak

2).

The game is completely defined via the specification of the

following data:

1) The (finite) state space S = {1, . . . , S}.

2) The sets of actions for players 1 and 2 given by A1

and A2.

3) The payoff function, denoted by r(s, a1, a2), for a

given set of state s and actions a1 and a2 (of players

1 and 2).

4) The probability transition matrix p(s′; s, a1, a2) which

provides the conditional probability of transition from

state s to s′ given players’ actions.

5) The discount factor β (β < 1).

Throughout this paper we make the following important

assumption about the probability transition matrix:

Assumption SC

The probability transition to state s′ conditioned upon the

current state being s depends only on s, s′, and the action a1

of player 1 for every s and s′. This probability is independent

of the action of player 2. Thus, p(s′; s, a1, a2) = p(s′; s, a1).
This is known as the single-controller assumption.

In this paper we will be concerned with the case

where the action spaces of the two players A1 and A2 are

uncountably infinite sets. For the sake of simplicity we will

often consider the case where A1 = A2 = [0, 1] ⊂ R. The

results easily generalize to the case where the strategy sets

are finite unions of arbitrary intervals of the real line. For

the sake of simplicity, we also assume that the action sets

are the same for each state, though this assumption may also

be relaxed. We will denote by a1 and a2, the actual actions

chosen by players 1 and 2 from their respective action

spaces. The payoff function is assumed to be a polynomial

in the variables a1 and a2 with real coefficients:

r(s, a1, a2) =

ns
∑

i=0

ms
∑

j=0

rij(s)a
i
1a

j
2.

Finally, we assume that the transition probability p(s′; s, a1)
is a polynomial in the action a1.

The decision process runs over an infinite horizon, thus

it is natural to restrict one’s attention to stationary strategies

for each player, i.e. strategies that depend only on the state

of the process and not on time. Moreover, since the process

involves two adversarial decision makers, it is also natural

to look for randomized strategies (or mixed strategies) rather

than pure strategies so as to recover the notion of a minimax

equilibrium. A mixed strategy for player 1 is a finite set of

probability measures µ = [µ(1), . . . , µ(S)] supported on the

action set A1. Each probability measure corresponds to a

randomized strategy for player 1 in some particular state,

for example µ(k) corresponds to the randomized strategy

that player 1 would use when in state k. Similarly, player

2’s strategy will be represented by ν = [ν(1), . . . , ν(N)].
(A word on notation: Throughout the paper, indices in

parentheses will be used to denote the state. Bold letters will

be used indicate vectorization with respect to the state, i.e.

collection of objects corresponding to different states into a

vector with the ith entry corresponding to state i. The Greek

letters ξ, µ, ν will be used to denote measures. Subscripts

on these Greek letters will be used to denote moments of the

measures. For example ξj(i) denotes the jth moment of the

measure ξ corresponding to state i.)

A strategy µ leads to a probability matrix P (µ) such that

Pij(µ) =
∫

A1

p(j; i, a1)dµ(i). Thus, once player 1 fixes a

strategy µ, the probability transition matrix is fixed, and can

be obtained by integrating each entry in the matrix with

respect to the measure µ. (Since the entries are polynomials,

upon integration, these entries depend affinely on the mo-

ments µk(i)). Given strategies µ and ν, the reward collected

by player 1 in some stage s is given by:

r(s, µ(s), ν(s)) =

∫

A1

∫

A2

r(s, a1, a2)dµ(s)dν(s).

The reward collected over the infinite horizon (for fixed

strategies µ(s) and ν(s)) starting at state s, vβ(s, µ(s), ν(s)),
is given by the system of equations:

vβ(s, µ(s), ν(s)) = r(s, µ(s), ν(s))+

β
∑

s′∈S

(

∫

A1

p(s′; s, a1)dµ(s)
)

vβ(s′, µ(s′), ν(s′)) ∀s.

Vectorizing vβ(s, µ(s), ν(s)), we obtain

vβ(µ, ν) = (I − βP (µ))−1r(µ, ν),

where r(µ, ν) = [r(1, µ(1), ν(1)), . . . , r(S, µ(S), ν(S))] ∈
R

S .

The problem is to find equilibrium strategies µ0 and ν0

which satisfy the saddle point property:

vβ(µ, ν0) ≤ vβ(µ0, ν0) ≤ vβ(µ0, ν)

for all mixed strategies µ, ν. (Mixed strategies that satisfy

this saddle point property achieve the Nash equilibrium.)

One may note that vβ(µ, ν) is a vector in R
S indexed by

the initial state of the Markov process. Hence the above

inequality is a vector inequality and is to be interpreted

componentwise.

B. SDP Characterization of Nonnegativity and Moments

Let A be some interval on the real line. The set of

univariate polynomials that are nonnegative on A has an

exact semidefinite description. The set of (finite) vectors
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in R
n which correspond to moment sequences of measures

supported on A also has an exact semidefinite description.

We briefly review these notions here and introduce some

related notation [6].

Let R[x] denote the set of univariate polynomials with

real coefficients. Let p(x) =
∑n

k=0 pkxk ∈ R[x]. We say

that p(x) is nonnegative on A if p(x) ≥ 0 for every

x ∈ A. We denote the set of nonnegative polynomials of

degree n which are nonnegative on A by P(A). (To avoid

cumbersome notation, we exclude the degree information

in the notation. Moreover the degree will usually be clear

from the context.) The polynomial p(x) is said to be a sum

of squares if there exist polynomials q1(x), . . . , qk(x) such

that p(x) =
∑k

i=1 q(x)2. It is well known that a univariate

polynomial is a sum of squares if and only if p(x) ∈ P(R).
Let µ denote a measure supported on the set A. The ith

moment of the measure µ is denoted by

µi =

∫

A

xidµ.

Let µ̄ = [µ0, . . . , µn] be a vector in R
n+1. We say that

µ̄ is a moment sequence of length n + 1 if it corresponds

to the first n + 1 moments of some nonnegative measure

µ supported on the set A. The moment space, denoted by

M(A) is the subset of R
n+1 which corresponds to moments

of nonnegative measures supported on the set A. We say

that a nonnegative measure µ is a probability measure if its

zeroth order moment µ0 = 1. The set of moment sequences

of length n + 1 corresponding to probability measures is

denoted by MP (A).
Let Sn denote the set of n × n symmetric matrices and

define the linear operator H : R
2n−1 → Sn as:

H :











a1

a2

...

a2n−1











7→











a1 a2 . . . an

a2 a3 . . . an+1

...
...

. . .
...

an an+1 . . . a2n−1











.

Thus H is simply the linear operator that takes a vector and

constructs the associated Hankel matrix which is constant

along the antidiagonals. We will also frequently use the

adjoint of this operator, the linear map H∗ : Sn → R
2n−1:

H∗ :











m11 m12 . . . m1n

m12 m22 . . . m2n

...
...

. . .
...

m1n m2n . . . mnn











7→















m11

2m12

m22 + 2m13

...

mnn















.

This map flattens a matrix into a vector by adding all the

entries along antidiagonals. One can give a semidefinite

characterization of polynomials that are nonnegative on an

interval. Since in this paper we are typically considering the

interval to be [0, 1] we give an explicit semidefinite charac-

terization of P([0, 1]). We define the following matrices:

L1 =

[

In×n

01×n

]

, L2 =

[

01×n

In×n

]

,

where In×n stands for the n × n identity matrix.

Lemma 1: The polynomial p(x) =
∑2n

k=0 pkxk is nonneg-

ative on [0,1] if and only if there exist matrices Z ∈ Sn+1

and W ∈ Sn, Z � 0, W � 0 such that






p0

...

p2n






= H∗(Z +

1

2
(L1WLT

2 + L2WLT
1 ) − L2WLT

2 ).

Proof: See [6].

In this paper, we will also be using a very important classical

result about the semidefinite representation of moment spaces

[10, 11]. We give an explicit characterization of M([0, 1])
and MP ([0, 1]).

Lemma 2: The vector µ̄ = [µ0, µ1, . . . , µ2n]T is a valid

set of moments for a nonnegative measure supported on [0, 1]
if and only if

H(µ̄) � 0
1
2 (LT

1 H(µ̄)L2 + LT
2 H(µ̄)L1) − LT

2 H(µ̄)L2 � 0.
(1)

Moreover, it is a moment sequence corresponding to a

probability measure if and only if in addition to (1) it satisfies

µ0 = 1.

Proof: A proof may be found in [10].

III. INFINITE STRATEGY GAMES

A. Problem Setup

In this paper we consider stochastic games in which each

player can choose from uncountably many different actions.

In particular, each player can choose actions from the set

[0, 1]. The number of states |S| = S is assumed to be finite.

The payoff function r(s, a1, a2) is a polynomial in a1 and

a2 for each s ∈ S. In finite action stochastic games one

tries to determine probability vectors f and g (for players

1 and 2 respectively) representing probability distributions

(mixed strategies) over the finite sets A1 and A2 (see [3]).

In this paper these are replaced by probability measures

µ(s) and ν(s). These measures represent mixed strategies

over the uncountable action spaces. (We remind the reader

that for each player there are S measures, each measure

corresponding to a mixed strategy in a particular state. For

example µ(s) corresponds to the mixed strategy player 1
would adopt when the game is in state s.)

B. Preliminary Results

In this section we establish that the problems (P ′) and

(D′) (stated below) are exact duals and that they are ef-

ficiently computable via their SDP counterparts (SP ) and

(SD). In subsection C we prove that the solution to the

problem (P ′) provides the optimal cost to go and an optimal

strategy for player 2 and that the optimal solution to (D′)
provides an optimal strategy for player 1. Consider the
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optimization problem:

(P ) Minimize
∑

s∈S
v(s)

ν(s), v(s)

(a) v(s) ≥
∫

a2∈A2

r(s, a1, a2)dν(s)+

β
∑

s′∈S
p(s′; s, a1)v(s′) for all s ∈ S, a1 ∈ A1

(b) ν(s) is a measure supported on A2 for all s ∈ S

It is infinite dimensional since it involves optimization over

the space of probability measures. A feasible set of measures

ν(s) correspond to a security strategy where player 2 would

have to pay no more than v(s) to player 1 for a given

initial state s. Note that the constraints (a) are a system of

polynomial inequalities with coefficients that depend on the

measure ν only via finitely many moments. More concretely,

let r(s, a1, a2) =
∑ns,ms

i,j rij(s)a
i
1a

j
2 be the payoff polyno-

mial. Then
∫

r(s, a1, a2)dν(s) =
∑

i,j rij(s)a
i
1νj(s). Using

this observation, this problem may be rewritten as:

(P ′) Minimize
∑

s∈S
v(s)

ν̄(s), v(s)

(c) v(s) −
∑

i,j rij(s)a
i
1νj(s)−

β
∑

s′∈S
p(s′; s, a1)v(s′) ∈ P(A1) for all s ∈ S

(d) ν̄(s) ∈ M(A2), and ν0(s) = 1 for all s ∈ S.

Consider also the optimization problem (D′) stated below.

We will establish that (P ′) and (D′) form a primal-dual pair

of polynomial optimization problems.

(D′) Maximize
∑

s∈S
α(s)

α(s), ξ̄(s)

(e)
∑

i,j rij(s)ξi(s)a
j
2 − α(s) ≥ 0 ∀a2 ∈ A2, s ∈ S

(f) ξ̄(s) ∈ M(A2) ∀s ∈ S

(g)
∑

s

∫

A1

(δ(s, s′) − βp(s′, s, a1))dξ(s) = 1 ∀s′ ∈ S.

The constraints (c) give a system of polynomial inequali-

ties in a1, one inequality per state. Fix some state s. Let the

degree of the inequality for that state by ds. Let [a1]ds
=

[1, a1, a
2
1, . . . a

ds

1 ]. The first term in constraint (c) can be

rewritten in vector form as:
∑

i,j

rij(s)a
i
1νj(s) = ν̄(s)T R(s)T [a1]ds

,

where R(s) is a matrix that contains the coefficients of the

polynomial r(s, a1, a2). We define a value vector for the

game by v∗ = [v∗(1), . . . , v∗(S)]T which will turn out

to be the discounted value of the stochastic game (which

is dependent on the initial state). The second term in the

constraint (c) which depends on the probability transition

p(s′; s, a1) is also a polynomial in a1 whose coefficients

depend on the coefficients of p(s′; s, a1) and v. Specifically

S
∑

s′=1

p(s′; s, a1)v(s′) = vT Q(s)T [a1]ds
,

for some matrix Q(s) which contains the coefficients of

p(s′; s, a1).
Lemma 3: Let A1 = A2 = [0, 1]. Let Es ∈ R

ds×S be

the matrix which has a 1 in the (1, s) position. Then the

semidefinite program (SP ) given by:

(SP ) Minimize
∑

s∈S
v(s)

ν̄(s), v(s)

(h) H∗(Zs + 1
2 (L1WsL

T
2 + L2WsL

T
1 ) − L2WsL

T
2 )

= Esv − βQ(s)v − R(s)ν̄(s) ∀s ∈ S

(i) H(ν̄(s)) � 0 ∀s ∈ S

(j) 1
2

(

L1
TH(ν̄)(s)L2 + LT

2 H(ν̄)(s)L1

)

−L2
TH(ν̄)(s)L2 � 0 ∀s ∈ S

(k) e1
T ν̄(s) = 1 ∀s ∈ S

(l) Zs, Ws � 0 ∀s ∈ S

exactly solves the polynomial optimization problem (P ′).
Proof: The polynomial in inequality (c) has the coeffi-

cient vector Esv−βQ(s)v−R(s)ν̄(s). The proof follows as

a direct consequence of Lemma 1 concerning the semidef-

inite representation of polynomials nonnegative over [0, 1],
and Lemma 2 concerning the semidefinite representation of

moment sequences of nonnegative measures supported on

[0, 1].
The dual of (SP ) is given by the following semidefinite

program:

(SD) Maximize
∑

s∈S
α(s)

α(s), ξ̄(s)

(m) H∗(As + 1
2 (L1BsL

T
2 + L2BsL

T
1 ) − L2BsL

T
2 ) =

RT
s ξ̄(s) − α(s)e1 ∀s ∈ S

(n) H(ξ̄(s)) � 0 ∀s ∈ S

(o) 1
2

(

L1
TH(ξ̄(s))L2 + LT

2 H(ξ̄(s))L1

)

−
L2

TH(ξ̄(s))L2 � 0 ∀s ∈ S

(p)
∑

s(Es − βQ(s))T ξ̄(s) = 1

(q) As, Bs � 0 ∀s ∈ S.

Lemma 4: The dual SDP (SD) is equivalent to the poly-

nomial optimization problem (D′):
Proof: This again follows as a consequence of lemmas

1 and 2.

Remarks 1. Note that in the dual problem, the moment

sequences do not necessarily correspond to probability mea-

sures. Hence, to convert them to probability measures, one
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needs to normalize the measure. Upon normalization, one

obtains the optimal strategy for player 1.

2. The solution of the SDPs give moment sequences cor-

responding to the optimal measures. The optimal measures

themselves can be chosen to be atomic and may be recovered

by standard techniques that rely only on linear algebra (see

[10], [6]).

Lemma 5: The polynomial optimization problems (P ′)
and (D′) are strong duals of each other.

Proof: We prove this by showing that the semidefinite

program (SP ) satisfies Slater’s constraint qualification and

that it is bounded from below. The result then follows from

the strong duality of the equivalent semidefinite programs

(SP ) and (SD).
First pick µ(s) and ν(s) to be the uniform distribution on

[0, 1] for each state s ∈ S. One can show [10] that the

moment sequence of µ is in the interior of the moment space

of [0, 1]. As a consequence, constraints (i) and (j) are strictly

positive definite. Using the strategies µ and ν, evaluate the

discounted value of this pair of strategies as:

vβ(µ, ν) = [I − βP (µ)]−1r(µ, ν).

Choose v > vβ . The polynomial inequalities given by (c) are

all strictly positive and thus constraints (l) are strictly positive

definite. The equality constraints are trivially satisfied.

To prove that the problem is bounded below, we note that

r(s, a1, a2) is a polynomial and that the strategy spaces for

both players are bounded. Hence,

inf
a1∈A1,a2∈A2

r(s, a1, a2)

is finite and provides a trivial lower bound for v(s).
Lemma 6: Let ν̄∗(s) and ξ̄∗(s) be optimal moment se-

quences for (P ′) and (D′) respectively. Let ν∗(s) and ξ∗(s)
be the corresponding measures supported on A1 and A2

respectively. The following complementary slackness results

hold for the optima of (P ′) and (D′):

v∗(s)
∫

A1

dξ∗(s) =
∫

A2

∫

A1

r(s, a1, a2)dξ∗(s)dν∗(s)+

β
∑

s′ v∗(s′)
∫

A1

p(s′; s, a1)dξ∗(s) ∀s ∈ S
(2)

α∗(s)
∫

A2

dν∗(s) =
∫

A2

∫

A1

r(s, a1, a2)dξ∗(s)dν∗(s)

∀s ∈ S.
(3)

Proof: The result follows from the strong duality of

the equivalent semidefinite representations of the primal-dual

pair (P ′)− (D′). The Lagrangian function for (P ′) is given

by:

L(ξ, α) = infv,ν{
∑S

s=1 v(s) −
∫

A1

[v(s) −
∫

A2

r(s, a1, a2)dν(s)

−β
∑

s′ v(s′)p(s′; s, a1)]dξ(s) +
∑

s α(s)(1 − ν0(s))}.

L(ξ, α) must satisfy weak duality, i.e. d∗ ≤ p∗. At optimality

p∗ =
∑

s v∗(s) for some vector v∗. However, strong duality

holds, i.e. p∗ = d∗. This forces the first complementary

slackness relation. The second relation is obtained similarly

by considering the Lagrangian of the dual problem.

C. Main Theorem

Let p∗ be the optimal value of (P ′), and d∗ be the optimal

value of (D′). Let ν∗(s) and ξ∗(s) be the optimal measures

recovered in (P ′) and (D′). Let

µ∗(s) =
ξ∗(s)

∫

A1

dξ∗(s)
.

so that µ∗ is a normalized version of ξ∗ (i.e. µ∗ is a

probability measure). Let v∗ be the the vector of value

functions obtained via the optimal solution of (P ′).
Theorem 1: The optimal solutions to the primal-dual pair

(P ′), (D′) satisfy the following:

1) p∗ = d∗.

2) v∗ = vβ(µ∗, ν∗).
3) vβ(µ∗, ν∗) satisfies the saddle-point inequality:

vβ(µ, ν∗) ≤ vβ(µ∗, ν∗) ≤ vβ(µ∗, ν) (4)

for all mixed strategies µ, ν.

Proof:

1) Follows from the strong duality of the primal-dual pair

(P ′) − (D′).
2) Using Lemma 6 equation (3) in normalized form (i.e.

dividing throughout by ξ∗0 (s)) we obtain

v∗(s) =
∫

A2

∫

A1

r(s, a1, a2)dµ∗(s)dν∗(s)+

β
∑

s′ v∗(s′)
∫

A1

p(s′; s, a1)dµ∗(s) ∀s ∈ S.

Upon simplification and vectorization of v∗(s) one

obtains

v∗ = r(µ∗, ν∗) + βP (µ∗)v∗.

Using a Bellman equation argument or by simply

iterating this equation (i.e. substituting repeatedly for

v∗) it is easy to see that v∗ = vβ(µ∗, ν∗).
3) Consider inequality (c) it at its optimal value. We have

for every state s:

v∗(s) ≥
∫

a2∈A2

r(s, a1, a2)dν∗(s)+

β
∑

s′∈S
p(s′; s, a1)v

∗(s′).

Integrating with respect to some arbitrary probability

measure µ(s) (with support on A1), we get:

v∗(s) ≥
∫

A2

∫

A1

r(s, a1, a2)dµ(s)dν∗(s)+

β
∑

s′∈S

∫

A1

p(s′; s, a1)v
∗(s′)dµ(s).

Thus,

v∗(s) ≥ r(s, µ(s), ν∗(s))+
β

∑

s′∈S

∫

A1

p(s′; s, a1)v
∗(s′)dµ(s).

Iterating this equation, we obtain vβ(µ∗, ν∗) = v∗ ≥
vβ(µ, ν∗) for every strategy µ. This completes one

side of the saddle point inequality.

Using the normalized version of equation (4), we get:

α∗(s)
ξ∗

0
(s) =

∫

A2

∫

A1

r(s, a1, a2)dµ∗(s)dν∗(s)

= r(s, µ∗(s), ν∗(s)).

If we integrate inequality (e) in problem (D′) with
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a1

a2
1

21

 (a 1 − a2 )2 −(a1− a2 )2

1−a 1

1−a 1

Fig. 1. A two state stochastic game with transition probabilities dependent
only on the action of player 1. The payoffs associated to the states
are indicated in the corresponding nodes. The edges are marked by the
corresponding state transition probabilities.

respect to any arbitrary probability measure ν(s) with

support on A2 we obtain

α∗(s)

ξ∗0(s)
≤ r(s, µ∗(s), ν(s)).

Thus r(s, µ∗(s), ν∗(s)) ≤ r(s, µ∗(s), ν(s)) for every

s. Multiplying throughout by (I −βP (µ∗))−1, we get

vβ(µ∗, ν∗) ≤ vβ(µ∗, ν). This completes the other side

of the saddle point inequality.

D. Example

Consider the two player discounted stochastic game with

β = 0.5, S = {1, 2} with payoff function r(1, a1, a2) =
(a1−a2)

2 and r(2, a1, a2) = −(a1−a2)
2. Let the probability

transition matrix be given by:

P (a1) =

[

a1 1 − a1

1 − a2
1 a2

1

]

.

The polynomial optimization problem that computes the min-

imax strategies and the equilibrium values is the following:

Minimize v(1) + v(2)

v(1) ≥ a2
1 − 2a1ν1(1) + ν2(1)+

β(a1v(1) + (1 − a1)v(2)) ∀a1 ∈ [0, 1]

v(2) ≥ −a2
1 + 2a1ν1(2) − ν2(2)+

β((1 − a2
1)v(1) + a2

1v(2)) ∀a1 ∈ [0, 1]

[1, ν1(1), ν2(1)]T , [1, ν1(2), ν2(2)]T ∈ M([0, 1]).

Solving the SDP and its dual we obtain the following optimal

cost-to-go and optimal moment sequences:

v∗ = [.298,−.158]T

µ̄∗(1) = [1, .614, .614]T µ̄∗(2) = [1, .5, .25]T

ν̄∗(1) = [1, .614, .377]T ν̄∗(2) = [1, .614, .614]T .

The corresponding measures obtained using standard tech-

niques are supported at only finitely many points and are

given by the following:

µ∗(1) = .386 δ(a1) + .614 δ(a1 − 1)
µ∗(2) = δ(a1 − .5)

ν∗(1) = δ(a2 − .614)
ν∗(2) = .386 δ(a2) + .614 δ(a2 − 1).

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a technique for solv-

ing two-player, zero-sum finite state stochastic games with

infinite strategies and polynomial payoffs when the single-

controller assumption holds. We show that the problem can

be reduced to solving a system of univariate polynomial

inequalities and moment constraints. We use techniques from

the classical theory of moments and sum-of-squares to reduce

the problem to a semidefinite programming problem. By

solving a primal-dual pair of semidefinite programs, we

obtain minimax equilibria and optimal strategies for the

players.

It is known that finite-state, finite action, two-player zero-

sum games which satisfy the orderfield property [12] may be

solved via linear programming. The single-controller case,

games with perfect information, switching controller sto-

chastic games, separable reward-state independent transition

(SER-SIT) games and additive games satisfy this property.

We intend to extend these cases to the infinite strategy case

with polynomial payoffs. General finite action stochastic

games which do not satisfy the orderfield property are still

amenable to computation via value iteration type techniques

from dynamic programming. We plan to extend these results

to the polynomial case as well.
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