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Abstract— In this paper, we consider a class of spatially
distributed systems which have a special property known as
spatial invariance. It is well-known that for such problems,
the problem of designing decentralized controllers is hard. In
this paper, we generalize some previously known results and
show that for a certain class of problems, the control problem
has a convex reformulation. We employ the notion of partially-
ordered sets and the associated notion of incidence algebras
to introduce a class of systems called poset causal systems. We
show that poset causal systems are a fairly large class of systems
that properly include some other classes of systems studied in
the literature (namely cone-causal and funnel causal systems).
Finally we show that the set of poset-causal controllers for
poset-causal plants are amenable to a convex parameterization.

I. INTRODUCTION

Many important control problems today are large-scale,
complex and decentralized. The lack of availability of global
state information makes the implementation of classical
centralized controllers practically infeasible. This has led
several researchers to the study of decentralized control.
Examples of large-scale control systems include flocks of
aerial vehicles and the power distribution grid.

It is well-known that in general decentralized control
is a hard problem [15]. Blondel and Tsitsiklis [3] have
shown that certain instances of such problems are in fact
intractable. On the other hand, Voulgaris [13], [14] presented
several cases where decentralized control is in fact tractable.
Rotkowitz and Lall [10] have presented a criterion known as
quadratic invariance that characterizes a class of problems
in decentralized control that have the property that problems
become convex in the Youla parameter. Shah and Parrilo
[11] have studied the decentralized control problem using
partially-ordered sets (or posets) and shown that several
interesting classes of decentralized communication structures
may be modeled using posets. This approach also has the
appealing property that problems are convex in the Youla-
parameter, a step in the direction towards computational
tractability.

Many practical control problems are also naturally spa-
tially distributed, i.e. the overall subsystem is composed of
many subsystems, each of which is at a different spatial
location. Spatially distributed systems (and the related notion
of distributed parameter systems) have also been extensively
studied (see [6], [2], [4], [5]). It is natural to study decen-

tralized control in the spatially distributed setting since many
spatially distributed systems are also large scale and lumped
in the sense that the controller may interface with the system
at only a relatively small number of spatial coordinates
and thus may face natural communication constraints. The
problem of decentralized control of spatially distributed
systems becomes considerably simpler when the system has a
property known as spatial invariance. Intuitively, this means
that the overall system is not only time-invariant but also
invariant under spatial translations. Such systems have been
studied in some detail by Bamieh et. al. [7], [1].

In this paper we propose to study the problem of decentral-
ized control of spatially invariant distributed systems based
on the partial order framework developed in [11]. We show
that this framework allows one to study several interesting
classes of decentralized problems. To study communication
structures for spatially invariant systems, it is sufficient to
study the spatio-temporal impulse response, which consti-
tutes the impulse response in the joint spatial and temporal
domain (denoted by h(x, t), where x is the spatial domain
and t is the temporal domain) when the system reacts to an
impulse at the origin (x, t) = (0, 0). The support of h(x, t)
determines the communication structure of the system.

We study the support of the impulse response using a
poset-based approach. Systems which are amenable to this
approach are called poset-causal systems. More concretely,
we impose a poset on the domain of the impulse response.
Posets, which are combinatorial objects come with associated
algebraic objects known as incidence algebras [8]. We show
that impulse responses for poset-causal systems belong to
the incidence algebra. Due to the algebraic properties of the
incidence algebra, poset causal systems can be shown to be
closed under composition. This closure property allows us to
parameterize the set of controllers that are also poset-causal.
Our main contributions in this paper are the following:

1) We introduce the framework of posets to study decen-
tralized control of spatially distributed systems.

2) We show that this framework generalizes some previ-
ously know results about classes of problems that are
closed under composition. Specifically, we show that
the main result in [1] regarding the fact that funnel
causal impulse responses are closed under convolution
are a special case of a similar result that holds for
poset causal impulse responses. Indeed, we show that
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funnel causal systems are proper subsets of poset-
causal systems.

3) We show that this closure property allows one to
parameterize the set of poset-causal controllers.

4) One can also view the result in this paper as a
generalization of our previous result in [11] where we
use the poset paradigm for synthesis of controllers for
finite dimensional controllers.

The key property that needs to be identified to generalize
funnel causality into this poset framework is subadditivity.
This property has also been recognized independently by
Rotkowitz et al [9].

The rest of this paper is organized as follows. In Section II
we provide the preliminaries regarding posets and incidence
algebras, and the basic notions of spatially invariant systems
that are necessary to read the rest of this paper. In section III
we study the poset formulation of our problem. We study the
relationship between poset causal systems and funnel causal
systems. We also study several interesting examples of poset
causal systems. In section IV we examine how the set of all
poset causal controllers may be parameterized. In section V
we conclude the paper.

II. PRELIMINARIES

A. Order-theoretic Preliminaries

Definition 1: A partially ordered set (or poset) consists of
a set P along with a binary relation � which is reflexive,
antisymmetric and transitive.
Posets may be defined on finite or infinite sets. The following
is an example of a finite poset.

Example 1: An example of a poset with three elements
( i.e. P = {a, b, c}) with order relations a � b and a � c

is shown in Figure 1.

cb

a

Fig. 1. A poset on the set {1, 2, 3}.

As already mentioned, the poset in Example 1 is finite. In this
paper, we are interested in decentralized control of spatio-
temporal systems. In Section III we will formally define a
poset structure on the spatio-temporal variables, which will
allow us to model a class of decentralization constraints.
More concretely, if (x, t) ∈ Fn × T are the spatio-temporal
variables, then the partial order relation will be a relation on
the set Fn ×T. This poset will be an infinite poset since the
underlying set is infinite.

Definition 2: Let P be a poset. Let Q be a ring. The set
of all functions

f : P × P → Q

with the property that f(x, y) = 0 if x � y is called the
incidence algebra of P over Q. It is denoted by IP (Q). If
the ring and the poset are clear from the context, we will
simply denote this by I (we will usually work over R or Z).

For a finite poset P , the set of functions in the incidence
algebra may be thought of as matrices with a specific sparsity
pattern given by the order relations of the poset.

Definition 3: Let P be a poset. The function ζ(P ) ∈
IP (Q) defined by

ζ(P )(x, y) =

{
0, if x � y

1, otherwise

is called the zeta-function of P .
Clearly the zeta-function of the poset is a member of the
incidence algebra

Example 2: The matrix representation of the zeta function
for the poset from Example 1 is as follows:

ζP =

⎡
⎣ 1 1 1

0 1 0
0 0 1

⎤
⎦

The incidence algebra is the set of all matrices in Q3×3 which
have the same sparsity pattern as its zeta function.
Given two functions f, g ∈ IP (Q), their sum f+g and scalar
multiplication cf are defined as usual. The product h = f ·g
is defined as follows:

h(x, y) =
∑
z∈P

f(x, z)g(z, y).

As mentioned above, we will frequently think of the func-
tions in the incidence algebra of a poset as square matri-
ces (of appropriate dimension) inheriting a sparsity pattern
dictated by the poset. The above definition of function
multiplication is such that in the finite case it is consistent
with matrix multiplication. In the infinite case, we will see
that by replacing the sum by an integral, we will be able to
interpret the above definition also as a convolution.

Theorem 1: Let P be a poset. Under the usual definition
of addition, and multiplication as defined in (1) the incidence
algebra is an associative algebra (i.e. it is closed under
addition, scalar multiplication and function multiplication).

Proof: Closure under addition and scalar multiplication
is obvious. Let f, g ∈ I. Consider elements x, y such that
x � y, so that f(x, y) = g(x, y) = 0. Indeed if x � y, there
cannot exist a z such that x � z � y. Hence, in the above
sum, either f(x, z) = 0 or g(z, y) = 0 for every z, and thus
h(x, y) = 0.
A standard corollary of this theorem is the following.

Corollary 1: Suppose A ∈ I is invertible. Then A−1 ∈ I.

B. Control-theoretic preliminaries

In this section, we introduce the notion of spatially in-
variant systems. These are a class of distributed parame-
ter infinite-dimensional systems that evolve along spatio-
temporal coordinates (x, t) ∈ G × T where G is the spatial
domain and T is the temporal domain. We assume that
G = Fn, with F chosen to be either Z or R, and a similar
choice is made for T. In this paper, we study the class
of systems that are spatially invariant, i.e. spatio-temporal
systems that are invariant under translations along the spatial
coordinate. Just as LTI systems are characterized by impulse

WeB6.1

348

Authorized licensed use limited to: MIT Libraries. Downloaded on April 10, 2009 at 14:20 from IEEE Xplore.  Restrictions apply.



responses (such a description being possible due to the
time invariance property), spatially invariant systems can be
completely described by a spatio-temporal impulse response
ψ(x, t). We will typically be thinking of spatio-temporal
responses that are described by linear PDEs, for example
the wave equation:

∂2

t ψ(x, t) = c2∂2

xψ(x, t) + u(x, t). (1)

This has a state space description:

∂t

[
ψ1

ψ2

]
=

[
0 I

c2∂2

x 0

] [
ψ1

ψ2

]
+

[
0
I

]
u

ψ =
[

I 0
] [

ψ1

ψ2

]
.

The impulse response of a spatially invariant system will
have some support on the (x, t) plane. We assume that this
support is characterized by a support function f : G → T
with the property that ψ(x, t) = 0 whenever t < f(x).

III. COMMUNICATION CONSTRAINTS AND POSETS

In this section, we show how communication constraints
among the spatial coordinates can be naturally modeled in
the language of partially ordered sets.

A. Partial Order Formulation

Let x ∈ Fn be the spatial variable and t ∈ T denote the
temporal variable. Let f : Fn → T be the support function.
We define a partial order on the tuple (x, t) as follows:

Definition 4:
The relation (x1, t1) � (x2, t2) holds if

1. t1 ≤ t2 (in the standard ordering on T),
2. f(x2 − x1) ≤ t2 − t1 (in the standard ordering on T).

Proposition 1: Suppose the support function f : Fn → T
satisfies the following properties:

1. f(0) = 0,

2. f(x) > 0 for x �= 0,

3. f(x1 + x2) ≤ f(x1) + f(x2)
for all x1, x2 ∈ Kn (subadditivity).

(2)

Then the relation � in Definition 4 is a partial order relation.
Proof: See [12].

Once a partial order is defined on the space, one can think
of the space as a poset P = (P,�) (in our case the set
P = Fn×T). By defining a multiplication rule on functions
of the form h : P × P → R one can define the incidence
algebra associated with the poset.

Rather than considering all functions of the form
h : P × P → R, which are of the form h((x1, t1), (x2, t2))
we restrict our attention to those functions which are spatially
and temporally invariant, i,e. the value of the function
depends only on x1 − x2 and t1 − t2. More precisely, these
functions are of the form h((x1, t1), (x2, t2)) = h′(x1 −
x2, t1 − t2).

Definition 5: The set of functions h : P × P → G with
the property that :

1. h((x1, t1), (x2, t2)) = h′(x1 − x2, t1 − t2)
(called spatially invariance)

2. h′(x1 − x2, t1 − t2) = 0 for (x1, t1) � (x2, t2)
(called order sparsity).

is called the spatially invariant incidence algebra with re-
spect to the support function f . It is denoted by If .

Remark Note that a function in the spatially invariant
incidence algebra h(x1 − x2, t1 − t2) is nonzero only if
f(x2 − x1) ≤ t2 − t1.

We now justify the reason for calling the object defined in
Definition 5 an algebra. We show next that one can define
a natural multiplication operation on this object, and that
the object is closed under this multiplication, justifying its
description as an “algebra”.
We first define the multiplication operation.

Definition 6: Let h1(x1 − x2, t1 − t2), h2(x1 − x2, t1 −
t2) ∈ If be two incidence functions in the spatially invariant
incidence algebra. Then,

h3((x1, t1), (x2, t2))
.
= h1(x1 − x2, t1 − t2) � h2(x1 − x2, t1 − t2)
.
=

∫
T

∫
G

h1(x1 − x, t1 − t)h2(x − x2, t − t2)dxdt.
(3)

Remark Note that in Definition 6, if either K or F is a
discrete set, then the integration is replaced by a summation
over the discrete set.

We now show the closure property of the incidence algebra.
Proposition 2: Let h1, h2 ∈ If be two functions in the

spatially invariant incidence algebra. Then the following
statements are true:

(a) h1 + h2 ∈ If ,

(b) For every scalar c, c·h1 ∈ If ,

(c) h1 � h2 ∈ If .
Proof: See [12].

Definition 7: Given a spatially invariant distributed sys-
tem with impulse response h(x, t), the system is said to be
poset-causal if the impulse response satisfies order sparsity
with respect to a function f satisfying the conditions 1, 2
and 3 of Proposition 1.
Since we defined multiplication in such a way that it is
consistent with convolution of impulse response functions,
we get the following important theorem as a direct corollary
of Proposition 2:

Theorem 2: The composition of two spatially invariant
poset-causal systems is also spatially invariant and poset-
causal.
We can exploit this fact in the synthesis of certain structured
decentralized controllers.

B. Relation to Funnel Causality

In [1], the authors introduce a specific class of communica-
tion constraints for spatially invariant systems. They call such
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systems funnel causal systems. In their paper, the authors
show that convolution of funnel causal impulse responses
are also funnel causal, and that such systems are thus closed
under composition. Finally, the authors show that due to
this closure property, the set of all stabilizing funnel causal
controllers can be described in the Youla domain in a convex
fashion, thus making it amenable to optimization.

Our results are closely related to (and in fact generalize)
these results by Bamieh and Voulgaris. We show in this
subsection that the statement “composition of funnel-causal
systems is funnel causal” is essentially a statement about
poset causal systems. We show that funnel causal systems
are a sub-class of poset causal systems, i.e. if a system is
funnel causal, one can construct a poset and an associated
incidence algebra that contains the impulse response of the
given system. In fact funnel causal systems form a proper
subset of poset causal systems, indeed in the next subsection
we will provide examples of poset-causal systems that are
not funnel causal.

In this section we will show that Theorem 2 completely
generalizes the result of Bamieh [1]. The outline of the
argument is as follows. Funnel causal systems are defined
in terms of concave support functions (in one dimension),
and poset-causal systems are defined in terms of sub-additive
support functions as defined in (2). We first show that for
functions in one dimension, concave functions are subaddi-
tive. Thus, if f is concave (thus funnel causal), f is sub
additive and by Proposition 1 the system is poset causal.
Proposition 1 shows that such systems have a naturally
associated poset and incidence algebra. By Theorem 2 poset-
causal (thus funnel-causal) systems are closed under compo-
sition. In [1], the authors define funnel causal systems (and
the related notion of propagation functions, which are similar
to the notion of support functions we introduced earlier in
this paper) in the following way.

Definition 8: A scalar valued function f(x) is said to
be a propagation function if f is nonnegative, f(0) = 0
and such that {f(x), x ≥ 0} and {f(x), x ≤ 0} are concave
respectively.

Definition 9: A systems is said to have the property of
funnel causality if its impulse response is such that

h(x, t) = 0, for t < f(x),

where f(x) is a propagation function.
Essentially, the spatio-temporal impulse response is sup-
ported in a funnel shaped region. We next show that such
functions are in fact subadditive, hence they can be endowed
with a partial order with respect to the propagation function
f .

Proposition 3: If f : R → R is such that f(0) = 0,
f(x) > 0 for x �= 0 and {f(x), x ≥ 0}, {f(x), x ≤ 0} are
concave, then f is subadditive.

Proof: See [12]
As a corollary, we obtain the following result by Bamieh [1,
Lemma 1].

Corollary 2: Composition of spatially invariant funnel
causal systems is also spatially invariant and funnel causal.

Support of impulse response h(x , t)

x

t

t

x

Support of impulse

response h(x, t)

(a) (b)

Fig. 2. Examples of poset causal systems. (a) A centralized causal system.
(b) A completely decentralized causal system.

Proof: See [12].

C. Examples of Poset Causal Systems

In this subsection, we consider some examples of poset-
causal systems to show how some interesting communication
structures can be modeled via this poset framework.

Example 3: Some extreme examples of spatially invariant
systems are examples of completely decentralized problems
and fully centralized problems as illustrated in Fig. 2.

Example 4: A class of systems that has been studied in the
literature corresponds to the case where the support function
f(x) = c|x| where x is understood to be one-dimensional.
Such systems have been called cone causal systems. Note
that f(0) = 0, f(x) > 0 for x �= 0. Subadditivity of
f follows from the triangle inequality (alternatively, from
the concavity of |x|). Hence, f satisfies all the conditions
to prescribe a partial order on G × T. Such systems draw
motivation from the following interpretation. Suppose the
system responds to an impulse at the origin. Then h(x, t) is
going to be supported on a light cone originating at the origin
with speed of light equal to c. In other words the system
has a constant (but finite) speed of signal propagation. Such
examples arise naturally in physical systems. For example,
linear wave equations have this property, as shown in [1].

Example 5: Another class of poset causal systems that
have been studied in the literature are funnel causal systems.
As described in Section III-B funnel causal systems are
subclasses of poset causal systems. For more details and
examples, the reader is referred to [1].

Example 6: For cases where the spatial domain is multi-
dimensional (for example Rn), examples of classes of sys-
tems closed under convolution have not been studied, to the
best of our knowledge. (For example. the result for funnel-
causal systems, closure under convolution only holds for one
dimension). The advantage of our approach is that it abstracts
the essential property for convolutional closure to hold. This
essential property that we identify is subadditivity, which
arises naturally for many classes of (multi-dimensional)
functions.

A natural class of support functions f(x) are all norms
f(·) = ‖ · ‖p for p ≥ 1. Clearly, f(0) = 0 and f(x) > 0
for x �= 0 by definition of a norm. Also, by the triangle

WeB6.1

350

Authorized licensed use limited to: MIT Libraries. Downloaded on April 10, 2009 at 14:20 from IEEE Xplore.  Restrictions apply.



1 + ε1-1-1-ε

1
1-ε

x

t

f(x)

Support of impulse response h(x, t)

Fig. 3. A sub-additive non-concave support function.

inequality for norms,

f(x1+x2) = ‖x1+x2‖p ≤ ‖x1‖p+‖x2‖p = f(x1)+f(x2).

Again, since f satisfies all the properties necessary to impose
a poset structure on the system, the incidence algebra based
argument tell us that the corresponding impulses will be
closed under convolution.

It is interesting to note that, in [1], the authors identified
concavity of f as being the property essential to having
convolutional closure. In this example, norms in general are
not concave, on the contrary, they are convex, yet we have
convolutional closure. This further strengthens the argument
that sub-additivity is a more fundamental property. (In the
one-dimensional case, of course, all induced norms coincide
with the absolute value function, which is both concave and
convex, hence this distinction becomes uninteresting).

In the next example we further investigate the relationship
between funnel causality and poset causality. As already
mentioned, the property at the heart of funnel causality is
concavity, whereas the property at the heart of poset causal-
ity is sub-additivity. We have already shown that on one
dimension, concavity implies sub-additivity. It is natural to
wonder wether the converse is true, i.e. wether all subaddtive
functions are concave. In higher dimensions, this is not true
since (as explained in Example 6) p-norms for p > 1 are
nonconcave but subadditive. In the one dimensional case, this
counter-example clearly does not work, since the absolute
value function is concave. Example 7 below is an example
of a sub-additive function which is not concave (nor even
convex).

Example 7: Consider the function f : R → R (see Fig.
3) given by

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

|x| for |x| ≤ 1
2 − x for 1 < x ≤ 1 + ε

2 + x for − 1 − ε ≤ x < −1
1 − ε for |x| > 1 + ε.

Here we assume that ε is a sufficiently small positive
number, say 0 < ε < 1

4
. Clearly this function is nonconcave,

a straight-forward verification of several cases shows that this
function is indeed subadditive.

IV. PARAMETERIZATION OF POSET CAUSAL

CONTROLLERS

The problem of designing optimal poset-causal controllers
for a poset causal system with respect to some support
function f is possible using the closure property of poset
causal systems. We discuss this briefly in this section. We are
interested in solving the following optimal control problem:

inf ‖F (G, K)‖
subject to K stabilizing

K ∈ Sf .

(4)

As a consequence of Theorem 2, we know that the
composition of two poset causal systems is also poset causal.
If one has a coprime factorization of the plant G, with
G = NM−1 such that XM − Y N = I , where X, Y, M, N

are all spatially invariant and poset causal, then the set of all
spatially invariant poset causal controllers is parameterized
by

K = (Y + MQ)(X + NQ)−1

with Q stable, spatially invariant and poset causal. Using
this parametrization it is possible to show that problem (8)
reduces to the following convex optimization problem.

inf ‖H − UQV ‖
subject to Q stable

Q ∈ Sf ,

(5)

where H, U, V depend only on the description of the spec-
ified plant G. Note that this problem is still an infinite
dimensional problem (albeit convex) and exact computation
of the optimal controller may still be hard.

V. CONCLUSION

In this paper we studied the problem of decentralized
control of spatially invariant distributed systems based on
a poset framework. We generalized some previously known
results regarding funnel causal systems using this framework.
We also studied some interesting examples of systems that
can be modeled using the poset framework. Finally, we
showed how poset causal controllers for poset causal systems
are amenable to a convex parameterization.
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