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Abstract

This paper considers the problem of recovering a sparse p×p matrix X given
an m×m matrix Y = AXBT , where A and B are known m× p matrices
with m � p. The main result shows that there exist constructions of the
“sketching” matrices A and B so that even if X has O(p) non-zeros, it
can be recovered exactly and efficiently using convex optimization as long
as these non-zeros are not concentrated in any single row/column of X.
Furthermore, it suffices for the size of Y (the sketch dimension) to scale as
m = O

(√
# nonzeros in X × log p

)
. Our approach relies on a novel result

concerning tensor products of random bipartite graphs, which may be of
independent interest.
We also describe two interesting applications of our results: (a) estimating
sparse covariance matrices from compressed realizations and (b) a novel
paradigm of lossless sketching/compression of sparse graphs.

1 Introduction

An important feature of many modern data analysis problems is the presence of a large
number of variables relative to the number of observations. Such high dimensionality occurs
in a range of applications in bioinformatics, climate studies, and economics. Accordingly,
a fruitful and active research agenda in the recent years has been the development of sam-
pling, estimation and learning methods that take into account structure in the underlying
model and thereby making these problems tractable. A notion of structure that has gained
popularity is that of sparsity and estimating sparse signals has been the subject of intense
research in the past few years [6, 5, 9]. In this paper, we will study a more nuanced no-
tion of structure that arises naturally in problems in involving sparse matrices; we call this
distributed sparsity. For what follows, it will be convenient to think of the unknown high-
dimensional signal of interest as being represented as a matrix X. Roughly speaking, the
signal is said to be distributed sparse if every row and every column of X has only a few
non-zeros. We will see that it is possible to design efficient and effective acquisition and
estimation mechanisms for such signals.

We will begin with two brief examples where distributed sparsity might arise naturally. Our
first example is that of covariance matrices. Consider natural phenomena where it is
reasonable to expect that each covariate is correlated with only a few other covariates. For
instance, it is observed that protein signaling networks are such that there are only a few
significant correlations [14] and hence the discovery of the such networks from experimental
data naturally leads to the estimation of a covariance matrix (where the covariates are
proteins) which is (approximately) distributed sparse. Similarly, the covariance structure
corresponding to longitudinal data is distributed sparse [8]. As our next example, we will
consider graphs. Graphs offer a powerful modeling framework to capture many real world
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situations where small components interact with and affect each other. It is often natural
to assume that each entity under consideration interacts significantly with only a few other
entities in the system. The adjacency matrices representing these graphs are distributed
sparse and therefore, learning such interaction systems can be thought of as learning bounded
degree graphs. Of course, vertices of sparse random graphs (like Erdös- Renyi random graphs
G(p, q) with pq = O(log p)) as well as those of many real-world graphs tend to have small
degrees [4]. We elaborate on these examples in Sections 3.1 and 3.2 respectively and we refer
the reader to an extended version of this paper [7] for more examples and a more detailed
treatment.

2 Problem Setup and Main Results

Our goal is to invert an underdetermined linear system of the form

Y = AXBT , (1)

where A = [aij ] ∈ Rm×p, B = [bij ] ∈ Rm×p, with m� p and X ∈ Rp×p1. Since the matrix
X ∈ Rp×p is linearly transformed to obtain the smaller dimensional matrix Y ∈ Rm×m,
we will refer to Y as the sketch of X and to the quantity m as the sketching dimension.
Since the value of m signifies the amount of compression achieved, it is desirable to have
as small a value of m as possible. Rewriting the above using tensor product notation, with
y = vec(Y ) and x = vec(X), we equivalently have

y =


b11A b12A · · · b1pA
b21A b22A · · · b2pA

...
...

. . .
...

bm1A bm2A · · · bmpA

x = (B ⊗A)x, (2)

where vec(X) simply vectorizes the matrixX, i.e., produces a long column vector by stacking
the columns of the matrix and B ⊗A is the tensor (or Kronecker) product of B and A.

While it is not possible to invert such underdetermined systems of equations in general, the
rapidly growing literature on what has come to be known as compressed sensing [9] suggests
that this can be done under certain conditions if x (or equivalently X) has only a few non-
zeros. As hinted earlier, it will turn out however that one cannot handle arbitrary sparsity
patterns and that the non-zero pattern of X needs to be distributed, i.e., each row/column of
X cannot have more than a few, say d, non-zeros. We will call such matrices d−distributed
sparse.

The main part of this paper is devoted to showing that if X is d−distributed sparse and if
A and B are chosen appropriately, then the following convex optimization program has a
unique solution which equals X.

minimize
X̃

∥∥∥X̃∥∥∥
1

subject to AX̃BT = Y. (P1)

Here, by ‖X̃‖1 we mean
∑
i,j

∣∣∣X̃i,j

∣∣∣. In particular, we prove the following result.

Theorem 1. Suppose that X is d−distributed sparse. Also, suppose that A,B ∈ {0, 1}m×p
are drawn independently and uniformly from the δ−random bipartite ensemble2. Then as
long as

m = O(
√
dp log p) and δ = O(log p),

there exists a c > 0 such that the optimal solution X∗ of (P1) equals X with probability
exceeding 1− p−c. Furthermore, this holds even if B equals A.

Let us pause here and consider some implications of this theorem:
1The techniques developed here extend to accomodate “moderately” rectangular matrices. We

refer the reader to [7] for more details.
2Roughly speaking, the δ−random bipartite ensemble consists of the set of all 0-1 matrices that

have almost exactly δ ones per column. We discuss this briefly in Section 4 and the reader is referred
to [7] for more details.
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1. Ideally one might try to find the sparsest matrix X̃ that satisfies Y = AX̃BT .
But this is computationally intractable and (P1) is a natural convex relaxation of
this objective. However, note that (P1) does not impose any structural restrictions
on X∗. In other words, even though X is assumed to be distributed sparse, this
(highly non-convex) constraint need not be factored in to the optimization problem.
This ensures that (P1) is a Linear Program (see e.g., [3]) and can thus be solved efficiently.

2. Even if an oracle were to reveal the exact locations of the non-zeros of x, we
would require O(dp) measurements to recover x. Comparing this to Theorem 1, we see
that the performance of (P1) is near optimal since the number of measurements (m2) is
only a logarithm away from this trivial lower bound3.

3. Finally, inversion of under-determined linear systems where the linear opera-
tor assumes a tensor product structure has been studied earlier [12, 10]. However,
those methods are relevant only in the regime where the sparsity of the signal to be
recovered is much smaller than the dimension p. The proof techniques they employ will
unfortunately not allow one to handle the more demanding situation the sparsity scales
linearly in p.

We refer the reader to Section 4 for a sketch of the theoretical ideas behind the proof and
to the extended manuscript [7] for the actual proof and intuitions.

Next we will state the following “approximation” result that shows that the solution of (P1)
is close to the optimal d− distributed sparse approximation for any matrix X. The proof is
similar to the proof of Theorem 3 in [2].

Given p ∈ N, let [p] , {1, 2, . . . , p} and let Wd,p denote the set of all Ω ⊂ [p]× [p] such that
Ω could be the support of a d−distributed sparse matrix X ∈ Rp×p. Given Ω ∈ Wd,p and
a matrix X ∈ Rp×p, we write XΩ to denote the projection of X onto the set of all matrices
supported on Ω. That is, [XΩ]i,j = Xi,j if (i, j) ∈ Ω and 0 otherwise.

Theorem 2. Suppose that X is an arbitrary p× p matrix and that the hypotheses of Theo-
rem 1 hold. Let X∗ denote the solution to the optimization program (P1). Then, there exist
constants C1, C2 > 0 such that the following holds with probability exceeding 1− p−C1 .

‖X∗ −X‖1 ≤ C2

(
min

Ω∈Wd,p

‖X −XΩ‖1

)
. (3)

The above theorem tells us that even if X is not sparse or specially structured, the solution
of the optimization program (P1) approximates X as well as the best possible d−distributed
sparse approximation of X (up to a constant factor). This has interesting implications, for
instance, to situations where a d−distributed sparse X is corrupted by a “noise” matrix E
as shown in the following corollary.

Corollary 1. Suppose X ∈ Rp×p is d−distributed sparse and suppose that X̂ = X + E.
Then, there exists a constant C3 such that the solution X∗ to the optimization program

min.
X̃

∥∥∥X̃∥∥∥
1

subject to AX̃BT = AX̂BT

satisfies ‖X∗ −X‖1 ≤ C3 ‖E‖1 with high probability.

We refer the interested reader to the extended manuscript [7] for the proofs of Theorem 2
and Corollary 1.

3 Applications

It is instructive at this stage to consider a few examples of the framework we set up in
this paper. These applications demonstrate that the modeling assumptions we make viz.,

3This logarithmic factor also makes an appearance in the measurement bounds in the compressed
sensing literature [5].
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tensor product sensing and distributed sparsity are important and arise naturally in a wide
variety of contexts. We refer the interested reader to [7] for a more detailed treatment of
the applications of this framework.

3.1 Covariance Sketching

One particular application that will be of interest to us is the estimation of covariance
matrices from sketches of the sample vectors. We call this covariance sketching.

Consider a scenario in which the goal is to estimate the covariance matrix Σ ∈ Rp×p of a
high-dimensional zero-mean random vector ξ = (ξ1, . . . , ξp)T . Towards this end, we may
obtain n independent realizations of the statistical process ξ(1), . . . , ξ(n) ∈ Rp and when
p is large, it may be infeasible or undesirable to sample and store the entire realizations.
Thus we propose an alternative acquisition mechanism: pool covariates together to form a
collection of new variables Z1, . . . , Zm, where typically m� p. In particular, we may have
measurements of the form Z = Aξ where A ∈ {0, 1}m×p. The goal therefore is to recover
the covariance matrix Σ ∈ Rp×p using only the samples of the m−dimensional sketch vector
Z(i) = Aξ(i), i = 1, . . . , n, where the ξ(i) ∈ Rp are independent random realizations of the
underlying process.

Notice that the sample covariance computed using the vectors
{
Z(i)

}n
i=1

satisfies Σ̂(n)
Z =

1
n

∑n
i=1 Z

(i)(Z(i))T = AΣ̂(n)AT , where Σ̂(n) := 1
n

∑n
i=1 ξ

(i)(ξ(i))T is the (maximum likeli-
hood) estimate of Σ from the samples ξ(1) . . . , ξ(n). The theory developed in this paper tells
us that if one supposes that the underlying random vector ξ has the property that each
ξi depends on only a few (say, d) of the other ξj ’s (i.e., the true covariance matrix Σ is
d−distributed sparse), then Σ can be recovered from AΣAT as long as A ∈ {0, 1}m×p is
chosen appropriately and m ≥ O

(√
dp log p

)
. This is of course just a stylized version of the

above covariance sketching problem.

In fact, observe that Σ̂(n) := 1
n

∑n
i=1 ξ

(i)(ξ(i))T can be considered to be a “noise cor-
rupted version” of Σ where under certain assumptions the noise, Σ̂(n) − Σ, is such that∥∥∥Σ̂(n) − Σ

∥∥∥
1
→ 0 almost surely as n→∞ by the strong law of large of numbers. Therefore,

an application of Theorem 2 tells us that solving (P1) with the observation matrix Σ̂(n)
Z

gives us an asymptotically consistent procedure to estimate the covariance matrix Σ from
sketched realizations.

We anticipate that these results will be of interest in many areas such as quantitative biology
where it maybe possible to naturally pool together covariates and measure interactions at
this pool level.

3.2 Sketching Sparse Graphs

Large graphs play an important role in many prominent problems of current interest; two
such examples are graphs associated to communication networks (such as the internet) and
social networks. One is often interested in learning the structure of large graphs, finding
motifs like cliques in such graphs or just compression of these graphs. The problem of
sketching graphs has recently gained attention in the literature [1, 11].

The framework of our paper suggests a new and natural notion of sketching a given graph
G = (V,E). The result is a weighted sketch graph Ĝ = (V̂ , Ê) whose vertex set is of
much smaller cardinality than V . To obtain this, one would partition the vertex set V =
V1 ∪ V2 ∪ . . . ∪ Vm; in the compressed graph Ĝ, each partition Vi is represented by a node.
(We note that this need not necessarily be a disjoint partition.) For each pair Vi, Vj ∈ V̂ ,
the associated edge weight is the total number of edges crossing from nodes in Vi to the
nodes in Vj in the original graph G. Note that if an index k ∈ Vi ∩ Vj , the self edge (k, k)
must be included when counting the total number of edges between Vi and Vj . (We point
out that the edge (Vk, Vk) ∈ Ê also carries a non-zero weight and is precisely equal to the
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number of edges in G that have both endpoints in Vk.) If one defines an m × p matrix A
such that row Ai is the indicator vector for the set Vi, then Y := AXAT is precisely the
adjacency matrix representation of Ĝ.

Therefore, our results show that when the graph G has p vertices and a maximum degree
d, then exists a suitable random partitioning scheme such that (a) the proposed method
of encoding the graph is lossless and (b) the resulting graph has only O(

√
dp log p) ver-

tices. Moreover, the original graph G can be unravelled from the smaller sketched graph Ĝ
efficiently using the linear program (P1).

4 Theory

We will now provide a brief outline of the theory behind these results and we refer the reader
to [7] for complete proofs and further details.

A. Distributed Sparsity.
Consider Figure 1 which shows two matrices with O(p) non-zeros. Suppose that the non-
zero pattern in X looks like that of the matrix on the left (which we dub as the “arrow”
matrix). It is clear that it is impossible to recover this X from AXBT even if we know
the non-zero pattern in advance. For instance, if v ∈ ker(A), then the matrix X̃, with v

added to the first column of X is such that AXBT = AX̃BT and X̃ is also an arrow matrix
and hence indistinguishable from X. Similarly, one can “hide” a kernel vector of B in the
first row of the arrow matrix. In other words, it is impossible to uniquely recover X from
AXBT .

"Arrow" matrix Distributed sparse matrix

Figure 1: Two matrices with O(p) non-zeros. The “arrow” matrix is impossible to recover by
covariance sketching while the distributed sparse matrix is.

B. Tensor Products of Random Bipartite Graphs.
As alluded to earlier, our theory recommends that the sketching matrices be chosen as the
adjacency matrices of certain random bipartite graphs. In particular, we pick A and B to
be the adjacency matrices of randomly generated graphs G = ([p], [m], E) such that for each
i ∈ [p], we pick δ neighbors j1, . . . , jδ uniformly at random from [m] (with replacement4).

In past work [2, 13], the authors show that a random graph generated as above is, for suitable
values of ε and δ, a (k, δ, ε)−expander. That is, for all sets S ⊂ [p] such that |S| ≤ k, the
size of the neighborhood |N(S)| is no less than (1 − ε)δ |S|. If A is the adjacency matrix
of such a graph, then it can then be shown that this implies that `1 minimization would
recover a k−sparse vector x if one observes the sketch Ax (actually, [2] shows that these
two properties are equivalent). Notice that in our context, the vector that we need to
recover is O(p) sparse and therefore, our random graph needs to be a (O(p), δ, ε)−expander.
Unfortunately, this turns out to not be true of the tensor product graph G1⊗G2

5 when G1

and G2 are randomly chosen as directed above.

However, we show that if G1 and G2 are picked as above, then the graph G1 ⊗G2 satisfies
what can be considered a weak distributed expansion property. This roughly says that the

4While it is possible to work with sampling without replacement, we chose this to aid in clear
presentation of the ideas

5We use G1⊗G2 to denote the graph whose adjacency matrix corresponds to the tensor product
of the adjacency matrices of G1 and G2
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neighborhood of a d−distributed Ω ⊂ [p] × [p] is large enough. Moreover, we show that
this is in fact sufficient to prove that with high probability X can be recovered from AXBT

efficiently. This combinatorial result is a key technical contribution of our work and we
expect that it might be of independent interest.

5 Conclusions

In this paper we have introduced the notion of distributed sparsity for matrices. We have
shown that when a matrix is X distributed sparse, and A,B are suitable random binary
matrices, then it is possible to recover X from under-determined linear measurements of the
form Y = AXBT via `1 minimization. We have also shown that this recovery procedure is
robust in the sense that if X is equal to a distributed sparse matrix plus a perturbation,
then our procedure returns an approximation with accuracy proportional to the size of the
perturbation. Our results follow from a new lemma about the properties of tensor products
of random bipartite graphs. We also describe two interesting applications where our results
would be directly applicable.

In future work, we plan to investigate the statistical behavior and sample complexity of
estimating a distributed sparse matrix (and its exact support) in the presence of various
sources of noise (such as additive Gaussian noise, and Wishart noise). We expect an inter-
esting trade-off between the sketching dimension and the sample complexity.
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