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Abstract

We study the online constrained ranking problem motivated by an
application to web-traffic shaping: an online stream of sessions arrive in
which, within each session, we are asked to rank items. The challenge
involves optimizing the ranking in each session so that local vs. global
objectives are controlled: within each session one wishes to maximize a
reward (local) while satisfying certain constraints over the entire set of
sessions (global). A typical application of this setup is that of page op-
timization in a web portal. We wish to rank items so that not only is
user engagement maximized in each session, but also other business con-
straints (such as the number of views/clicks delivered to various publishing
partners) are satisfied.

We describe an online algorithm for performing this optimization. A
novel element of our approach is the use of linear programming duality
and connections to the celebrated Hungarian algorithm. This framework
enables us to determine a set of shadow prices for each traffic-shaping
constraint that can then be used directly in the final ranking function to
assign near-optimal rankings. The (dual) linear program can be solved
off-line periodically to determine the prices. At serving time these prices
are used as weights to compute weighted rank-scores for the items, and the
simplicity of the approach facilitates scalability to web applications. We
provide rigorous theoretical guarantees for the performance of our online
algorithm and validate our approach using numerical experiments on real
web-traffic data from a prominent internet portal.

1 Introduction

This paper investigates the online constrained ranking problem — a collection
of sessions arrive in an online manner. In each session we wish to make optimal
decisions that balance local versus global trade-offs: locally we wish to maxi-
mize the engagement of that session, while globally we wish to satisfy certain
constraints over the entire set of sessions. Each session involves a user inter-
acting with a collection of items, and the decision-making task at hand is that
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of selecting a ranking of these items. The rankings chosen across all sessions
influence the rewards collected in the sessions as well as whether or not the
overall constraints are satisfied.

While our main focus in this paper is to develop algorithms for the general
online constrained ranking problem, the key motivating application involves
webpage layout optimization and traffic-shaping. In this context, each session
corresponds to a user interacting with a webpage (for example a web portal),
and the decision-maker wishes to optimize the placement of content from an
assortment of content (e.g. news articles, sports articles, ads, blogs, financial
news, etc.).

The webpage is assumed to be divided into slots, and the problem of assign-
ing content to slots may be viewed as an assignment or ranking problem. The
natural locally optimal approach to optimizing a webpage involves computing
an engagement score (e.g., a click probability or a predicted dwell-time) for each
content, and displaying the content within slots on the page in descending order
of the scores so that the highest (predicted) engaging content is in the most
highly clicked slot, and so on.

However, in practice there are often other business constraints in place.
For example we may wish to deliver a certain guaranteed number of clicks to
different segments of the traffic. Business considerations may dictate that a
certain number of clicks be delivered to a premium advertiser, or that a certain
number of top-ranked page-views be delivered to certain premium news-agency
partners over the entire collection of sessions in the traffic. These additional side
constraints introduce trade-offs; performing a simple ”locally optimal” ranking
may violate these constraints. The challenge thus is to pick assignments in each
session, online, in a way that satisfy the traffic-wide business constraints while
maximizing user engagement. Since the traffic distribution is quite well-known
in advance (and data is available for the same), the natural question to ask is
whether we can optimize the pages in each session to maximize user engagement
while satisfying the other traffic constraints. Our paper deals with developing
a principled approach to deal with this traffic-shaping problem.

Note that our paper does not seek to address the learning-to-rank prob-
lem [9, 11], i.e. the problem of learning how to predict user engagement from
data. Indeed, in many practical systems, a natural separation of concerns is
assumed between learning-to-rank (or machine learning for predicting other
user-engagement signals such as click-through rate, dwell-time etc.) and the
traffic-shaping problem. The machine learned models are used as input signals
to a federation layer that performs traffic-shaping, i.e. ingesting the signals and
optimizing the ranking to maximize engagement and satisfying the constraints.
However, the algorithm for traffic-shaping itself is completely agnostic to the
details of how these signals are learned.

Comparison to related work: The traffic-shaping and click-shaping prob-
lems were studied by Agarwal et al. [3, 2, 1] using an optimization based
framework that involved probabilistic sampling. Several important features dis-
tinguish our work. The aforementioned work deals only with the single slot case
(i.e. each session involves choosing a single item from a collection and picking
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the best one that satisfies a constraint), and they defer the multi-slot problem
as an open problem. While they also adopt a linear programming approach,
their model is substantially different; their optimization variables are proba-
bilities of sampling items that maximize reward and satisfy traffic constraints.
Moreover, they do not present theoretical guarantees on the solution quality. In
contrast, our approach directly addresses the multi-slot situation (i.e. ranking
items), our optimization involves optimizing over the set of permutations (i.e.
assignments), and we tackle the online aspect of the problem by incorporating
a learning phase followed by an online decision-making phase. We evaluate our
method empirically and provide rigorous theoretical guarantees.

Our work draws on ideas and tools from the online optimization literature,
specifically the primal-dual method for online linear programming [4] and its
applications to online combinatorial optimization problems [8] such as the ad-
words problem [15, 13], whole-page optimization problem for ads [14], combina-
torial auctions [5], and extensions to the nonlinear case [12]. While our approach
substantially uses ideas and tools from this literature, a key distinction is the
nature of the decision-making problem. Each online session in the aforemen-
tioned lines of work involves a binary decision-making problem, i.e. whether or
not to assign a unit of an item in the session. In contrast, in our problem, each
session involves choosing a permutation (more specifically a perfect matching
between the items and the slots).

Moreover, unlike [4] where the decision-maker must satisfy budget (upper
bound) constraints, in our paper we have allocation (lower bound) constraints
wherein a certain number of units (for e.g. clicks) must be delivered. Finally,
we mention that within the literature, different lines of work arise from different
distributional assumptions made on the sessions; e.g. [15] analyze the problem
in the setting where the ordering of sessions may be adversarial with respect
to the online decision maker. Another line of work [13, 4] assumes the random
permutation model, wherein the distribution order of sessions may be assumed
to exchangeable. Different theoretical guarantees are possible under different
scenarios, and our work employs the random permutation model also. Our
main contributions in this paper are the following:

• Solution Form: We present a new algorithm for the online constrained
ranking problem. In the initial learning phase, dual prices λt corresponding
to each traffic constraint t are learned. In the subsequent online phase, in
each session, one is provided matrices C and At (see Sec. 2 for details) that
capture the predictions for engagement and traffic-shaping units contributed
for different possible rankings. The online ranking algorithm assumes the
simple form:

σ = MaxWeightMatching

(
C +

T∑
t=1

λtAt

)
. (1)

When λt = 0, one recovers the “greedy” solution, i.e. that of optimizing
each session individually and disregarding the constraints. In order to satisfy
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the constraints, the session rankings must be re-optimized (over the space of
permutations) as per (1). As a consequence of the connection to maximum-
weight matching, we intimately use the Hungarian algorithm [17] and its
analysis.

• Scalability: In the learning phase, data is collected and a single linear pro-
gram needs to be solved offline to obtain the prices. Thereafter, the online
aspect is extremely scalable as it involves computing a matching using the
prices.

• Evaluation and Guarantees: We present detailed empirical validation of
our algorithm on real data. We also theoretically analyze our algorithm using
the primal-dual method. Specifically we show that our algorithm achieves a
competitive ratio of 1−O(ε), where ε is the fraction of samples that are used
in the learning phase.

• Flexibility: Another desirable feature of our algorithm is that it is flexi-
ble; indeed constraints can change, performance of the machine learned input
signals can vary, and we would like a solution that is robust. Robustness is
achieved by simply repeating the learning phase (with the new constraints in
place, for instance), and obtaining the new prices. Thereafter, the implemen-
tation of the online algorithm remains the same, only the new prices need be
propagated.

Notation: Throughout the paper, we will use the notation [m] := {1, . . . ,m};
this quantity will refer to the size of the list (of documents) to be ranked in each
session. A permutation (or ranking), denoted by σ refers to a bijection between
sets σ : [m] → [m]. Usually the sets of interest are the set of documents (in a
fixed session), and the different slots, and a permutation σ specifies the assign-
ment of documents to slots. We will use the terms permutation, assignment,
and ranking interchangeably throughout the paper. It will often be convenient
to represent the ranking σ by a permutation matrix P ∈ Rm×m where (P )ij = 1
if σ(i) = j and 0 otherwise. Such a matrix has a single entry equal to one in
each row and column, with the remaining entries equal to zero. We will refer
to the set of m! permutation matrices as P. The convex hull of P, denoted by
co(P) is the Birkhoff polytope [17], which will play an important role.

Throughout the paper, the index k is reserved for sessions, i.e. k ∈ [n], the
index t is reserved for the T different traffic-shaping constraints, i.e. t ∈ [T ]. In
a session k, if document d is shown in position p, a user engagement of (Ck)d,p is
assumed to be accrued. Given a permutation σ, the overall engagement reward
is assumed to be additive, i.e. given by

∑m
i=1 (Ck)i,σ(i). The matrix Ck is

conveniently represented by a bipartite graph with m nodes on the left and
right and the edges having weights (Ck)d,p. A matching σ achieves a weight

of
∑m
i=1 (Ck)i,σ(i). A maximum-weight perfect matching is a permutation σ ∈

P with maximum possible weight. We remind the reader that a maximum-
weight perfect matching in a bipartite graph is obtained via the Hungarian
algorithm [17]. We will use the notation P ≥ 0 to specify that the matrix P
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is entry-wise non-negative, and P ′ denotes the matrix transpose. We will use
〈P,Q〉 :=

∑m
i=1

∑m
j=1 PijQij to denote the inner-product between the matrices

P,Q ∈ Rm×m. When a ranking P is chosen, the engagement corresponding to
that ranking is given by 〈Ck, P 〉 due to the additive nature of the reward.

2 Formulation

Let k ∈ [n] index a collection of sessions where different users interact with the
content-delivery system of interest. In each session, a collection of m documents
are made available. The task of the ranking system is, in each session k, to rank
the documents, i.e. produce a permutation σk : [m]→ [m].

For each session, we assume access to predictions of how each document
would perform with respect to user engagement (e.g. clicks or dwell time) if
document d was shown in the pth position. Let C ∈ Rm×m be the matrix such
that Cd,p models the engagement when document d is shown in the pth position.
(Typically, this type of information is available from the output of a machine-
learned model that predicts the engagement for each document, personalized
for each user corresponding to the session in question). For each session, the
engagement is given by

∑m
p=1 Cp,σ(p) = 〈C,P 〉, where P is the permutation

matrix corresponding to σ. The total engagement across all sessions is therefore∑n
k=1〈Ck, Pk〉, where k is the user engagement for the kth session and Pk is the

corresponding permutation chosen.
Simultaneously, we assume that a number of traffic-shaping constraints are

present. As an example, we may have constraints on the number of clicks that
must be delivered to various publishing partners (in a fixed number of sessions).
These can be captured as:

n∑
k=1

〈Akt, Pk〉 ≥ bt,

where the index k refers to the session, and t is refers to tth traffic-shaping
constraint. The matrix Akt ∈ Rm×m is the matrix whose (d, p) entry captures
the number of engagement units (e.g. clicks) delivered for the tth constraint
in the kth session when document d is shown in position p (such estimates are
also typically obtained as the output of a machine-learned click model)1 . The
constant bt is the number of clicks that are committed to the publishing partner
in n sessions contractually. The objective of the ranking system is to maximize
the overall user-engagement while satisfying certain constraints.

The above description suggests a natural optimization formulation:

1As an aside, we note that in practice, Ck and Akt are predictions obtained from a ma-
chine learned model, and the engagement (i.e., dwell-time and clicks) realized will likely be
different from the predictions. We ignore this distinction in this paper, and make the simpli-
fying assumption that the predictions are “perfect”. When the models are consistent and a
sufficiently large number of sessions are involved, the expected performance (being optimized
here) will be close to that of the realized one.
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maximize
P1,...,Pn

n∑
k=1

〈Ck, Pk〉

subject to

n∑
k=1

〈Akt, Pk〉 ≥ bt t = 1, . . . , T

Pk ∈ P k = 1, . . . , n.

(2)

While conceptually clean, working directly with this formulation has several
disadvantages:

• Solving this formulation requires knowledge of the Ck, Akt before-hand, whereas
the problem is online in nature (i.e. the sessions arrive in an online manner).

• The above optimization formulation is combinatorial and therefore intractable,
i.e. it involves optimizing over the set of permutations.

To address the last point, we perform a convex relaxation [7, Chapter 6] of
the problem, i.e. relax the optimization constraints Pk ∈ P to Pk ∈ co(P),
where the co(P) represents the convex hull of P [17, Chapter 18]. The resulting
relaxation converts the optimization formulation (2) into a convex optimization
problem (indeed, it is a linear programming problem), which can therefore be
solved (in principle) in polynomial time. There are a number of difficulties
pertaining to the relaxation:

• Linear programming is computationally intensive and solving one at serving-
time is often infeasible due to the strict latency requirements. Hence we desire
to avoid solving them at run-time (although solving offline on a periodic basis
is acceptable).

• A problem associated with convex relaxations of combinatorial problems is
that the resulting solution may be fractional (i.e. the solutions Pk may not
be permutation matrices). We then have to devise a scheme to convert the
optimal solution to a permutation matrix via a rounding scheme. As we will
show in our subsequent analysis, we will not need to round solutions. The
special structure of our problem and well-known results from graph matching
and the analysis of the Hungarian algorithm [17, Chapter 17] actually guar-
antee that we can always produce a valid extremal solution, rather than a
fractional one.

• In order to solve the convex relaxation, one needs a tractable representation
of the set co(P) in terms of a small number of equations and inequalities.
It turns out that the convex hull of the set of permutation matrices has a
compact description via the Birkhoff-von Neumann Theorem [17, Chapter
18], it is simply the set of so-called doubly stochastic matrices (sometimes
also called the Birkhoff polytope) given by:

B := co(P) =
{
P ∈ Rm×m | P1 = 1 P ′1 = 1 P ≥ 0

}
. (3)
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We will be able to resolve the above difficulties by computing and analyzing
the dual; indeed the analysis will reveal a natural and simple online algorithm
which we will describe below.

We first explicitly state the primal and dual linear programs that result from
the convex relaxation of (2).

maximize
P1,...,Pn

n∑
k=1

〈Ck, Pk〉

subject to

n∑
k=1

〈Akt, Pk〉 ≥ bt ∀ t = 1, . . . , T

Pk ∈ B k = 1, . . . , n

(4)

maximize
λ,αk,βk

T∑
t=1

λtbt +

n∑
k=1

α′k1 +

n∑
k=1

β′k1

subject to Ck +

T∑
t=1

λtAkt + 1α′k + βk1
′ ≤ 0 ∀k = 1, . . . , n

λ ≥ 0

(5)

The dual linear program is of key interest in the paper — our algorithm
will consist of solving (5) on historical data, and computing the optimal dual
variables λ which have a natural price interpretation. We describe this in the
next section.

3 The Algorithm

Recall that in our setup, the n sessions arrive in a sequential manner online,
and for each session k we have access to the matrices Ck (the engagement), and
Atk (corresponding to the traffic-shaping constraint). We denote the full set of
sessions by N . Our approach involves using a subset of the sessions, S, initially
to learn the dual prices. The corresponding primal/dual linear programs are
called the sample linear programs. In these learning-phase sessions, we make
arbitrary decisions — concretely we let Pk = I, the identity permutation. Let
n̂ := |S| be chosen and denote ε = n̂

n . Since the constraints require that a budget
of bt clicks are to be delivered over n sessions, it follows that when εn sessions
are present, the corresponding commitment is only εbt clicks for each traffic-
constraint bt. In this way, the bt is rescaled. In order to be conservative, we
instead require that for each constraint:

∑n̂
k=1〈Akt, Pk〉 ≥ νεbt. The additional

ν multiplicative factor ensures that the solution obtained is robust to random
variations (we will discuss this in Section 5), and also to counter the conservative
estimate that since the first ε fraction of sessions are used for learning, zero (or
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negligible) contributions to the constraints are made from it. Accordingly, the
primal/dual sample linear programs are:

maximize
P1,...,Pn̂

n̂∑
k=1

〈Ck, Pk〉

subject to

n̂∑
k=1

〈Akt, Pk〉 ≥ νεbt ∀ t = 1, . . . , T

Pk ∈ B k = 1, . . . , n̂

(6)

maximize
λ,αk,βk

T∑
t=1

νελtbt +

n̂∑
k=1

α′k1 +

n̂∑
k=1

β′k1

subject to Ck +

T∑
t=1

λtAkt + 1α′k + βk1
′ ≤ 0 ∀k = 1, . . . , n̂

λ ≥ 0

(7)

In the theoretical anaylsis section we prove that when ν = 1 + 4ε, with high
probability a feasible solution is returned. We also prove that when ν = 1− ε,
an almost feasible solution is returned, and that the objective is almost as large
as the hindsight optimal feasible solution.

Algorithm 1 Algorithm for optimal traffic-shaping

1: Input: Data {(Ck, Ak1, . . . , AkT )} for sessions k = 1, . . . , n presented online
for ranking, sample linear program parameters ν, ε.

2: For the first n̂ sessions, let Pk = I (arbitrary decisions) and log the session
data {(Ck, Ak1, . . . , AkT )} corresponding to this sample set k ∈ S.

3: Solve the sample linear program (7) on S to obtain the dual prices

λ̂1, . . . , λ̂m.
4: while n̂ < k ≤ n do
5: Compute document score matrix Sk = Ck +

∑T
t=1 λ̂tAkt where Sd,p rep-

resents the score when document d is shown in position p.
6: Set σk := MaxWeightMatching(Sk).
7: Output: Ranking σk for session k.
8: Increment session counter k := k + 1
9: end while

In words, the algorithm works as follows. First, using historical data, we
offline solve the linear program (7) to obtain the optimal dual prices λ̂t for each
traffic shaping constraint. These prices are then made available to the online
serving system for ranking. Once the learning phase is over, upon the arrival
of new sessions, the matrices Ck, Akt are computed, and the score matrix Sk is
computed as per step 5. As mentioned before, the (d, p) entry of the matrix Sk
represents the score when document d is shown in position p.
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Once the score matrix is computed, we call a subroutine to compute the
maximum-weight bipartite perfect matching with respect the weight matrix Sk,
this perfect matching assigns documents to positions, and thereby yields the
desired ranking σk for that session.

The run-time complexity is essentially the complexity of computing a per-
fect matching, for which a number of options are available. In order to compute
a max-weight perfect matching exactly, one may use the celebrated Hungar-
ian algorithm. The computational complexity of implementing the same is
O(m3 logm) [17]. In scenarios of interest to us, we are typically only inter-
ested in ranking of the order of 20 − 200 webpages in each session, and hence
the algorithm is feasible to implement at run-time. When the scale is larger and
the Hungarian algorithm is not a viable option, one can instead implement the
naive greedy algorithm2 as an alternative. The naive greedy algorithm is known
to be a 1

2 -optimal algorithm for maximum matching, with a worst-case running
time of O(m2). In our experiments, we use a position effects model called the
“reference CTR” model, in which the greedy algorithm is actually optimal. The
offline computational complexity is polynomial in the size of the problem — it
involves the solution of the linear program (7), which scales with the sample
size of the sampled linear program and is hence high. However, since offline
computation is not a bottleneck, our approach is scalable to web applications.

While Algorithm 1 advocates solving the sampled linear program once (in
advance) on historical data, this is mostly to simplify the analysis of the algo-
rithm. In practice, we recommend solving the dual linear program periodically
(e.g. once daily) to refresh the prices to capture the random as well as seasonal
variations in traffic. The analysis of periodically recomputing the solution is
also possible (in the spirit of [4]), but the analysis is more complicated with
only marginally better bounds — we leave this for future work.

4 Numerical Experiments

4.1 Experimental Setup

In this section we validate our algorithm via numerical experiments. Our nu-
merical experiments are conducted on real data collected from session history
on a major web-portal. We describe the setup for our experiment below.

Our data consists of 2000 sessions of web-traffic data. In each session, we
are presented with 20 documents to rank on the web-page. Each document has
associated with it the following attributes:

1. The predicted dwell-time: This is a score generated by a machine-learned
model on a large corpus of data that incorporates document features, user
features, and document popularity signals. The predicted score is to be

2The greedy algorithm is simply the following: sort the edges of the bipartite graph in
decreasing order. We maintain a set of edges M (initialized to be empty), and loop over the
sorted edges. In each step, add the corresponding edge to M if it is possible to do so while
maintaining the requirement that M is a (possibly partial) matching.
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interpreted as a surrogate for the expected dwell-time when the user is shown
that document.

2. The click-through rate: This is again generated via a machine learned model,
and is an estimate for the click-probability for a particular user to click on
the document in question when that document is shown in the first position.

3. Newsiness score: This is a normalized score that captures how newsy a par-
ticular document is. It is also obtained as the output of a machine-learned
model. When a newsy article is shown in a highly clickable slot on the page,
the overall page is deemed more newsy.

4. Publisher A: This is a binary {0, 1} score that captures whether a document
is curated by Publisher A or not. Showing a Publisher A-curated document
in a more clickable slot delivers more clicks to that publisher, and is hence
more desirable to it.

5. Publisher B: This is also a binary score (as above) corresponding to whether
document is curated by Publisher B.

In our experiments, we implement Algorithm 1, i.e. use a subset of the data
for learning the dual prices (making arbitrary decisions in the process), and in
the remaining sessions making the optimal decisions with respect to the learned
dual prices. In our experiments, the online optimization problem involves: (a)
maximizing the dwell-time in each session, (b) delivering a fixed number of clicks
to Publishers A and B, (c) achieving at least a certain average newsiness score
over the entire set of sessions.

One of the key requirements of our framework is that we need the dwell-time,
click probability, and newsiness score for each document when it is shown in
any one of the 20 slots. The machine learned models generate these scores with
respect to the first slot only. In order to address this, we utilize the (somewhat
standard) Reference CTR model, which is explained below.

4.2 The Reference CTR

When users are presented with a list of content on a web-page, it is well-known
[10] that there is a strong position effect for clicks, dwell-time, and other en-
gagement metrics (such as the newsiness score of interest to us in this paper).
It is commonly assumed [10], that a document d, when shown in slot p, has a
CTR that depends on its CTR in position 1 (denoted by c1(d)) and a factor
that depends only on the position (denoted by refp). It is normalized so that
ref1 = 1. Hence the predicted CTR of document d in position p is given by:

cp(d) = c1(d)× refp.

The quantity refp is computed by computing the aggregate CTR for each
position, and normalizing by the aggregate CTR for position 1 [10]. We will also
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assume (for this experiment) that the dwell-time and newsiness have a similar
position effect as above.

For a list of items presented to a user according to a permutation σ, the total
number of (predicted) clicks generated by the session, and the clicks generated
for publisher t (where t ∈ {A,B}) are respectively given by:

C(σ) =

m∑
p=1

cp(σ(p))× refp

Ct(σ) =

m∑
p=1

cp(σ(p))× refp × 1 (σ(p) of traffic type t) .

Similarly, we assume that the total dwell-time and newsiness respectively
are:

D(σ) =

m∑
p=1

dwell(σ(p))× refp, N(σ) =

m∑
p=1

news(σ(p))× refp.

Figure 1 shows the reference CTR distribution.
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Figure 1: The reference CTR distribution for the slots on the page. Interestingly,
the reference CTR distribution is not monotonically decreasing with the slot
position due to various page presentation effects.

4.3 Observations

We first investigate the performance of sampled linear program when the size of
the sample set increases to 2000 sessions (entire dataset). Figure 2a shows how
the average (normalized) dwell-time per session varies as we increase the size
of the sampled linear program. Note that when all 2000 sessions are used, we
essentially obtain the hindsight-optimal solution. As Fig. 2a shows, this level of
performance is approximately achieved by the sampled linear program withing
just 800 sessions, justifying our intuition that this quantity is distributionally
stable with respect to the traffic.
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Figure 2: (a) Average Dwell-time per session as a function of the sample size
for the sampled linear program. The dwell-time per session stabilizes at ap-
proximately 800 sessions and is constant thereafter. (b) Dual prices for each of
the constraints, as a function of the sample size for the sampled linear program.
The dual prices also stabilize at approximately 800 sessions and are constant
thereafter.
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Figure 3: (a) Trade-off between dwell-time per session and clicks delivered to
Publisher A. (b) Different performance ratios as a function of ε.
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Figure 2b shows how the dual prices change as a function of the number of
sessions over which the sampled linear program is solved. Again, we see that
the prices stabilize at approximately 800 sessions.

In Fig. 3a we investigate the trade-offs that are inevitable as a consequence
of traffic-shaping. We fix the number of sessions to be 2000 and solve the
corresponding linear program (i.e. the hindsight optimal solution). We fix the
values of the constraints for clicks delivered to publisher B and the newsiness
constraint. We vary the number of clicks deliverable to publisher A by changing
a parameter θ (as θ increases, the corresponding click constraint commitment
bt increases multiplicatively). We study how the dwell-time per session changes
as θ increases — the corresponding trade-off curve is shown in Fig. 3a.

In Fig. 3b we study the performance of the online algorithm. On the x-
axis is the fraction of the 2000 sessions which were used for the sampled linear
program. On the y-axis is the performance ratio for different metrics. A value
of ν = 1.05 (as required in (7)) was chosen for this experiment. The solid-blue
curve is the competitive ratio (i.e. the ratio of the performance by the online
algorithm to that of the hindsight optimal solution, see Sec. 5). Note that in the
first ε fraction of the sessions (the price-learning phase), arbitrary suboptimal
decisions are made, and hence the competitive ratio decreases as a function
of ε (see Theorem 5.1). The yellow, purple, and green plots are the ratio of
the clicks/newsiness delivered versus the value committed by the constraints
(i.e. the bt), and values under one indicate constraint violation. Note that for
small values of ε, some of the constraints are actually violated — hence while
the competitive ratio is high, training on that small subset of sessions yields
infeasible solutions. The red dotted line indicates the online performance ratio
as a function of ε. The online performance ratio is the ratio of the reward
of the online algorithm to that of the hindsight optimal sessions, restricted to
the segment of the sessions where online decisions are made. While the online
performance ratio is close to 1 throughout, it attains this ratio by violating
constraints at small values of ε.

Another interesting feature that we found was that, under the RefCTR
model, the greedy algorithm (i.e. sorting documents by the price-weighted
scores, and then matching them to positions in sorted order of their RefCTR
value) achieve the same ranking compared to the Hungarian algorithm. This is
simply a structural consequence of the RefCTR model (we omit the proof here),
however the scalability implications are substantial; instead of implementing the
Hungarian algorithm, the serving implementation only needs a sorting proce-
dure.

5 Theoretical Guarantees

In order to describe the performance guarantees, we need to define a critical (and
well-known) solution concept related to online algorithms, namely the notion of
the competitive ratio of the algorithm.

Given online events {(Ck, Ak1, . . . , Akm)} for sessions k ∈ [n], let OPT de-
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note the solution obtained by solving the linear program (4) on this data — we
call the solution thus obtained the optimal hindsight solution. A hypothetical
decision-maker with advance knowledge of the “future” sessions would make
these optimal decisions, and this is the best performance achievable by any
algorithm. Suppose Algorithm 1 (which is online) achieves a performance of

ÔPT. We define the competitive ratio of the algorithm to be ÔPT
OPT . The com-

petitive ratio measures how the performance of the online algorithm compares
to the optimal hindsight solution. Our main result shows that, under certain
assumptions, our algorithm achieves an 1 − O (ε) competitive ratio. We state
our assumptions next:

1. Assumption 1: The sessions {(Ck, Ak1, . . . , AkT )} arrive in a random order,
i.e. the matrices {(Ck, Ak1, . . . , AkT )} can be arbitrary, but every permuta-
tion of the indices k have an equal probability.

2. Assumption 2: The optimization problems (4) and (6) are both strictly
feasible.

3. Assumption 3: The total number of sessions n is known a priori.

4. Assumption 4: For every permutation P we have 〈Ck, P 〉 ∈ [0, 1] and
〈Akt, P 〉 ∈ [0, 1] for all k = 1, . . . , n and t = 1, . . . , T .

Theorem 5.1. Consider the online traffic-shaping problem when the above as-
sumptions hold true, and let ε ∈ (0, 13 ) be fixed. Define B := mint=1,...,T bt.
Suppose the constraints satisfy the requirement that

ε ≥

(
log
(
2C0T
ε

)
+ (T + 1) log

(
m2n

)
B

) 1
3

. (8)

Let the dual prices computed by the sampled linear program be denoted by
λ̂. Then the solution constructed by Algorithm 1, denoted by Pk(λ̂), has the
following properties:

1. In each session the optimal hindsight solution and the online approach via
Algorithm 1 produce valid assignments P ∗k and P online

k (λ̂). Moreover, if the
optimal hindsight prices, denoted λ∗, are given 1, then P ∗k = P online

k (λ∗).

2. When ν = 1 + 4ε, With probability exceeding 1− ε, the assignments satisfy
the traffic-shaping constraints, i.e.

n∑
k=1

〈Akt, Pk(λ̂)〉 ≥ bt ∀t = 1, . . . , T

3. When ν = 1−ε, with probability exceeding 1−ε the online solution satisfies

n∑
k=1

〈Akt, Pk(λ̂)〉 ≥ (1− 2ε)bt ∀t = 1, . . . , T

14



and objective attained by the online assignments Pk(λ̂) satisfies:

n∑
k=1

〈Ck, Pk(λ̂)〉 ≥ (1− ε)OPT,

(i.e. the competitive ratio is 1−O(ε) with high probability).

We give a detailed proof in Sec 7. We make the following remarks about the
main result:
Remarks
(1) Note that the first part states that if the optimal prices are available to the
online algorithm, then optimal decisions will be made in each session. Hence
the prices λ∗ are sufficient to make good decisions online. The second and
third parts of the theorem quantify the intuition that if we use a small set of
samples initially to learn the prices using the sampled linear program, the online
algorithm will then perform almost optimally.
(2) Note that Algorithm 1 advocates using the Hungarian algorithm to compute
the best matching in each session. Depending on the number of items to be
ranked, this may or may not be feasible at run time — in the latter case a
greedy algorithm may be used. The greedy algorithm, being a 1

2 -approximation
in the worst case, can also be analyzed and bounds on the competitive ratio may
be derived. In our experiments, we find that using the greedy algorithm does
not lead to any loss of performance as a consequence of the RefCTR assumption
(see Sec. 4).
(3) Assumption 4 requires that the for each permutation, the rewards and the
influence to each traffic shaping is non-negative and bounded by 1. The non-
negativity assumption is natural in our setting (since we are interested in quan-
tities such as views and clicks). The upper bound of 1 is somewhat arbitrary,
we merely need the rewards and influences to be bounded by some uniform
quantity (say U). Our results would be more or less unaffected (modulo certain
logarithmic factors in the statement of Theorem 5.1) if U > 1).
(4) We now comment on the qualitative relationship between ε, B and the com-
petitive ratio. In order to make sense of the statement, we assume that B
increases linearly with the number of sessions n (e.g. clicks committed increase
linearly as the number of sessions increases); i.e. B = ρn. (Note that B grow-
ing with n fixed would be problematic from a feasibility point of view - if we
over-commit to a traffic-shaping constraint the optimization problem becomes
infeasible violating Assumption 2). Thus as n increases, the right hand side of
(8) decreases to zero and we may make ε arbitrarily small, thus yielding (a) a
small fraction of the samples used for learning the prices (b) a better competi-
tive ratio, and (c) a high probability of success simultaneously. Indeed (8) may
be viewed as a “sample-complexity” type result.
(5) The competitive ratio decreases as the fraction of sessions ε used for learning
increases. While on the one hand the prices are learned more accurately as
ε increases, on the other hand suboptimal decisions are made by the online
algorithm in the learning phase. Indeed, we assume (somewhat pessimistically)

15



that arbitrary decision are made in the learning phase with zero reward accrued,
thus an ε-fraction of the possible reward is lost in this phase.

6 Conclusion

In this paper we investigated the problem of online constrained ranking and
its application to the web traffic-shaping problem. We developed a linear-
programming based primal-dual algorithm for online ranking and demonstrated
it’s efficacy on real data. We also proved rigorous guarantees about the algo-
rithm in terms of the achieved competitive ratio.

While the paper focuses on traffic-shaping as the motivating application, we
believe this algorithm to have broad applicability to whole-page optimization
and beyond. For instance, when optimizing the simultaneous placement of ads
and organic content, additional constraints (or modifications to the objective)
can be made to factor in the revenue considerations traffic-wide. More generally,
this approach can be used for solving a variety of constrained online assignment
problems such as matching customers to servers (e.g. matching drivers to pas-
sengers) subject to overall service-level constraints. We believe this approach
will scale well to a variety of such application domains.

A number of further avenues for future work are worth mentioning:

• Our model involves optimizing (in the objective) subject to constraints
over the predicted dwell-time and the predicted clicks over a period of ses-
sions. These predictions are obtained as the output of a machine-learned
model. The number of actual clicks obtained, and the actual dwell-time
realized will of course be different. As a practical strategy, we advocate
re-solving the linear program periodically (and suitably altering the con-
straints) to capture these variations. However, there is an unavoidable
feedback loop between the rankings and the machine learned models —
the decisions made in the ranking phase affect the learning of these online
models. Consequently, there is a natural exploration-exploitation trade-
off that is unavoidable in this setup. Ranking unknown items in a highly
clickable slot will lead to more exploration, whereas ranking more certain
items will lead to exploitation. How one navigates this will likely be of
key practical importance.

• Our approach assumes that the objective and the constraints can be ex-
pressed as linear functions of the ranking; the expected number of clicks
and expected dwell time are assumed to be a weighted sum of the com-
ponents derived from each slot. Other types of constraints may not be
linearly expressible (e.g. suppose one wishes to enforce a certain notion
of diversity in each ranking and enforce a certain minimum amount of av-
erage diversity across sessions). Working with non-linear constraints will
likely enable us to enrich the quality of ranking in our traffic.
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7 Proofs

We begin by stating two lemmas (their proofs are omitted due to space con-
straints) which follow as a standard consequence of the analysis of the Hungarian
algorithm (we refer the reader to [17] for details).

Lemma 7.1. Let C ∈ Rm×m be an entry-wise non-negative matrix. Consider
the following optimization problems:

maximize
P

〈C,P 〉

subject to P ∈ B
(9)

maximize
α,β

α′1 + β′1

subject to C + 1α′ + β1′ ≤ 0
(10)

Then the following hold:

1. The pair (13), (10) is a primal-dual pair, and strong duality holds.

2. An optimal solution P ∗ to (13) is attained at a permutation matrix, and
this solution can be found using the Hungarian algorithm.

Proof. The duality between (13) and (10) is a standard exercise - we leave it
to the reader. To see that strong duality holds, we note that the matrix with
entries Pij = 1

m is in the relative interior of the feasible set of (13). By Slater’s
condition [6, Chap. 5.2.3] strong duality follows.

The second part follows from the fact that the permutation matrix cor-
responding to the maximum weight perfect matching is an optimal solution.
To see this, first note that a perfect matching exists since the bipartite graph
in question is complete (since C ∈ Rm×m is square), and thus satisfies Hall’s
theorem [17, Chap. 22] - guaranteeing existence. Furthermore, the Hungar-
ian algorithm [17] yields a permutation matrix P ∗ such that dual feasibility
is achieved (see e.g. [17, Chap. 17]), indeed dual feasibility of (10) is one of
the key invariants of the Hungarian algorithm. Furthermore, the corresponding
permutation matrix P ∗ satisfies complementary slackness, only edges (i, j) cor-
responding to a perfect matching are chosen (primal feasibility) corresponding
to edges where the dual constraint (C + 1α′ + 1β′)ij = 0 i.e. corresponding to
tight constraints, and hence (C + 1α′ + 1β′)ij P

∗
ij = 0. Hence P ∗ must be a

primal optimal solution.

Lemma 7.2. Let λ = λ̄ ∈ RT be fixed such that λ̄ ≥ 0. Consider the solution
to the optimization problem

maximize
αk,βk

T∑
t=1

λ̄tbt +

n∑
k=1

α′k1 +

n∑
k=1

β′k1

subject to Ck +

T∑
t=1

λtAkt + 1α′k + βk1
′ ≤ 0 ∀k = 1, . . . , n

(11)
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A set of optimal dual solutions (w.r.t. the constraints of (11)) Pk(λ̄) for k =
1, . . . , n corresponding to (4) are achieved at extreme points of the Birkhoff poly-
tope, (i.e. permutation matrices). Moreover each of the Pk(λ̄) may be computed
by computing a maximum-weight perfect matching with respect to the bipartite
graph with weights Ck +

∑T
t=1 λ̄tAkt (using the Hungarian algorithm).

Proof. Note that for each fixed λ = λ̄ and the separability (with respect to k) of
the objective function, (11) decouples into the following optimization problems:

maximize
αk,βk

α′k1 + β′k1

subject to Ck +

T∑
t=1

λ̄tAkt + 1α′k + βk1
′ ≤ 0,

(12)

and the corresponding optimal solutions α∗k(λ̄), β∗k(λ̄) are optimal with respect
to (11). The strong dual of (12) is precisely:

maximize
P

〈Ck +

T∑
t=1

λ̄tAkt, P 〉

subject to P ′1 = 1

P ≥ 0 k = 1, . . . , n

(13)

By Lemma 7.1, the solutions Pk(λ̄) to the above are yielded by the permutations
corresponding to the maximum-weight perfect matchings yielded by running the
Hungarian algorithm on bipartite graphs with weight matrices Ck+

∑T
t=1 λ̄tAkt

for k = 1, . . . , T .

We will also need the following lemma concerning concentration of random
variables. For a proof we refer the reader to [4, Lemma A.1], [13, Lemma 3] and
the references therein.

Lemma 7.3. Let u1, . . . , ur be a uniformly random sample without replacement
from real numbers{

|
r∑
i=1

ui − rc̄| ≥ t

}
≤ exp

(
− t2

2rσ2
R + t∆R

)
,

where ∆R = maxi ci −mini ci, c̄ = 1
R

∑R
i=1 ci, and σ2

R = 1
R

∑R
i=1(ci − c̄)2.

We now provide a detailed proof of Theorem 1. Note that both our main
result for online ranking, and our assumptions are of a similar flavor as existing
literature in online algorithms [13, 4]. Indeed, it is known [13, 4], that in these
related results, these assumptions are also tight, i.e. it is not possible to get
1−O (ε) competitive ratio if a single one of these assumptions is removed. While
we do not show the tightness of the assumptions, we believe it likely that they
are needed to achieve the stated competitive ratio.
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Proof of Theorem 5.1. The main idea behind the proof, which mimics [4] with
suitable adaptations, will be to use the complementary slackness conditions for
linear programming. Let λ̂ be a dual price vector obtained as the solution of the
sampled linear program. We denote by Pk(λ̂) the permutation that is chosen as
per steps 5, 6 of the algorithm.

Part 1. The online assignments P online
k (λ̂) (and similarly P online

k (λ∗)) are valid
assignments since they are constructed via the Hungarian algorithm. Note that
they are both trivially primal-feasible (since assignments are extreme points of
the Birkhoff polytope).

Let λ∗ be an optimal dual solution of (5). Note that when λ̄ = λ∗, the
corresponding optimal solutions of (11) coincide with those of (5). By strong
duality, a set of corresponding primal solutions also coincide. By Lemma 7.2,
a dual variable corresponding to the constraints of (11) achieves optimality at
permutation matrices Pk(λ∗). Hence, Pk(λ∗) = P ∗k .
Part 2. Our proof strategy will be as follows. We will take a hypothetical
optimal solution λ̂ to the sampled linear program. It will be assumed to satisfy
that the complementary slackness conditions of the primal dual pair (13),(10) -
but otherwise arbitrary. We will show that as a consequence of complementary
slackness and the assumptions, with high probability the solution yielded by
Pk(λ̂) are feasible for this hypothetical λ̂. We will then take a union bound over

all possible λ̂ to obtain that the solution is feasible unconditionally.
Let us fix a constraint t and note that for the first εn sessions, arbitrary

decisions are made and we thus assume that no contributions to the constraints
are made from these. As a result we required that the sampled linear program
satisfy: ∑

k∈S

〈Akt, Pk〉 ≥ (1 + 4ε)εbt,

where the additional (1 + 4ε) factor ensures that the solution robustly satisfies
the constraints.

The bad event of interest to us is the event that a constraint is violated.
We will call the set S bad when the solution λ leads us to a situation of such
a constraint violation. Concretely, we consider the following set relations corre-
sponding to a set S being bad:
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 ∑
k∈N\S

〈Akt, Pk(λ)〉 < bt,
∑
k∈S

〈Akt, Pk(λ)〉 ≥ (1 + 4ε)εbt

 ⊆ A1 ∪A2,

A1 =

 ∑
k∈N\S

〈Akt, Pk(λ)〉 < bt,
∑
t∈S
〈Akt, Pk(λ)〉 ≥ (1 + 4ε)εbt,

∑
k∈N

〈Akt, Pk(λ)〉 ≥ (1 + 3ε)bt

}

A2 =

{∑
k∈S

〈Akt, Pk(λ)〉 ≥ (1 + 4ε)εbt,
∑
k∈N

〈Akt, Pk(λ)〉 < (1 + 3ε)bt

}
Next we note that:

P(A1) ≤ P

 ∑
k∈N\S

〈Akt, Pk(λ)〉 < bt,
∑
k∈N

〈Akt, Pk(λ)〉 ≥ (1 + 3ε)bt


≤ P

 ∑
k∈N\S

〈Akt, Pk(λ)〉 < bt,
∑
k∈N

〈Akt, Pk(λ)〉 ≥ 1 + ε

1− ε
bt


= P

 ∑
k∈N\S

〈Akt, Pk(λ)〉 < bt, (1− ε)
∑
k∈N

〈Akt, Pk(λ)〉 ≥ (1 + ε)bt


≤ 2 exp

(
− ε2bt

2− ε

)
where the second inequality follows since 1+ε

1−ε < 1 + 3ε for all ε ∈ (0, 13 ), and the
last inequality follows from Lemma 7.3.

Defining Yk := 〈Akt, Pk(λ)〉, we also note that

P(A2) ≤ P

(∑
t∈S

〈Akt, Pk(λ)〉 ≥ (1 + 4ε)εbt,
∑
t∈N

〈Akt, Pk(λ)〉 < (1 + 3ε)bt

)

≤ P

(
|
∑
t∈S

Yt − ε
∑
t∈N

Yt| ≥ ε2bt

)

≤ 2 exp

(
− ε3bt

2 + ε

)
where the last inequality again follows from an application of Lemma 7.3.

Hence, the probability of a bad sample is bounded above by 4 exp
(
− ε

3bt
2+ε

)
≤

δ, where δ := ε
C0(m2n)T+1

Since λ is the solution obtained from the sampled linear program, it follows
that: ∑

k∈S

Yk ≥ (1 + ε)εbt.

20



where δ := ε
2C0T (m2n)T+2 for some constant C0. In the preceding chain of

inequalities, the last one follows from Lemma 7.3.
Since the solution λ obtained from the sampled linear program can be ar-

bitrary, we take a union bound over all the possible “distinct” λ. We call two
solutions λ1 and λ2 as distinct if Pk(λ1) 6= Pk(λ2) for some session k ∈ N .
Consider a dual constraint with complementary slackness:(

Ck +

T∑
t=1

λtAkt + 1α′k + 1β′k

)
ij

(Pk)ij = 0.

and note that (Pk)ij > 0 is only possible when(
Ck +

T∑
t=1

λtAkt + 1α′k + 1β′k

)
ij

≥ 0.

(Indeed, the set of possible solutions yielded by the Hungarian algorithm will
be a subset of such possible Pk - by design the Hungarian algorithm maintains
the dual inequality as an invariant [17]). The set of possible Pk is thus bounded
above by the number of unique separations of the points{(

(Ck)ij , (Ak1, )ij , . . . , (AkT , )ij , 1
)}

i,j,k∈[m]×[m]×[n]

in (T + 1)-dimensional space. By results from computational geometry [16],
the number of such distinct hyperplanes, is bounded above by C0(m2n)T+1 for
some constant C0. Applying a union bound over the possible different prices,
and t = 1, . . . , T we obtain the required result.

Part 3. Given ν = 1 − ε, one can prove approximate feasibility in a simi-
lar manner as above by observing that

P

 ∑
k∈N\S

〈Akt, Pk(λ)〉 < (1− 2ε)bt,
∑
k∈N

〈Akt, Pk(λ)〉 ≥ (1− ε)bt

 ≤ δ,
where δ is the quantity used in the preceding part.

To bound the competitive ratio, our proof strategy will be to construct
an auxiliary linear program for which the online solutions are optimal. We
will show that a point P ∗k (the solution to (4)) is feasible with respect to this
auxiliary linear program, and hence the objective function values between the
online solution and that achieved by P ∗k cannot be too different.

Let λ̂ be the solution of the sampled linear program (7) and Pk(λ̂) the
corresponding assignment. Consider the linear program:

maximize
P1,...,Pn

n∑
k=1

〈Ck, Pk〉

subject to

n∑
k=1

〈Akt, Pk〉 ≥ b̂t ∀ t = 1, . . . , T

Pk ∈ B k = 1, . . . , n

(14)
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where the quantity b̂t is defined as b̂t =
∑
t∈N 〈Akt, Pk(λ̂)〉 if λ̂t > 0 and

bt = min
{∑

t∈N 〈Akt, Pk(λ̂)〉, bt
}

if λt = 0. Since λ̂, Pk(λ̂) satisfy the comple-

mentary slackness conditions for (14) by construction, they are optimal solutions
to it. Note that in general the solution of the sampled linear program could be
fractional (i.e. P̂k for some members of the Birkhoff polytope). However, as a

consequence of Lemma 7.2, it is in fact the case that P̂k = Pk(λ̂) are optimal.

Suppose λ̂t > 0, then the tth primal constraint is tight in the sampled linear
program, i.e.

∑
k∈S〈Akt, Pk(λ̂)〉 = (1 − ε)εbt. By applying an argument along

similar lines to part 2 above and applying concentration, it follows that with
probability at least 1− ε,

b̂t =
∑
t∈N
〈Akt, Pk(λ̂)〉 ≤ bt.

Let P ∗k be the optimal solution to (6). It follows that P ∗k are also feasible

solutions to (14). As a consequence,
∑
k∈N 〈Ck, Pk(λ̂)〉 ≥ OPT, where OPT

refers to the objective function value of the optimal solution to (6).
By again applying a concentration argument as above, we can argue that

with probability exceeding 1− ε,∑
k∈N\S

〈Ck, Pk(λ̂)〉 ≥ (1− ε)
∑
k∈N

〈Ck, Pk(λ̂) ≥ (1− ε)OPT.

Since the returns from the first n̂ sessions are non-negative (under an arbitrary
assignment), the online algorithm returns a reward of at least (1− ε)OPT.
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