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Abstract

This paper considers the problem of recovering an unknown sparse p X p matrix X
from an m x m matrix Y = AX BT, where A and B are known m x p matrices with
m < p.

The main result shows that there exist constructions of the “sketching” matrices A
and B so that even if X has O(p) non-zeros, it can be recovered exactly and efficiently
using a convex program as long as these non-zeros are not concentrated in any single
row/column of X. Furthermore, it suffices for the size of Y (the sketch dimension) to
scaleasm = O (\/ # nonzeros in X X log p). The results also show that the recovery is
robust and stable in the sense that if X is equal to a sparse matrix plus a perturbation,
then the convex program we propose produces an approximation with accuracy pro-
portional to the size of the perturbation. Unlike traditional results on sparse recovery,
where the sensing matrix produces independent measurements, our sensing operator is
highly constrained (it assumes a tensor product structure). Therefore, proving recov-
ery guarantees require non-standard techniques. Indeed our approach relies on a novel
result concerning tensor products of bipartite graphs, which may be of independent
interest.

This problem is motivated by the following application, among others. Consider
a p X n data matrix D, consisting of n observations of p variables. Assume that the
correlation matrix X := DD7 is (approximately) sparse in the sense that each of the p
variables is significantly correlated with only a few others. Our results show that these
significant correlations can be detected even if we have access to only a sketch of the
data S = AD with A € R™*P,

Keywords. sketching, tensor products, distributed sparsity, ¢; minimization, compressed
sensing, covariance sketching, graph sketching, multi-dimensional signal processing.

1 Introduction

An important feature of many modern data analysis problems is the presence of a large
number of variables relative to the amount of available resources. Such high dimensionality



occurs in a range of applications in bioinformatics, climate studies, and economics. Accord-
ingly, a fruitful and active research agenda over the last few years has been the development
of methods for sampling, estimation, and learning that take into account structure in the
underlying model and thereby making these problems tractable. A notion of structure that
has seen many applications is that of sparsity, and methods for sampling and estimating
sparse signals have been the subject of intense research in the past few years [11, 10, 20]

In this paper we will study a more nuanced notion of structure which we call distributed
sparsity. For what follows, it will be convenient to think of the unknown high-dimensional
signal of interest as being represented as a matrix X. Roughly, the signal is said to be
distributed sparse if every row and every column of X has only a few non-zeros. We will see
that it is possible to design efficient and effective acquisition and estimation mechanisms for
such signals. Let us begin by considering a few example scenarios where one might encounter
distributed sparsity.

e Covariance Matrices: Covariance matrices associated to some natural phenomena
have the property that each covariate is correlated with only a few other covariates.
For instance, it is observed that protein signaling networks are such that there are
only a few significant correlations [15] and hence the discovery of the such networks
from experimental data naturally leads to the estimation of a covariance matrix (where
the covariates are proteins) which is (approximately) distributed sparse. Similarly, the
covariance structure corresponding to longitudinal data is distributed sparse [17]. See
Section 1.3.1.

e Multi-dimensional signals: Multi-dimensional signals such as the natural images
that arise in medical imaging [! 1] are known to be sparse in the gradient domain. When
the features in the images are not axis-aligned, not only is the matrix representation
of the image gradient sparse, it is also distributed sparse. For a little more on this, see
Section 1.3.3

¢ Random Sparse Signals and Random Graphs: Signals where the sparsity pattern
is random (i.e., each entry is nonzero independently and with a probability ¢) are also
distributed sparse with high probability. The “distributedness” of the sparsity pattern
can be measured using the “degree of sparsity” d which is defined to be the maximum
number of non-zeros in any row or column. For random sparsity patterns, we have the
following;:

Proposition 1. Consider a random matriz X € RP*P whose entries are independent
copies of the Bernoulli(y) *distribution where py = A = ©(1). Then for any e > 0, X
has at most d 1’s in each row/column with probability at least 1 — €, where

- (14 20200

'Recall that if x ~ Bernoulli(y), then P(y =1) =~ and P(x =0) =1 —1~.



(The proof is straightforward, and available in Appendix B.)

In a similar vein, combinatorial graphs have small degree in a variety of applications,
and their corresponding matrix representation will then be distributed sparse. For
instance, Erdos-Renyi random graphs G(p, q¢) with pg = O(log p) have small degree [9].

1.1 Problem Setup and Main Results

Our goal is to invert an underdetermined linear system of the form
Y = AXBT, (1)

where A = [a;;] € R™*? B = [b;;] € R™*?, with m < p and X € RP*P. Since the matrix
X € RP*P ig linearly transformed to obtain the smaller dimensional matrix ¥ € R™*™, we
will refer to Y as the sketch (borrowing terminology from the computer science literature
[10]) of X and we will refer to the quantity m as the sketching dimension. Since the value
of m signifies the amount of compression achieved, it is desirable to have as small a value of
m as possible.

Rewriting the above using tensor product notation, with y = vec(Y) and = = vec(X),
we equivalently have

y=(B® Az, (2)

where vec(X) simply vectorizes the matrix X i.e., produces a long column vector by stacking
the columns of the matrix and B® A is the tensor (or Kronecker) product of B and A, given
by

buA bipA --- bA
by A b A --- byA
PR ®)
bt A DA oo bppA

While it is not possible to invert such underdetermined systems of equations in gen-
eral, the rapidly growing literature on what has come to be known as compressed sensing
suggests that this can be done under certain assumptions. In particular, taking cues from
this literature, one might think that this is possible if x (or equivalently X) has only a few
NON-Zeros.

Let us first consider the case when there are only £ = ©(1) non-zeros in X, i.e., it is very
sparse. Then, it is possible to prove that the optimization program (P;) recovers X from
AX BT using standard “RIP-based” techniques [11]. We refer the interested reader to the
papers by Jokar et al [33] and Duarte et al [21] for more details, but in essence the authors
show that if §,(A) and d,(B) are the restricted isometry constants (of order r) [11] for A and
B respectively, then the following is true about B ® A

max {6,(A),0,(B)} < 6,(A® B) = 6,(B® A) < (1 +6,(A)) (1 +6,(B)) — 1.

In many interesting problems that arise naturally, as we will see in subsequent sections,
a more realistic assumption to make is that X has O(p) non-zeros and it is this setting we
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consider for this paper. Unfortunately, the proof techniques outlined above cannot succeed
in such a demanding scenario. As hinted earlier, it will turn out however that one cannot
handle arbitrary sparsity patterns and that the non-zero pattern of X needs to be distributed,
i.e., each row/column of X cannot have more than a few, say d, non-zeros. We will call such
matrices d—distributed sparse (see Definition 3). We explore this notion of structure in more
detail in Section 3.1.

An obvious, albeit highly impractical, approach to recover a (distributed) sparse X from
measurements of the form Y = AX BT is the following: search over all matrices X € RP*P
such that AX BT agrees with Y = AX BT and find the sparsest one. One might hope that
under reasonable assumptions, such a procedure would return X as the solution. However,
there is no guarantee that this approach might work and worse still, such a search procedure
is known to be computationally infeasible.

We instead consider solving the optimization program (P;) which is a natural (convex)
relaxation of the above approach.

minimize HX
X ! (P1)
subject to AXBT =v.

Here, by || X||; we mean D i ’f(i?j‘, i.e., the ¢4 norm of vec(X).

The main part of the paper is devoted to showing with high probability (P;) has a unique
solution that equals X. In particular, we prove the following result.

Theorem 1. Suppose that X is d—distributed sparse. Also, suppose that A, B € {0,1}""?
are drawn independently and uniformly from the S—random bipartite ensemble*. Then as
long as

m = O(y/dplogp) and 6= O(logp),

there exists a ¢ > 0 such that the optimal solution X* of (P) equals X with probability
exceeding 1 — p=¢. Furthermore, this holds even if B equals A.

In Section 4, we will prove Theorem 1 for the case when B = A. It is quite straightforward
to modify this proof to the case where A and B are independently drawn, since there is much
more independence that can be leveraged.

Let us pause here and consider some implications of this theorem.

1. (Py) does not impose any structural restrictions on X*. In other words, even though
X is assumed to be distributed sparse, this (highly non-convex) constraint need not be
factored in to the optimization problem. This ensures that (P;) is a Linear Program
(see e.g., [0]) and can thus be solved efficiently.

2Roughly speaking, the §—random bipartite ensemble consists of the set of all 0-1 matrices that have
almost exactly § ones per column. We refer the reader to Definition 4 for the precise definition and Section 3.2
for more details.



2. Recall that what we observe can be thought of as the R™ vector

(B ® A)x. Since X is d—distributed sparse, = has O(dp) non-zeros. Now, even if
an oracle were to reveal the exact locations of these non-zeros, we would require at
least O(dp) measurements to be able to perform the necessary inversion to recover
z. In other words, it is absolutely necessary for m? to be at least O(dp). Comparing
this to Theorem 1 shows that the simple algorithm we propose is near optimal in the
sense that it is only a logarithm away from this trivial lower bound. This logarithmic
factor also makes an appearance in the measurement bounds in the compressed sensing
literature [10)].

3. Finally, as mentioned earlier, inversion of under-determined linear systems where the
linear operator assumes a tensor product structure has been studied earlier [32, 22].
However, these methods are relevant only in the regime where the sparsity of the
signal to be recovered is much smaller than the dimension p. The proof techniques
they employ will unfortunately not allow one to handle the more demanding situation
the sparsity scales linearly in p and if one attempted an extension of their techniques
naively to this situation, one would see that the sketch size m needs to scale like
O(dp log? p) in order to recover a d— distributed sparse matrix X. This is of course
uninteresting since it would imply that the size of the sketch is bigger than the size of
X.

It is possible that Y was not exactly observed, but rather is only available to us as a cor-
rupted version Y. For instance, Y could be Y corrupted by independent zero mean, additive
Gaussian noise or in case of the covariance sketching problem discussed in Section 1.3.1, Y
could be an empirical estimate of the covariance matrix Y = AX AT. In both these cases, a
natural relaxation to (P;) would be the following optimization program (P5) (with B set to
A in the latter case).

minimize |]A)~(BT—}>|]%+)\“X‘) (Ps)
% 1

Notice that if X was a sparse covariance matrix and if A = B = I,4,, then (P5) reduces to
the soft thresholding estimator of sparse covariance matrices studied in [13].

While our experimental results show that this optimization program (P5) performs well,
we leave its exploration and analysis to future work. We will instead state the following
“approximation” result that shows that the solution of (P;) is close to the optimal d—
distributed sparse approximation for any matrix X. The proof is similar to the proof of
Theorem 3 in [5] and is provided in Appendix C. Given p € N, let [p] denote the set
{1,2,...,p} and let 20,, denote the following collection of subsets of [p] x [p]:

Wa,p :={Q2 C [p] x [p] - (@0 {{i} x [p]}| < d, [QN0{[p] x {i}}| < d, for all i € [p]}.

Notice that if a matrix X € RP*? is such that there exists an €2 € 204, with the property
that X;; # 0 only if (¢, 7) € €2, then the matrix is d—distributed sparse.



Given 2 € 204, and a matrix X € RP*?, we write Xq to denote the projection of X onto
the set of all matrices supported on 2. That is,

X, if (i,5) € Q o

Xal, = {500 0D €D g an (i,5) € o] x .
’ 0 otherwise

Theorem 2. Suppose that X is an arbitrary p X p matriz and that the hypotheses of The-

orem 1 hold. Let X* denote the solution to the optimization program (Pi). Then, there

exist constants ¢ > 0 and € € (0,1/4) such that the following holds with probability exceeding

1—p .

2—4
o= Xl = 225 (i 1 - Xall). ()

The above theorem tells us that even if X is not structured in any way, the solution of
the optimization program (P;) approximates X as well as the best possible d—distributed
sparse approximation of X (up to a constant factor). This has interesting implications, for
instance, to situations where a d—distributed sparse X is corrupted by a “noise” matrix N
as shown in the following corollary.

Corollary 1. Suppose X € RP*P s d—distributed sparse and suppose that X =X+N.
Then, the solution X* to the optimization program

man. HX subject to AXBT = AX BT
X 1
satisfies
5 —12¢
X" —X||, <——||IN 5
%7 = X1l < S|Vl )

Proof. Let € be the support of X. To prove the result, we will consider the following chain
of inequalities.

||X*—XH1§HX*—XH X - x
1 1
(@) 2 —4e || ~ N R
< ‘ X—XQH n X—XH
1 —4e 1 1
2 —de || - 2 —4e || ~ N
S [ %o = x| + ]| - ]
_1—46H 1+1—4e @ 1+ 1
() 5 — .
§5 12¢ % x
1 —4e 1
(c) o — 12¢
= N, .
- IN,

Here (a) follows from Theorem 2 since §2 € 2,,, and (b) follows from the fact that
HXQ — XH < HX — XH since Xgqe is Opx,. Finally, in (¢) we merely plug in the definition of
X. O



1.2 The Rectangular Case and Higher Dimensional Signals

While Theorem 1, as stated, applies only to the case of square matrices X, we can extend our
result in a straightforward manner to the rectangular case. Consider a matrix X € RP1*P2
where (without loss of generality) p; < p». We assume that the row degree is d, (i.e. no
row of X has more than d, non-zeros) and that the column degree is d.. Consider sketching
matrices A € R™*P1 and B € R™*P2 and the sketching operation:

Y = AXB".
Then we have the following corollary:

Corollary 2. Suppose that X is distributed sparse with row degree d, and colum degree d..

Also, suppose that A € {0,1}™"* B € {0,1}"*"* are drawn independently and uniformly

from the —random bipartite ensemble. Let us define p = max(py,ps) and d = max(d,,d.).
Then if

m = O(y/dplogp) and &= O(logp),

there ezists a ¢ > 0 such that the optimal solution X* of (Py) equals X with probability
exceeding 1 — p~¢.

Proof. Let us define the matrix X € RP*? as

(3]

i.e. it is made square by padding additional zero rows. Note that X has degree d =
max(d,, d.). Moreover note that the matrix A € R"*Pt can be augmented to A € R™*? via:

A=[A A]

where A € R™*(P—71) ig also drawn from the d-random bipartite ensemble. Then one has the
relation: -

Y = AXB”.
Thus, the rectangular problem can be reduced to the standard square case considered in

Theorem 1, and the result follows.
]

The above result shows that a finer analysis is required for the rectangular case. For
instance, if one were to consider a scenario where p; = 1, then from the compressed sensing
literature, we know that the result of Corollary 2 is weak. We believe that determining the
right scaling of the sketch dimension(s) in the case when X is rectangular is an interesting
avenue for future work.

Finally, we must also state that while the results in this paper only deal with two-
dimensional signals, similar techniques can be used to deal with higher dimensional tensors
that are distributed sparse. We leave a detailed exploration of this question to future work.
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1.3 Applications

It is instructive at this stage to consider a few examples of the framework we set up in this
paper. These applications demonstrate that the modeling assumptions we make viz., tensor
product sensing and distributed sparsity are important and arise naturally in a wide variety
of contexts.

1.3.1 Covariance Estimation from Compressed realizations
or Covariance Sketching

One particular application that will be of interest to us is the estimation of covariance
matrices from sketches of the sample vectors. We call this covariance sketching.

Consider a scenario in which the covariance matrix > € RP*P of a high-dimensional
zero-mean random vector & = (&1,...,&,)7 is to be estimated. In many applications of
interest, one determines ¥ by conducting correlation tests for each pair of covariates &;, §; and
computing an estimate of E[¢;{;] for i,j = 1,...,p. This requires one to perform correlation
tests for O(p?) pairs of covariates, a daunting task in the high-dimensional setting. Perhaps
most importantly, in many cases of interest, the underlying covariance matrix may have
structure, which such an approach may fail to exploit. For instance if ¥ is very sparse, it
would be vastly more efficient to perform correlation tests corresponding to only the non-zero
entries. The chief difficulty of course is that the sparsity pattern is rarely known in advance,
and finding this is often the objective of the experiment.

In other settings of interest, one may obtain statistical samples by observing n indepen-
dent sample paths of the statistical process. When ¢ is high-dimensional, it may be infeasible
or undesirable to sample and store the entire sample paths €1, ... €M™ € RP, and it may be
desirable to reduce the dimensionality of the acquired samples.

Thus in the high-dimensional setting we propose an alternative acquisition mechanism:
pool covariates together to form a collection of new variables 71, ..., Z,,, where m < p. For
example one may construct:

Zy =&+ &+ 8, Zo=~E& +8&+ &+ &,

and so on; more generally we have measurements of the form Z = A{ where A € R™*P and
typically m < p. We call the thus newly constructed covariates Z = (Z1,. .., Z,,) a sketch
of the random vector &.

More formally, the covariance sketching problem can be stated as follows. Let £0), ¢@) . ¢ ¢
R? be n independent and identically distributed p—variate random vectors and let > € RP*P
be their unknown covariance matrix. Now, suppose that one has access to the m—dimensional
sketch vectors Z@ such that

Z0 = A i=1,2,... n,

where A € R"™*P m < p is what we call a sketching matriz. The goal then is to recover
¥ using only {Z @) ? 1. The sketching matrices we will focus on later will have randomly-
generated binary values, so each element of Z( will turn out to be a sum (or “pool”) of a
random subset of the covariates.



Notice that the sample covariance matrix computed using the vectors {Z (i)}:;l satisfies
the following.

(1 1 - i i
B = 13 20207
i=1

)
a4t @) (¢GN\T | AT
A(n;5 (¢ >>A
= ANM AT

where (" := 13 ¢0(¢0)T i the (maximum likelihood) estimate of ¥ from the samples
€0 e,

To gain a better understanding of the covariance sketching problem, it is natural to first
consider the stylized version of the problem suggested by the above calculation. That is,
whether it is possible to efficiently recover a matrix ¥ € RP*P given the ideal covariance
matrix of the sketches ¥, = AX AT € R™*™  The analysis in the current paper focuses on
exactly this problem and thus helps in exposing the most unique and challenging aspects of
covariance sketching.

The theory developed in this paper tells us that at the very least, one needs to restrict
the underlying random vector £ to have the property that each &; depends on only a few (say,
d) of the other ¢;’s. Notice that this would of course imply that the true covariance matrix
3} will be d—distributed sparse. Applying Theorem 1, especially the version in which the
matrices A and B are identical, to this stylized situation reveals the following result. If A is
chosen from a particular random ensemble and if one gets to observe the covariance matrix
AS AT of the sketch random vector Z = A¢, then using a very efficient convex optimization
program, one can recover > exactly.

Now, suppose that £ and A are as above and that we get to observe n samples Z(®) =
A€ i = 1,2,...,n of the sketch Z = A¢. Notice that we can can consider Sm =
L3S L ED(ED)T to be a “noise corrupted version” of ¥ since we can write

W =54 (mM 5,

where, under reasonable assumptions on the underlying distribution,
Hi“” — ZH — 0 almost surely as n — oo by the strong law of large of numbers. Therefore,
1

an application of Theorem 2 tells us that solving (P;) with the observation matrix XA](Zn) gives

us an asymptotically consistent procedure to estimate the covariance matrix ¥ from sketched
realizations.

We anticipate that our results will be interesting in many areas such as quantitative
biology where it may be possible to naturally pool together covariates and measure interac-
tions at this pool level. Our work shows that covariance structures that occur naturally are
amenable to covariance sketching, so that drastic savings are possible when correlation tests
are performed at the pool level, rather than using individual covariates.



The framework we develop in this paper can also be used to accomplish cross covariance
sketching. That is, suppose that ¢ and ( are two zero mean p—variate random vectors and
suppose that X¢ € RP*P is an unknown matrix such that [Zec],; = E[§(]. Let {e@Dyn

and {¢®W}7_ | be 2n independent and identically distributed random realizations of £ and C
respectlvely. The goal then, is to estimate X¢ from the m dimensional sketch vectors Z @
and W® such that

= AD WO =B ;=12 ... n,

where A, B € R™*? m < p.

As above, in the idealized case, Theorem 1 shows that the cross-covariance matrix Y.
of £ and ¢ can be exactly recovered from the cross-covariance matrix Yz = AX¢ BT of
the sketched random vectors W and Z as long as Y¢¢ is distributed sparse. In the case we
have n samples each of the sketched random vectors, an application of Theorem 2 to this
problem tells us that (P;) is an efficient and asymptotically consistent procedure to estimate
a distributed sparse ¢ from compressed realization of £ and (.

We note that the idea of pooling information in statistics, especially in the context of
meta analysis is a classical one [29]. For instance the classical Cohen’s d estimate uses the
idea of pooling samples obtained from different distributions to obtain accurate estimates
of a common variance. While at a high level the idea of pooling is related, we note that
our notion is qualitatively different in that we propose pooling covariates themselves into
sketches and obtain samples in this reduced dimensional space.

1.3.2 Graph Sketching

Large graphs play an important role in many prominent problems of current interest; two
such examples are graphs associated to communication networks (such as the internet) and
social networks. Due to their large sizes it is difficult to store, communicate, and analyze
these graphs, and it is desirable to compress these graphs so that these tasks are easier. The
problem of compressing or sketching graphs has recently gained attention in the literature
1, 24]

In this section we propose a new and natural notion of compression of a given graph
G = (V,E). The resulting “compressed” graph is a weighted graph G = (V, E), where V
has a much smaller cardinality than V. Typically, G will be a complete graph, but the edge
weights will encode interesting and valuable information about the original graph.

Partition the vertex set V = V; UVaU...UV,,: in the compressed graph G, each partition
V; is represented by a node. (We note that this need not necessarily be a disjoint partition,
and we allow for the possibility for V; N'V; # 0.) For each pair V;,V; € V, the associated
edge weight is the total number of edges crossing from nodes in V; to the nodes in Vj in the
original graph G. Note that if an index k € V; NV}, the self edge (k, k) must be included
when counting the total number of edges between V; and V;. (We point out that the edge
(Vie, Vi) € E also carries a non-zero weight; and is precisely equal to the number of edges in
G that have both endpoints in V. See Fig. 1 for an illustrative example.)
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Define A; to be the (row) indicator vector for the set V;, i.e.

L1 eV
1 0 otherwise

If X' denotes the adjacency matrix of G, then Y := AX AT denotes the matrix representation
of G. The sketch Y has two interesting properties:

e The encoding faithfully preserves high-level “cut” information about the original graph.
For instance information such as the weight of edges crossing between the partitions
Vi and Vj is faithfully encoded. This could be useful for networks where the vertex
partitions have a natural interpretation such as geographical regions; questions about
the total network capacity between two regions is directly available via this method of
encoding a graph. Approximate solutions to related questions such as maximum flow
between two regions (partitions) can also be provided by solving the problem on the
compressed graph.

e When the graph is bounded degree, the results in this paper show that there exists a
suitable random partitioning scheme such that the proposed method of encoding the
graph is lossless. Moreover, the original graph G' can be unravelled from the smaller
sketched graph G efficiently using the convex program (P).

Figure 1: An example illustrating graph sketching. (a) A graph G with 17 nodes (b) Parti-
tioning the nodes into four partitions Vi, V5, V3,V (¢) The sketch of the graph G. The nodes
represent the partitions and the edges in the sketch represent the total number of edges of
G that cross partitions.

1.3.3 Multidimensional Signal Processing

Multi-dimensional signals arise in a variety of applications, for instance images are naturally
represented as two-dimensional signals f(-,-) over some given domain.

Often it is more convenient to view the signal not in the original domain, but rather
in a transformed domain. Given some one dimensional family of “mother” functions 1), (t)
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(usually an orthonormal family of functions indexed with respect to the transform variable
u), such a family induces the transform for a one dimensional signal f(¢) (with domain 7)

via

F(u) = /Mﬂtwu(t).

For instance if ¢, (t) := exp(—i27ut), this is the Fourier transform, and if 1,(¢) is chosen to
be a wavelet function (where u = (a,b), the translation and scale parameters respectively)
this generates the well-known wavelet transform that is now ubiquitous in signal processing.

Using v, (t) to form an orthonormal basis for one-dimensional signals, it is straightforward
to extend to a basis for two-dimensional signal by using the functions ()¢, (r). Indeed,
this defines a two-dimensional transform via

Fluv) = /( o TR

Similar to the one-dimensional case, appropriate choices of 1 yeild standard transforms such
as the two-dimensional Fourier transform and the two-dimensional wavelet transform. The
advantage of working with an alternate basis as described above is that signals often have
particularly simple representations when the basis is appropriately chosen. It is well-known,
for instance, that natural images have a sparse representation in the wavelet basis (see Fig.
2). Indeed, many natural images are not only sparse, but they are also distributed sparse,
when represented in the wavelet basis. This enables compression by performing “pooling”
of wavelet coefficients, as described below.

Image Warvelet coefficients

Figure 2: Note that the wavelet representaion of the image is distributed sparse.

In many applications, it is more convenient to work with discrete signals and their trans-
forms (by discretizing the variables (¢,7) and the transform domain variables (u,v)). It
is natural to represent the discretization of the two-dimensional signal f(¢,7) by a ma-
trix F© € RP*P. The corresponding discretization of i, (f) can be represented as a matrix
U = [U],,, and the discretized version of the f(u,v), denoted by E is given by:

F=vFu?,
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As noted above, in several applications of interest, when the basis W is chosen appro-
priately, the signal has a succinct representation and the corresponding matrix F is sparse.
This is true, for instance, when F' represents a natural image and F' is the wavelet transform
of F'. Due to the sparse representability of the signal in this basis, it is possible to acquire
and store the signal in a compressive manner. For instance, instead of sensing the signal F’
using W (which correpsonds to sensing the signal at every value of the transform variable u),

one could instead form “pools” of transform variables S; = {u;1, us ..., us} and sense the
signal via
Zu€S1 qj“
AV = -,
Zuesm \Ij“

where the matrix A corresponds to the pooling operation. This means of compression corre-
sponds to “mixing” measurements at randomly chosen transform domain values u. (When
¥ is the Fourier transform, this corresponds to randomly chosen frequencies, and when W is
the wavelet, this corresponds to mixing randomly chosen translation and scale parameters)
. When the signal F' is acquired in this manner, we obtain measurements of the form:

Y = AFA”,

where F' is suitably sparse. Note that one may choose different random mixtures of mea-
surements for the ¢ and r “spatial” variables, in which case one would obtain measurements
of the form:

Y = AFBT.

The theory developed in this paper shows how one can recover the multi-dimensional signal
F from such an undersampled acquisition mechanism. In particular, our results will show
that if the pooling of the transform variable is done suitably randomly, then there is an
efficient method based on linear programming that can be used to recover the original multi-
dimensional signal.

1.4 Related Work and Obstacles to Common Approaches

The problem of recovering sparse signals via ¢; regularization and convex optimization has
been studied extensively in the past decade; our work fits broadly into this context. In
the signal processing community, the literature on compressed sensing [10, 20] focuses on
recovering sparse signals from data. In the statistics community, the LASSO formulation as
proposed by Tibshirani, and subsequently analyzed (for variable selection) by Meinshausen
and Biithlmann [39], and Wainwright [18] are also closely related. Other examples of struc-
tured model selection include estimation of models with a few latent factors (leading to
low-rank covariance matrices) [23], models specified by banded or sparse covariance matrices
[7, 8], and Markov or graphical models [38, 39, 12]. These ideas have been studied in depth
and extended to analyze numerous other model selection problems in statistics and signal
processing [4, 14, 12].
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Our work is also motivated by the work on sketching in the computer science communitys;
this literature deals with the idea of compressing high-dimensional data vectors via projection
to low-dimensions while preserving pertinent geometric properties. The celebrated Johnson-
Lindenstrauss Lemma [31] is one such result, and the idea of sketching has been explored
in various contexts [2, 34]. The idea of using random bipartite graphs and their related
expansion properties, which motivated our approach to the problem, have also been studied
in past work [, 35, 30].

While most of the work on sparse recovery focuses on sensing matrices where each entry
is an i.i.d. random variable, there are a few lines of work that explore structured sensing
matrices. For instance, there have been studies of matrices with Toeplitz structure [28],
or those with random entries with independent rows but with possibly dependent columns
[47, 44]. Also related is the work on deterministic dictionaries for compressed sensing [10],
although those approaches yield results that are too weak for our setup.

One interesting aspect of our work is that we show that it is possible to use highly
constrained sensing matrices (i.e. those with tensor product structure) to recover the signal of
interest. Many standard techniques fail in this setting. Restricted isometry based approaches
[11] and coherence based approaches [138, 26, 46] fail due to a lack of independence structure
in the sensing matrix. Indeed, the restricted isometry constants as well as the coherence
constants are known to be weak for tensor product sensing operators [22, 32]. Gaussian
width based analysis approaches [13] fail because the kernel of the sensing matrix is not a
uniformly random subspace and hence not amenable to a similar application of Gordon’s
(“escape through the mesh”) theorem. We overcome these technical difficulties by working
directly with combinatorial properties of the tensor product of a random bipartite graph,
and exploiting those to prove the so-called nullspace property [19, 15].

2 Experiments

We demonstrate the validity of our theory with some preliminary experiments in this section.
Figure 3 shows a 40 x 40 distributed sparse matrix on the left side. The matrix on the right
is a perfect reconstruction using a sketch dimension of m = 21.

Figure 4 is what is known now as the “phase transition diagram”. Each coordinate
(1,7) € {10,12,...,60} x {2,4,...,60} in the figure corresponds to an experiment with
p =i and m = j. The value at the coordinate (i,7) was generated as follows. A random
4-distributed sparse X € R** was generated and a random A € R/*' was generated as
adjacency matrix of a graph as described in Definition 4. Then the optimization problem
(P1) was solved using the CVX toolbox [30, 25]. The solution X* was compared to X in the
-], norm (upto numerical precision errors). This was repeated 40 times and the average
number of successes was reported in the (4, j)-th spot. In the figure, the white region denotes
success during each trial and the black region denotes failure in every single trial and there
is a sharp phase transition between successes and failures. In fact, the curve that borders
this phase transition region roughly looks like the curve p = ﬁmz which is what our theory
predicts (upto constants and log factors).
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10 20 30 40

Figure 3: The matrix on the left is a 40 x 40 sparse matrix and the matrix on the right is a
perfect reconstruction with m = 21.

We also ran some preliminary tests on trying to reconstruct a covariance matrix from
sketches of samples drawn from the original distribution.To factor in the “noise”, we replaced
the equality constraint in (P;) with a constraint which restricts the feasible set to be the

40 50 60

Figure 4: Phase transition plot. The (i, j)-th pixel shows (an approximation) to the proba-
bility of success of the optimization problem (P;) in recovering a distributed sparse X € R
with sketch-size j. The (red) solid line shows the boundary of the phase transition regime

and is approximately the curve p = ﬁmz

15



Figure 5: The matrix on the left is a 40 x 40 distributed sparse matrix. The matrix on the
right was reconstructed using n = 2100 samples and with sketches of size m = 21.

set of all X such that ’AX AT — X

validation. Figure 5 shows a representative result which is encouraging. The matrix on
the left is a 40 x 40 distributed sparse covariance matrix and the matrix on the right is a
reconstruction using n = 2100 sketches of size m = 21 each.

< k instead. The parameter x was picked by cross-
2

3 Preliminaries and Notation

We will begin our theoretical discussion by establishing some notation and preliminary con-
cepts that will be used through the rest of the paper.

For any p € N, we define [p] := {1,2,...,p}. A graph G = (V, E) is defined in the usual
sense as an ordered pair with the vertex set V' and the edge set E' which is a set of 2-element
subsets of V' ie., E C (‘2/) Henceforth, unless otherwise stated, we will deal with the graph
G = ([p|, E). We also assume that all the graphs that we consider here include all the self
loops, i.e., {i,i} € E for all i € [p]. For any S C [p], the set of neighbors N(.S) is defined as

N(S)={jelp]:ie S {ij} < E}.
For any vertex i € [p], the degree deg(i) is defined as deg(i) := |N(i)].

Definition 1 (Bounded degree graphs and regular graphs). A graph G = ([p], E) is said to
be a bounded degree graph with (mazimum) degree d if for alli € [p],

deg(i) < d
The graph is said to be d—regular if deg(i) = d for all i € [p].

We will be interested in another closely related combinatorial object. Given p,m € N,
a bipartite graph G = ([p|, [m], F) is a graph with the left set [p] and right set [m] such
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that the edge set E only has pairs {i,j} where i is the left set and j is in the right set. A
bipartite graph G' = ([p], [m], E) is said to be d—left regular if for all 7 in the left set [p],
deg(i) = 0. Given two sets A C [p], B C [m], we define the set

E(A:B):={(i,j)e E:ic A je€ B},

which we will find use for in our analysis. This set is sometimes known as the cut set. Finally
for a set A C [p] (resp. B C [m]), we define N(A) :={j € [m] : i € A, {i,j} € E} (resp.
Nr(B):={i€[p|:j € B,{i,j} € E} ). This distinction between N and N is made only
to reinforce the meaning of the quantities which is otherwise clear in context.

Definition 2. (Tensor graphs) Given two bipartite graphs G = ([p], [m], E1) and Gy =
([p], [m], E2), we define their tensor graph G ® Gy to be the bipartite graph ([p] x [p], [m] x
[m], By ® Ey) where Ey ® Ey is such that {(i,7'), (4,j")} € E1 ® Ey if and only if {i,j} € F;
and {i',j'} € Es.

Notice that if the adjacency matrices of Gy, Gy are given respectively by AT, BT ¢ RPx™,
then the adjacency matrix of Gy ® G is (A ® B)" € RP* ™,

As mentioned earlier, we will be particularly interested in the situation where B = A.
In this case, write the tensor product of a graph G = ([p], [m], E) with itself as G® =
([p] x [p], [m] x [m], E®). Here E® is such that {(¢,7'), (j,7)} € E® if and only if {4, j} and
{7, j'} are in E.

Throughout this paper, we write || - || to denote norms of vectors. For instance, ||x||; and
||z||2 respectively stand for the ¢; and ¢5 norm of x. Furthermore, for a matrix X, we will
often write || X|| to denote |[vec(X)| to avoid clutter. Therefore, the Frobenius norm of a
matrix X will appear in this paper as || .X||2.

3.1 Distributed Sparsity

As promised, we will now argue that distributed sparsity is important. Towards this end, let
us turn our attention to Figure 6 which shows two matrices with O(p) non-zeros. Suppose
that the non-zero pattern in X looks like that of the matrix on the left (which we dub as
the “arrow” matrix). It is clear that it is impossible to recover this X from AX BT even if
we know the non-zero pattern in advance. For instance, if v € ker(A), then the matrix X,
with v added to the first column of X is such that AX BT = AXBT and X is also an arrow
matrix and hence indistinguishable from X. Similarly, one can “hide” a kernel vector of B
in the first row of the arrow matrix. In other words, it is impossible to uniquely recover X
from AXBT.

In what follows, we will show that if the sparsity pattern of X is more distributed, as in
the right side of Figure 6, then one can recover X and do so efficiently. In fact, our analysis
will also reveal what that the size of the sketch Y needs to be able to perform this task and
we will see that this is very close to being optimal.

In order to make things concrete, we will now define these notions formally.
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"Arrow" matrix Distributed sparse matrix

Figure 6: Two matrices with O(p) non-zeros. The “arrow” matrix is impossible to recover
by covariance sketching while the distributed sparse matrix is.

Definition 3 (d—distributed sets and d—distributed sparse matrices). We say that a subset
Q C [p] x [p] is d—distributed if the following hold.

1. Fori=1,2,...,p, (i,i) € Q.

2. For all k € [p|, the cardinality of the sets O = {(i,7) € Q:i=k} and QF =
{(i,7) € Q: j =k} is no more than d.

The set of all d—distributed subsets of [p| x [p] will be denoted as W, 4. We say that a matric
X € RP*? 4s d—distributed sparse if there exists an Q € W,, such that supp(X) :=

{(i,7) € [p] x [p] : Xij # 0} C Q.

While the theory we develop here is more generally applicable, the first point in the above
definition makes the presentation easier. Notice that this forces the number of off-diagonal
non-zeros in each row or column of a d—distributed sparse matrix X to be at most d—1. This
is not a serious limitation since a more careful analysis along these lines can only improve
the bounds we obtain by at most a constant factor.

Examples:

e Any diagonal matrix is d—distributed sparse for d = 1. Similarly a tridiagonal matrix
is d—distributed sparse with d = 3.

e The adjacency matrix of a bounded degree graph with maximum degree d — 1 is
d—distributed sparse

e As shown in Proposition 1, random sparse matrices are d—distributed sparse with
d = O(logp). While we implicitly assume that d is constant with respect to p in what
follows, all arguments work even if d grows logarithmically in p as is the case here.

Given a matrix X € RP*P, as mentioned earlier, we write vec(X) to denote the RP’
vector obtained by stacking the columns of X. Suppose x = vec(X). It will be useful in
what follows to remember that x was actually derived from the matrix X and hence we
will employ slight abuses of notation as follows: We will say x is d—distributed sparse when
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we actually mean that the matrix X is. Also, we will write (7, j) to denote the index of x
corresponding to Xj;, i.e.,
Tij = T(i—1)ptj = Xij-

We finally make two remarks:

e Even if X were distributed sparse, the observed vector Y = AX B” is usually unstruc-
tured (and dense).

e While the results in this paper focus on the regime where the maximum number of
non-zeros d per row/column of X is a constant (with respect to p), they can be readily
extended to the case when d grows poly-logarithmically in p. Extensions to more
general scalings of d is an interesting avenue for future work.

3.2 Random Bipartite Graphs, Weak Distributed Expansion and
the Choice of the Sketching Matrices

As alluded to earlier, we will choose the sensing matrices A, B to be the adjacency matrices
of certain random bipartite graphs. The precise definition of this notion follows.

Definition 4 (Uniformly Random 6 —left regular bipartite graph). We say that G = ([p], [m], E)
1s a uniformly random d—left reqular bipartite graph if the edge set E is a random variable
with the following property: for each i € [p] one chooses 0 vertices ji,Ja, ..., Js chosen uni-
formly and independently at random (with replacement) from [m| such that {{i,jk}}izl C E.

Remarks:

e Note that since we are sampling with replacement, it follows that the bipartite graph
thus constructed may not be simple. If for instance there are two edges from the left
node ¢ to the right node 4, the corresponding entry A;; = 2.

e [t is in fact possible to work with a sampling without replacement model in Definition 4
(where the resulting graph is indeed simple) and obtain qualititatively the same results.
We work with a “sampling with replacement” model for the ease of exposition.

The probabilistic claims in this paper are made with respect to this probability distribution
on the space of all bipartite graphs.

In past work [5, 35], the authors show that a random graph generated as above is, for
suitable values of €, 4, a (k,d, €)—expander. That is, for all sets S C [p] such that |S| < k,
the size of the neighborhood |N(S)| is no less than (1 — €)0|S|. If A is the adjacency
matrix of such a graph, then it can then be shown that this implies that ¢; minimization
would recover a k—sparse vector x if one observes the sketch Az (actually, [5] shows that
these two properties are equivalent). Notice that in our context, the vector that we need to
recover is O(p) sparse and therefore, our random graph needs to be a (O(p), d, €)—expander.
Unfortunately, this turns out to not be true of G; ® G5 when G; and (G5 are randomly chosen
as directed above.
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However, we prove that if G; and G5 are picked as in Definition 4, then their tensor graph
G1®G4, satisfies what can be considered a weak distributed expansion property. This roughly
says that the neighborhood of a d—distributed Q C [p] x [p| is large enough. Moreover, we
show that this is in fact sufficient to prove that with high probability X can be recovered
from AX BT efficiently. The precise statement of these combinatorial claims follows.

Lemma 1. Suppose that G; = ([p],[m], E1) and Gy = ([p],[m], E2) are two independent
uniformly random d—left regular bipartite graphs with 6 = O(logp) and m = O(y/dplogp).
Let Q2 € D4, be fized. Then there exists an € € (O, %) such that Gy ® Gy has the following
properties with probability exceeding 1 — p~¢, for some ¢ > 0.

1 IN(Q)] = p2?(1 - ¢).
2. For any (i,7') € ([p] x [p]) \ Q we have |N(i,i") N N(Q)| < €.
3. For any (i,7) € Q, [N(1,i') N N(Q\ (i,7))| < €b2.
Moreover, all these claims continue to hold when G5 is the same as G1.

Remarks:

e Part 1 of Lemma 1 says that if €2 is a d—distributed set, then the size of the neghborhood
of © is large. This can be considered a weak distributed expansion property. Notice
that while it is reminiscent of the vertexr expansion property of expander graphs, it is
easy to see that it does not hold if € is not distributed. Furthermore, we call it “weak”
because the lower bound on the size of the neighborhood is §?p(1 — €) as opposed to
62|92 (1 —€) = 6%dp(1 — €) as one typically gets for standard expander graphs. It
will become clear that this is one of the key combinatorial facts that ensures that the
necessary theoretical guarantees hold for covariance sketching.

e Parts 2 and 3 say that the number of collisions between the edges emanating out of a
single vertex with the edges emanating out of a distributed set is small. Again, this
combinatorial property is crucial for the proof of Theorem 1 to work.

As stated earlier, we are particularly interested in the challenging case when G; = G5 (or
equivalently, their adjacency matrices A, B are the same). The difficultly, loosely speaking,
stems from the fact that since we are not allowed to pick GG; and G5 separately, we have
much less independence. In Appendix A, we will only prove Lemma 1 in the case when
(G1 = G5 since this proof can be modified in a straightforward manner to obtain the proof
of the case when GG; and G4 are drawn independently.

4 Proofs of Main Results

In this section, we will prove the main theorem. To reduce clutter in our presentation, we
will sometimes employ certain notational shortcuts. When the context is clear, the ordered
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pair (7,4") will simply be written as i’ and the set [p] X [p] will be written as [p]®. Sometimes,
we will also write A to mean A ® A and if S C [p] X [p], we write (A ® A)g or Ag to mean
the submatrix of A ® A obtained by appending the columns {A4; ® A; | (i,7) € S}.

As stated earlier, we will only provide the proof of Theorem 1 for the case when A = B.
Some straightforward changes to the proof presented here readily gives one the proof for the
case when the matrices A and B are distinct.

4.1 Proof of Theorem 1

We will consider an arbitrary ordering of the set [p] X [p] and we will order the edges in E®
lexicographically based on this ordering, i.e., the first 5% edges eq,...,es in E® are those
that correspond to the first element as per the ordering on [p] x [p] and so on. Now, one
can imagine that the graph G® is formed by including these edges sequentially as per the
ordering on the edges. This allows us to partition the edge set into the set E}° of edges that
do not collide with any of the previous edges as per the ordering and the set E5 := E® — E.
(We note that a similar proof technique was adopted in Berinde et al. [5]).

As a first step towards proving the main theorem, we will show that the operator A ® A
preserves the ¢; norm of a matrix X as long as X is distributed sparse. Berinde et al.,[5] call
a similar property RIP-1, taking cues from the restricted isometry property that has become
popular in literature [I1]. The proposition below can also be considered to be a restricted
isometry property but the operator in our case is only constrained to behave like an isometry
for distributed sparse vectors.

Proposition 2 (¢;-RIP). Suppose X € RP*P is d—distributed sparse and A is the adjacency
matrix of a random bipartite d—left reqular graph. Then there ezists an € > 0 such that

(1—2e)0% || X[, < [[AXAT][, < 81X, , (6)
with probability exceeding 1 — p~¢ for some ¢ > 0.

Proof. The upper bound follows (deterministically) from the fact that the induced (matrix)
¢1-norm of A ® A, i.e., the maximum column sum of A ® A, is precisely §2. To prove the
lower bound, we need the following lemma.

Lemma 2. For any X € RP*P,

[AXAT|, =8 |X], -2 > > Lo synyens | X (7)

J3'€[m)? i’ €[p]?

Proof. In what follows, we will denote the indicator function 1y jes by 1{Sii/jj b We begin
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by observing that
HAXATH1 = || Avec(X)|,

= Z Z Agiirjiry Xiar

ji'€lm]? |i'€[p]?

_ Z Z l{ll’JJ}Xii,

jj'€lm]? |ii’ €[p)?

_ Z Z 1{22 i }X” + Z 1{“’33 }Xu"

jj'€[m]? |i'€[p]? i’ €[p)?

> 3 |3 - 5w,
jj'€[m]? |ii’ €[p)? i/ €[p]?

(@) 1t

S Z < Z 1{ma}‘X”|_ Z 1{zm}|Xu )
ji'em]? i’ elp)? i’ €[p]?

R I )
ii'€[p]?,j5' €[m]? ii'e[p]?jj' €[m]?

where (a) follows after observing that the first (double) sum has only one term and applying
triangle inequality to the second sum. Since
D iielp2 i elm)? 1%&” Y| X0| = 62| X, this concludes the proof of the lemma. O

Now, to complete the proof of Proposition 2, we need to bound the sum in the LHS of

(7). Notice that
Z |X“/| = Z |Xu’| Tt = Z |Xu’| Tt -
i'j5':(ii'j5' ) EES i’ w'eQ

where r;; is the number of collisions of edges emanating from 7" with all the previous edges
as per the ordering we defined earlier. Since () is d—distributed, from the third part of
Lemma 1, we have that for all i’ € Q, r;y < €02 with probability exceeding 1 — p~¢ and
therefore,

> Xl riw < e0” || Xy -

=)
This concludes the proof. O

Next, we will use the fact that A ® A behaves as an approximate isometry (in the ¢;

norm) to prove what can be considered a nullspace property [19, 15]. This will tell us that

the nullspace of A ® A is “smooth” with respect to distributed support sets and hence ¢
minimization as proposed in (P;) will find the right solution.
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Proposition 3 (Nullspace Property). Suppose that A € {0,1}"*? is the adjacency matriz
of a random bipartite 5—left reqular graph with § = O(logp) and m = O(y/dplog p) and that
Q € Wy, is fized. Then, with probability evceeding 1 — p=¢, for any V € RP*P such that
AV AT =0, we have

Ve Vol - (8)

”1—1

for some € € (0, 1) and for some ¢ > 0.

'
Proof. Let V be any symmetric matrix such that AV AT = 0. Let v = vec(V) and note that
vec(AVAT) = (A® A)v = 0. Let Q be a d-distributed set. As indicated in Section 3,
we define N(Q) C [m]? to be the set of neighbors of 2 with respect to the graph G®. Let
(A ® AN denote the submatrix of A ® A that contains only those rows corresponding

to N(Q) (and all columns). We will slightly abuse notation and use vg to denote the
vectorization of the projection of V' onto the set 2, i.e., vg = vec(Vy), where

Valis = {Vw (i.j)eq

0 otherwise

Now, we can follow the following chain of inequalities:

(Ag ANy
(A AN (va + vae)||,

(A AP @gl|. — (A AN |
(

1

v

|
|
|
(A ® A)vall, — [|[(A® AN Puge||,
> (1 —26)0% [[Vall, — [[(A® A)NPuvgel|,

where the last inequality follows from Proposition 2. Resuming the chain of inequalities, we
have:

0> (1 — 2¢)8? Vall, — Z || A®A U{u"} 1
1’ eQe
> (1—2€)0% |[Vall, — > Vi |

i’ jj': (i jj )€ E®,
JiEN(Q),ii' €Qe

= (1—26)5|[Vall, = Y |E®Gi : N(Q)] [Vie|
i’ eQe
(a)
> (1=26)8% |Val, = > ed® Vi
i’ eQe

> (1—2€6)0" [Vall, — e [V, ,

where (a) follows from the second part of Lemma 1. Writing [|[V'||; = [|[Vall; + [|Vael|; and
rearranging, we get the required result. O]
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Now, we can use this to prove our main theorem.

Proof of Theorem 1. Let € be the support of X and notice that ) is d—distributed. Now,
suppose that there exists an X # X such that AXAT =Y. Observe that A (X' - X > AT =
0. Now, consider

X0 < X = o]+ | %a],

=[[(x ),

%ol
1 1

(a) € ~ ~
< X — X) HX
- 1-— 3¢ ( Qe + @ 1
€ ~ ~
1— 3e ae|| + @ 1
<[4
1

where (a) follows from Proposition 3, and the last line follows from the fact that e < i, again
from Proposition 3. Therefore, the unique solution of (P;) is X with probability exceeding
1 —p~¢, for some ¢ > 0. O

5 Conclusions

In this paper we have introduced the notion of distributed sparsity for matrices. We have
shown that when a matrix is X distributed sparse, and A, B are suitable random binary
matrices, then it is possible to recover X from under-determined linear measurements of the
form Y = AX BT via ¢; minimization. We have also shown that this recovery procedure is
robust in the sense that if X is equal to a distributed sparse matrix plus a perturbation,
then our procedure returns an approximation with accuracy proportional to the size of the
perturbation. Our results follow from a new lemma about the properties of tensor products
of random bipartite graphs. We also describe three interesting applications where our results
would be directly applicable.

In future work, we plan to investigate the statistical behavior and sample complexity
of estimating a distributed sparse matrix (and its exact support) in the presence of vari-
ous sources of noise (such as additive Gaussian noise, and Wishart noise). We expect an
interesting trade-off between the sketching dimension and the sample complexity.
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Appendix A

Proof of Lemma 1

Lemma 1. Suppose that G; = ([p],[m], E1) and Gy = ([p],[m], E2) are two independent
uniformly random d—left regular bipartite graphs with 6 = O(logp) and m = O(y/dplogp).

Let Q0 € D4, be fized. Then there exists an € € (O, %) such that Gy ® Gy has the following

properties with probability exceeding 1 — p~¢, for some ¢ > 0.
1. |N(Q)| > pd?(1 —e).
2. For any (i,7') € ([p] x [p]) \ Q we have |[N(i,i") N N(Q)| < €?.
3. For any (i,7) € Q, IN(1,i') N N(Q\ (z,7))| < €d?.
Moreover, all these claims continue to hold when Gy is the same as Gy.

Proof. As stated earlier, we will only prove this lemma for the case when G; = G5. With a
few minor modifications, one can readily get a proof for the easier case when (G; and G, are
drawn independently.

Let &1, & and, &; respectively denote the events that the implications (1), (2) and, (3)
are true. Notice that

P(EfUESUES) <P(&) +P(&5) + P(&5)

= P(&7) + P(&5 | £1)P(&) + P(E5 | £D)P(ET)
+P(&5 | £1)P(&) + P(E5 | E7)P(ET)

< 3P(EY) +P(ES | &) +P(&5 | £1)
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Our strategy will be to upper bound P(&f),P(ES | &) and, P(E5 | £). Suppose the
bounds were p1, po and, ps respectively, then it is easy to see that

]P){gl N 82 N (93} Z 1-— maX{3p1,p2,p3}. (9)

Part 1. We will first show that P(Ef) is small. Since Q2 is d—distributed, the “diagonal” set
D:={(1,1),...,(p,p)} is a subset of 2. Now, notice that for j # j' € [m],7 € [p],

5(5 — 1)

P[(4,4") € N((i,9))] = mim —1) (10)
This implies that -
PG ¢ M) = (1- 20

Therefore, we can bound the expected value of [N ()| as follows.
E[IN(Q)|] ZE[|N (D)|]
= Y Pl(,j)eN(®D)

3" €lm]x[m]

> 3 P[(.j) € N(D)
33’ €[m]x[m],
5

50 —1) \™

LE ()

it elmixml, ( m(m — 1))

J#5
1) (1 (1= 20=D\"
oo -2y
D58 —1) |D[*8*( — 1)
=z m(m —1) ( m(m — 1) m2(m — 1)? )
sz (1 (L, (0-1)?|D]
-1 (1= (5+ T )
=pd* (1 —¢)
Where in the last step, we set € = % + %.

To complete the proof, we must show that the random quantity |N(£2)| cannot be much
smaller than pd?(1 — €’). As a first step, we define the random variables x;; 1= 1{( ;) en(D)}
and notice that the following chain of inequalities hold

INOIZIND) = Y
3’ €lm]x[m]
J#3
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Therefore, we have that

PN@Q)| <ps(l—€¢ =] <P | > xy<pi(l—€—¢"
3" €lm]x[m]
J#3’

Also, since by above, E [Zj#, ij,} > pd?(1 — €), we have that

P[IN(Q)] <pé*(l—¢)] <P Z Xji <E Z Xt | — po*e”
43" €[m]x[m] 3" €lm]x[m]
J#5’ J#3’

Now, notice that the sum } .. x;; has m(m — 1) terms and each term in the sum is
dependent on no more than 2m —4 terms. Therefore, one way to bound the required quantity
is to extract independent sub-sums from the above sum and bound the deviation of each of
those from their means (which is the corresponding sub-sum of the mean). A principled way
of doing this is suggested by the celebrated Hajnal-Szemeridi theorem [27, 37]. Consider
a graph on the vertex set [m] x [m] \ {(1,1),...,(m,m)} where there is an edge between
vertices (7,7') and (j1,71) if j = j1 and/or j' = j], i.e., exactly when the random variables
Xjj and xj,j» are dependent. Since this graph has degree ©(m), Hajnal-Szemeridi theorem
tells us that this graph can be equitable colored with ©(m) colors. In other words, the above
sum can be partitioned into ©(m) sub-sums such that each sub-sum has ©(m) elements and
the random variables in each of them are independent. Along with this and the fact that
m(m — 1) > pd?, we can use the union bound and write

P Z Xij' < E Z X5 | — p52€//

73’ €[m]x[m] 73’ €[m]x[m]
J#y J#y
1 1 ”
< @(m) P|— E X' <E|— E Xjj' | — € ,
|Cy| 4 |Cy| 4
Jji’eCh Jji'eCh

where ) is one of the “colors”. Notice that |C}| = ©(m).
Finally, using Chernoff bounds, we have

1 1
P| = L, < —TF O
SRR AP IR LZ X”] ]

jj'eCy j'eCt

< O(m) exp{—2¢0(m)} .

Finally, since ¢’ can be made as small as possible, setting € := ¢ + €’ yeilds p; < p~ for
some c¢; > 0. This technique of generating large deviation bounds when one has limited
dependence is not new, see [11].
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Part 2: Now, we bound P(&5 | & ). Associated to a fixed ¢ one can imagine § independent
random trials that determine the outgoing edges from 7. In a similar way there are ¢ inde-
pendent random trials associated to the outgoing edges of #’. Let us fix (4,4") and investigate
the outgoing edge (in the tensor graph) determined by the first trial of i and the first trial of
i’. The probability that this edge emanating from the vertex (,7') € [p|>\ {(1,1),...,(p,p)}
hits an arbitrary vertex (j, ') € [m]? is given by 1/m?. The probability that this edge lands
in N(Q) is, therefore, given by |N(Q)|/m?. Since there are 6% edges that are incident on
(1,1"), the expected size of overlap between N (7,7') and N(2) is upper bounded by

V@I

m2

52

Again, to show concentration, we employ similar arguments as before and define indicator
random variables y; ..., xs2 each of which corresponds to one of the edges emanating from
the vertex (,4') and then observing that the sum Zi; Xk is precisely equal to the random
quantity |N(i,7) N N(2)|. To conclude that this random quantity concentrates, we first
observe that, as above, the 6% dependent terms can be divided up into ©(d§) with ©(d)
elements each such that in each set the terms are independent. Therefore, we have

52
P nG, iy o v @) > e e’)] _p [Z i > 'NWSQ” (14¢)

m?2 2
k=1

[N ()]

m2

<0 P [2 x> 00) =21 +¢)

keCq
< O(d) exp {—5%6/} :

where (] is one of the colors.

Therefore, since conditioned on &, |[N(2)| > §2p(1 — €) if we pick m = §y/dp, and
d = O(logp) there is a ¢, = ¢4(¢') > 2 such that, |[N(i,i") N N(Q)| > 52%—2)‘(1 + €'), with
probability not exceeding p~¢. Setting e = (1+¢') |[N(Q)| /m?, picking m as prescribed, and
taking union bound over (i,i") € ¢, we get p, < p~® for some ¢y > 0.

Part 3: Next, we bound P(&5 | &1). Notice that the proof is very similar to that of part 2
when i # . So, here we will consider the quantity |N(i,7) N N(Q\ {(¢,7)})].

As explained above to each left node 7 we associate § random trials that determine its
outgoing edges. Correspondingly, if we fix a left node (¢,) in the tensor graph, and think
of its outgoing edges they are determined by the outcome of 6% product trials. Let 1;(j) be
the indicator function of the event that in the £** trial of i the outgoing edge is incident on
j. The probability that the edge associated to the (k,![) trial associated to (7,1) is incident
on (7,;') is the random variable 14(j)1,(j’). Note that 1,(j)1x(j') = 1x(j) if j = 5/ and 0
otherwise.
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Note that

58
IN(i,i) N N(Q\ (4,1) ZZ 1i(7)1i(5")

k=1 1=1 (4,5")eN(Q\(7)

<5+Y D> L)L)

kL (5,5") €N (Q\(i50))

When k # [, the trials corresponding to 1x(j), 1;(j') are independent, and hence E1,(j)1,(j") =
- We define xxi = > inen(on i 1e(4)1i(J") and note that E (xx,) = M We also
note that x,; is binary valued, and

|N(272) N N(Q \ (272))| < o + ZXk:,l'
k#l

Therefore,

E(ING, i) nN@\ ()]) <8+ (5% — )L D)

m2
5%dp
<5+ (6°=9) —
1 1\ 6%dp
<= S
5+ (-5) %)
< 5%

Next we need to prove that the quantity of interest ), 41 Xk, concentrates about its
mean. To that end we note that these binary valued variables are such that any particular
Xk, 1s dependent on at most 20 — 2 other variables. Using Chernoff concentration bounds
in conjunction with the Hajnal-Szemeredi based coloring argument explained in part 1 of
this proof, followed by a union bound over i € [p] we obtain the required probability bounds
p3 < p~ for some c3 > 0.

Substituting the bounds for py, ps, ps back into (9) concludes the proof. n

Appendix B

Proof of Proposition 1

Proposition 1. Consider a random matrizc X € RP*P such that X,; s Ber(y) where py =
A = 0O(1), then for any € > 0, X is d—distributed sparse with probability at least 1 — e, where

N
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Proof. Let X;,1=1,...,pdenote the sparsity of the i—th column and let X;,72 = p+1,..., 2p,
denote the sparsity of the ¢—th row. Notice that the 2p random variables X, Xs, ..., Xy, are
(dependent) Bin(p,~y) random variables. With the choice of d as indicated in the theorem,
we have the following,

P(X1>d):P(X1>A(1+M)>

A
() B2A 2log(2p/e)
< _ — 2o\
< eXp{ 2+ﬁ}’ B A
(b)
2o 2]
_ £
=3

where (a) follows from the multiplicative form of the Chernoff Bound [3] and (b) follows as
long as 8 > 2. The rest of the proof follows from a simple application of the union bound. [J

Appendix C

Proof of Theorem 2

Theorem 2. Suppose that X is a p X p matrixz. Furthermore, suppose that the hypotheses
of Theorem 1 hold and let X* be the solution to the optimization program (P). Then, there
exists a ¢ > 0 and an € € (0,1/4) such that the following holds with probability exceeding
1—p<.

. 2 —4e )
1=l < F 5 (min 1= Xall ). (1)

Proof. Since X* is the optimum of the optimization program (P;), we have that ||X|, >
| X*]|;. Let Q* be such that [| X — Xq-||; = mingey, , [|X — Xx||. We can proceed as follows

10 = X (12)
= (X + X7 = X)all, + [|(X + X" = X)ac|, (13)
> [ Xally = (X7 = Xall, + [[(X7 = X)ac[l, = [ Xa-, (14)
= [1X = 2[[Xoell, + [[X7 = Xl = 2[|(X = X )all, (15)
2e .
> 10, = 21l + (1= 1255 ) 1= X, (16)

where in the last step, we have used the fact that since X* is a feasible point in (P;),
AX*BT = AX BT and therefore, we can apply the result of Proposition 3 to X* — X. This
completes the proof. n
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