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Abstract— We introduce an algorithm known as
Manifold Iterative Projection to solve the problem of re-
covering an unknown high-dimensional signal contained
in a low-dimensional sub-manifold from a few linear
measurements. The algorithm provably and robustly re-
covers any unknown signal on the manifold, provided
the measurement operator is benign with respect to the
manifold. A variant of the algorithm provably tracks
slowly time-varying signals on the manifold. Our results
are intimately related to, and indeed rely on, the existence
of stable embeddings of manifolds via linear maps.

I. INTRODUCTION

Making inferences about an unknown signal given
limited and inaccurate information is a frequently
encountered problem in machine learning. In many
applications of interest, a significant difficulty arises as
the number of measurements available about a signal
may be far smaller than the ambient dimension of
the signal. Fortunately, many real-world signals have
many fewer degrees of freedom than their ambient
dimension. Exploiting such low-dimensional structure
in the signal of interest is crucial in order to enable
reliable recovery. In this paper we propose an efficient
computational framework to recover signals living on
low-dimensional manifolds given a small number of
noisy linear measurements. We propose an algorithm
that that is guaranteed to recover any unknown signal
on a given manifold, provided the measurement oper-
ator is benign (in a certain formal sense) with respect
to the manifold.

Our algorithm consists of two simple steps per-
formed in alternation: a gradient step that is easily
computed, and a manifold projection step. For many
practical manifold-modeled signals of interests, the
manifold projection step is also tractable to compute.
The main contributions of this paper are (a) a proof
that under fairly weak conditions on the operator
specifying the linear measurements, our iterative algo-
rithm is guaranteed to recover the unknown signal, (b)
robustness of the algorithm with respect to noise and
imprecise computations, and (c) an adaptive version of

the algorithm that provably tracks slowly time-varying
signals on the manifold. These results are applicable to
manifold-modeled signals such as orthogonal matrices
(describing rotations), subspaces (described as points
on the Grassmannian), and partial isometries (points on
the Stiefel manifols), which arise in many applications
in signal processing and computer vision. Our results
also include as special cases structured signals such
as sparse vectors and low-rank matrices (although
these are more accurately specified as finite unions of
manifolds).

Unlike previous methods for learning structured
signals (e.g., sparse vectors, low-rank matrices), our
approach does not rely on convex optimization. Indeed
an appealing property of our procedure is that the
complexity is explicitly governed by the tractability
of the manifold projection step. Further the analysis
of the algorithm is simple, and the bounds on the
number of measurements required for recovery depend
naturally on the underlying geometry of the manifold.
In fact, viewed more broadly, this paper shows that
under certain conditions efficient local algorithms can
be used to compute globally optimal solutions to
nonconvex optimization problems.

Our algorithm builds upon previous work for re-
covering sparse vectors from linear measurements via
iterative hard thresholding [5], and the extension to re-
covering low-rank matrices from linear measurements
via singular value projection [7]. Thus, our paper
shows that manifold-modeled signals beyond sparse
vectors and low-rank matrices can also be recovered
from limited and inaccurate linear information. Indeed
the key requirements are only that projection onto
the underlying family of signals (modeled here as a
manifold, but this can be generalized) is tractable, and
that this family has “nice” geometric properties (see
the technical results for more details).

This paper is organized as follows: Section [II]
gives a brief background on the relevant concepts from
differential geometry, Section describes the main



results, and Section [IV]discusses the application of our
main theorem to specific examples. In Section [V} we
illustrate our results via some numerical experiments.

II. PRELIMINARIES

To begin with we formally describe our problem
setup. We focus on signals lying in a Riemannian
submanifold M C R™. We are given measurements
via a linear map A : R® — R™ of some unknown
signal * € M of interest:

y = Ax*.

The objective is to recover z* given the information
y. We also consider variants of this question (i) when
the measurements are corrupted by additive noise, i.e.,
we have y = Ax* + n, (ii) the task of projection
onto the manifold is difficult and one has access to
only approximate projections and (i) when we have
a time-varying sequence of signals x*[t] € M with
a corresponding sequence of measurements y[t] =
Ax*[t]. The objective in the first two variations is to
recover an estimate of & that lies in M and is close
to «*. The goal in the third variant is to track the
sequence of signals z*[t].

It is clear that our main problem is ill-posed in
full generality as there may be many signals in M that
are consistent with the given measurements y. This is
because the linear map A has a nontrivial nullspace.
Therefore an important requirement of the operator A
is that it satisfy a restricted isometry property with
respect to the set M. Consequently, we can ensure
that there exists a unique signal in M that is consistent
with the information .

Definition 1: Let M C R” be a Riemannian
manifold and A € R™*™, Then A satisfies the Re-
stricted Isometry Property with respect to M with
constant dq € [0,1) if for all 21,29 € M

(1=6p) |z =22 < [JA(z1—22)[|* < (146pm) |21 —22 %

€y

The concept of restricted isometry has played a fun-
damental role in the analysis of the recovery of sparse
vectors [4] and low-rank matrices [10], and we exploit
in our paper a generalization of this property to mani-
folds. In order to prove that linear maps A : R™ — R
with low dimensional image m satisfy a restricted
isometry condition with respect to a manifold M,
we require that the manifold satisfy certain regularity
conditions. Specifically let V' denote the volume of a
manifold (which bounds the “size” of the manifold),

let % denote its condition number (which controls the
twisting or curvature of the manifold), and let R denote
the covering regularity (which controls the ease with
which a manifold can be covered by charts). We omit
the precise definitions of these concepts here (see [3]
for more details), but note that the quantity Cnq = VT—R

is the key regularity parameter summarizing all these
preceding quantities.

Theorem 1: [3] Let M be a compact k-
dimensional Riemannian submanifold of R™ having
manifold regularity Chq. Fix 0 <e < 1land 0 < p <
1. Let A : R™ — R™ be a random orthoprojector [f|
with

€2

O (klog(nCME‘l)log(p‘l)) .

If m < n then with probability at least 1 — p the
following statement holds: For every pair of points
1,2 € M,

(1=€)llwr—a2]* < [A(z1—22)[* < (1+€) w1~

Thus the dimension of the manifold M, the di-
mension of the ambient space, and the regularity of
M control the number of measurements that suffice
for A to behave as an isometry restricted to M.

Given a manifold M, we define Pr(-) to be
the Euclidean projection operator on to M so that
z = Pm(y) is a minimizer of the Euclidean distance
between y and M.

III. MAIN RESULTS

In this section we present the main results related
to the recovery of unknown signals on a manifold.
We present four results in this section. The basic
result is regarding the recovery of an unknown signal
on a manifold via an algorithm called MIP. Three
other interesting variations of the same result are also
presented. These variations describe stability of MIP
under various scenarios related to the presence of
noise, imprecise projections and time-varying nature
of the underlying signal. The proofs of some of the
main results are included in a separate section at the
end. Some proofs are omitted due to space constraints,
the proofs of these results are very similar. The proof
techniques closely parallel the proof techniques for

*A random orthoprojector may be obtained in standard ways
from random matrices. The matrix A must be a suitably scaled
orthoprojector [6].



results related to recovery of sparse [5] and low-rank
[7] signals.

A. Signal Recovery in the Noiseless Case

We begin with the problem of recovering an
unknown signal z* € M from a few random linear
measurements of the form y = Ax*. The signal
is static, the measurements are noise-free, and it is
possible to compute projections onto M exactly via
a projection operator Prq. The algorithm described
below takes as input A,y such that y = Ax*, and
produces as output a candidate solution zr. Consider
the following algorithm, which we call Manifold
Iterative Projection (MIP).

Algorithm: MIP

0. Initialization: z = 0, g = Paq(2).

While k£ < T, repeat:
1. zjp1 =z — n (AT (Azy, — y))
2. 241 = Pm(2h41)
3. Increment k.

Theorem 2: Let z* € M be an unknown signal
on the manifold M. Let A be a measurement operator
satisfying (T) with 6o < %, and let y = Az*. Let
17 =1/(1 4 dr). Then the algorithm MIP converges,
ie.xpr —x*as T — oo.

Moreover, the algorithm produces z7 € M such
that |27 — 2*[|> < =5 and [|Azr — y[?> <€ in

T =

A

—oa0) 2\ 2
log< TV )
iterations.

Remark This theorem says that 7 converges to the
true signal z* with a convergence rate of O(log(1)).
This problem may be viewed as minimizing a
quadratic cost ||Az — y||? over the manifold M. The
algorithm MIP may be viewed as a first order projected
gradient method. It is interesting that one can obtain an
exponential rate of convergence in our situation, where
one is minimizing a convex function over a manifestly
non-convex set M. Interestingly, restricted isometry
replaces convexity as a key property in the proof.

B. Signal Recovery in the Noisy Case

The result in Theorem 2] deals with an idealized
situation where the measurement process Azx* = y is
noise-free. In many engineering applications, it would
be desirable to allow for a moderate amount of noise.
The next result shows that the algorithm MIP is robust
to additive noise.

Theorem 3: Let z* € M be an unknown signal
on the manifold M. Let A be a measurement operator
satisfying (I)) with 6, < 1/3, and let y = Ax*+e. Let
n=1/(1+dm). Let C = %%. Then the algorithm
MIP produces xr € M such that

2
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iterations, where D < 1 is a constant that depends
only on .

in

Theorem [3] says that the algorithm MIP is robust to
the presence of noise in the measurement process. As
one increases the number of iterations, ¢ — 0, and
x approaches a neighborhood of z*. The size of this
neighborhood is determined by the level of noise ||e]|?,
and on the constant . The constant C' that appears
in the bound (and also D that appears in the running
time) is of moderate size.

C. Approximate Projections

It is often not possible to perform exact projec-
tions when dealing with manifolds. Rather, a pro-
jection may be computed via a separate numerical
optimization procedure that minimizes the distance
between the given point and the manifold. This com-
putation may yeild only an approximately optimal
solution. In this section we show that MIP is robust
with respect to inexact and approximate projections.

Definition 2: Let y € R™. We say that a
point z € M is an ep-approximate projection if

Iz = ylI* < 1Pac(y) = yl* + ep. 2)

We denote an ep-approximate projection of y € R”
onto M by Pi(y).



Remark Note that for a manifold, neither a projec-
tion, nor an € p-projection need be unique. The notation
Pr(y) and Pif (y) may thus not be uniquely defined,
but are simply meant to refer to any points which
are actual/approximate minimizers of the Euclidean
distance from y to M.

Let a measurement operator A with measurements
y € R™ such that y = Ax*. Consider the following
algorithm, which we call Manifold Iterative Projection-
Approximate (MIP;pr0z).

Algorithm: MIP ;0.

0. Initialization: z = 0, zg = P (2).

While k < T, repeat:
l. 2k41 =2k — 7 (AT(A-%'IC - yk))
2. xpq1 = P (2r41)
3. Increment k.

Theorem 4: Let z* € M be an unknown signal
on the manifold. Let A be a measurement operator
satisfying (I) with g < :1,), and let y = Ax*. Let
n= 1/(1+5M) Let ep’ = W ep and € >
ep’.Then the algorithm MIPypprox produces xp € M
such that |lzp — 2*||? < =5— and ||[Azp —y|* < ¢

. M
in
1 2
T = 10g< vl : )
log((l 5M)> 2(e —ep’)
iterations.
Remark
Notice that if e = 0 we recover Theorem [2] as

one would expect when it is possible to compute
projections exactly.

The above theorem says that MIP is robust with
respect to inexact computations of the projection.
If ep-approximate projections are available then the
algorithm converges to an Cjep-sized neighborhood
of the optimal solution, where C; = (H(S:LM 361/\4 2)

a moderate-sized constant.

D. Tracking Slowly Time-Varying Signals

In this section we describe a variant of MIP that
adapts to an unknown time-varying signal z*[t] on the

manifold M. The signal is assumed to be slowly time-
varying with respect to the computational resources
available, i.e. between successive iterations of the MIP
algorithm, the signal is allowed to have changed by
only a small amount. We consider a discrete time set-
ting where at each time instant, a set of measurements
of the form y[t] = Axz*[t] becomes available. The
algorithm is allowed to perform a single iteration per
discrete epoch of time. The objective is to eventually
track the signal x*[t] by using the measurements y[t].

More formally let T = Zx( denote the temporal
index set. We consider time-varying signals denoted
by z[t] € R" for all ¢t € T.

Definition 3: We say that a signal x[t] is
slowly time-varying if:

|zt + 1] — z[t]||* < e, for all ¢ (3)
for some constant €.

Given a measurement operator A and
measurements y[t] V¢ € T such that y[t] = Axz*[t].
Consider the following algorithm, which we call
Temporal Manifold Iterative Projection (TMIP).

Algorithm: TMIP

0. Initialization: z = 0, z[0] = Paq(2).

At time ¢ 4 1:
1. z[t + 1] = [t] — n (AT (Az[t] — y[t]))
2. z2[t+ 1] = Ppm(z[t + 1))

3. Increment t.

The following theorem states that the algorithm
TMIP successfully tracks the signal z*[t] from the
measurement process y[t]. (Recall that at each time
t € T, y[t] € R™ has small dimension as compared to
the ambient dimension of the true signal x*[¢].)

Theorem 5: Let z*[t] € M for all t € T be an
unknown time-varying signal on the manifold satisfy-
ing (). Let A be a measurement operator satisfying
(@ with 65 < %, and let y[t] = Az*[t]. Let n =
1/(1 + daq). Then the algorithm TMIP converges to
an e,/ = W@ neighborhood of z[t] as
T — oo, i.e. for every § > 0 there exists a T such
that ||z[t] — 2*[t]||* < e,’ +§ for all ¢ > T. Moreover,
if € > €,/ the algorithm produces x € M such that
Jo[T] —a* [T]]2 < 1=5— and [|A(2[T]—2*[T])]2 < e




in

1 ly[o]* )
T = log (
g (Cgfe?) "\

iterations.

Note that nothing about the dynamics of the signal is
known beyond the fact that it is slowly time-varying in
the sense of (3). In the absence of knowledge of the
dynamics, one cannot hope to estimate z*[t] closer
than e, in general. Even if one were to have perfect
knowledge of z*[t] for some ¢, the state z*[t + 1]
could be anywhere in an e, neighborhood. Hence,
one cannot hope to estimate x*[t] beyond a resolution
of €. Theorem [3] says that TMIP approximates the
state to a resolution of Cye, for some moderate-sized
constant Cy = %.

Remark The results presented in this section con-
sisted of the convergence of the MIP algorithm. We
also presented its robustness to noisy measurements,
approximate projections, and time-varying nature of
the underlying signal. We remark that it is possible
to combine all these forms of robustness in a natural
way into a single model and obtain an analogous
convergence result. While it would lead to more
cumbersome notation, only mild modifications to the
analysis presented here would be required.

Remark We remark that for the theorems presented
in this section, manifold structure is not essential.
The results presented here are true for signal recovery
over arbitrary sets V' C R" via a linear measurement
operator A provided A approximately-isometrically
embeds V in the sense of (T). Signals with sparse, low-
rank and manifold structures are just specific signal
classes endowed with this property.

IV. STYLIZED APPLICATIONS

In this section, we describe some stylized exam-
ples of the recovery problem on manifolds. As pointed
out earlier, there are two interesting aspects related to
recovery.

1) The sample complexity: The number of mea-
surements required for reliable recovery (i.e.
with high probability) is precisely the minimal
m required to stably embed the manifold with
distortion 6, < K for some constant K. This
constant depends on whether or not the measure-

ments are noise-free and whether the projections
are exact or approximate. (For example, in the
static, noiseless case with perfect projections,
K = % as mentioned in Theorem . As men-
tioned earlier, the sample complexity to achieve
this constant is roughly O(klog(Can)). Com-
puting or bounding C' x4 precisely involves com-
puting these geometric properties of the specific
manifold in question, which may be a challeng-
ing task in its own right. We do not dwell on
this issue. Rather, we note that for this manifolds
considered in this section, we expect C'r to be
fairly benign, as is evidenced also by numerical
examples.

2) Algorithmic aspects: The computational proce-
dure proposed in this paper, namely MIP and its
variants, may be viewed as projected gradient
schemes. As with all such schemes, there are
three main components:

a) Computing the gradient of the objective
function: As noted previously, the recovery
problem may be viewed as minimizing the
quadratic function ||Az — y||* over the
manifold M (we are guaranteed that the
optimal value is 0). In our case the objec-
tive function is quadratic, so the gradient
computation is straightforward, it is simply
AT (Az —y).

b) Step-size: The appropriate step size is char-
acterized via the parameter drq; the step
size is simply ﬁ.

c) Projection onto M: This is the most
challenging step. In essence the recovery
problem on M reduces to being able to
compute projections onto M. In the styl-
ized examples discussed below, we de-
scribe specific computational procedures to
project x € R™ onto M.

A. Manifolds defined by Polynomials

Let y € B C R* where B is the unit ball and
pi(y) for i« = 1,...n be multivariate polynomials of
degree d. Then the set

M={(p1(y),...,pn(y)) € R"| y € B}

defines a k-dimensional compact Riemannian manifold
in R™. Given an unknown z* € M we would like to
recover it from a few random measurements. As ex-
plained above, a tractable way to compute projections
on to M is the essential algorithmic ingredient.



Note that given a point z € R™, computing
its projection onto M is equivalent to solving the
following optimization problem:

Min. -, 7

n
subject to: Z (pi(y) —z)> =~ >0 forall y € B.

i=1
The above polynomial optimization problem produces
a v whose value is equal to the squared projection
distance between z and M. If one is able to obtain the
exact solution to -y, the corresponding minimizer y is
typically obtained from the dual. However, in general
this polynomial optimization problem is hard to solve.
There are natural relaxation schemes which allow one
to obtain bounds on v and also produce approximate
minimizers. The well-known approaches replace the
non-negativity constraint by a sum-of-squares con-
straint [9], [8]. The resulting sum-of-squares opti-
mization problem may be solved by semidefinite pro-
gramming and would yield an approximate projection.
Theorem |4 is especially useful in this setting where
exact projections are hard but approximate projections
are feasible to compute.

B. The Stiefel Manifold

An interesting matrix manifold that occurs in
engineering is called the Stiefel manifold. Recall that
the Stiefel manifold S(n, k) is given by:

S(n, k) ={U e R UTU =T} .

Note that in the special case when k& = n, one obtains
the orthogonal group O(n). As noted above, the main
computational challenge associated with recovery is
computation of projections. Let W € R™** have
a rectangular singular value decomposition W =
UWEWVMT, (so that Xy is of size k£ x k). Then it
is straightforward to show that

PS(n,k,) = UWVV:Z[;

The Stiefel manifold is a manifold of dimension
nk — %k(k + 1), in a nk-dimensional real space.
For fixed k, the dimensions of the manifold and that
of the ambient dimension are of the same order of
magnitude hence one cannot expect reliable recovery
from a very small number of measurements. It may be
interesting to consider sub-manifolds of this manifold
whose dimensions are vanishingly small as a fraction
of the ambient dimension.

An interesting example in this setting would be
to consider a sub-manifold of O(n) whose ambient
dimension is a vanishing fraction of the ambient di-
mension.

We consider the manifold M =
given by

M = {diag(U)| U'U; = I, U; e R}

@, O(k:)

Note that this is a 31, (¥!)-dimensional manifold

in a (Zi\; k:i> -dimensional real space. If we let
M = n and k; = n for all i, then we have a
manifold of dimension O(n?) in a O(n*)-dimensional
real space. A sample complexity of O(n3log(Cpn))
suffices to reconstruct the unknown orthogonal matrix.
Note that the projection step here is again compu-
tationally tractable. Given a matrix A of appropriate
dimension, it is sufficient to project the i*" diagonal
block to an orthonormal one and zero the off-diagonal
terms.

C. The Grassmannian

Subspace identification is a problem that finds nu-
merous applications in engineering, a prominent exam-
ple being medical imaging [1]. In a high dimensional
setting, it may be desirable to learn an unknown sub-
space U from a small number of samples. In a similar
spirit, the problem of fracking an unknown subspace
finds numerous applications [2]. These problems of
identification and tracking may be viewed in a natural
way as the problem of learning an unknown signal
on a suitable manifold. The appropriate manifold in
question may be viewed abstractly as consisting of all
subspaces of R”, called the Grassmannian manifold.

Recall that the Grassmannian manifold G(n, k) is
defined to be the set of all k-dimensional subspaces
of R”. It is a compact Riemannian manifold, and
can be equipped with a natural metric. A natural
parametrization of the manifold may be obtained via
projection maps. Given a subspace 7' C R", let Pr
denote the Euclidean projection map (represented as a
n X n matrix) onto 7'. Note that projection matrices
may be expressed as Pr = UpUZL, and the subspace
T € G(n, k) may be identified with Im(Ur). Hence,
one can identify each subspace with its corresponding
projection matrix. This gives the following natural
description of the Grassmannian:

G(n,k)={P e R P=P" P?>=P, rank(P) = k}.



In this way the Grassmannian may be viewed as a
matrix manifold of dimension k(n — k) in an n?
dimensional real space. The sample complexity of
recovery is O(k(n — k)log(Capn)). If k is treated
as a fixed constant then the sample complexity is
O(nlog(Capmn)).

To compute projections onto the Grassmannian we
note the following. Given a matrix R € R"*" with
eigenvalue decomposition Ur X rUZ, its projection on
to the Grassmannian is given by

k k)T
Potni)(R) = UL UT)

where U}(%k) is the matrix of eigenvectors whose
columns correspond to the k largest positive eigen-
values (if less than k eigenvalues are positive, then
only the columns corresponding to the positive eigen-
values are kept). Note that if R is not symmetric, one
may compute its projection onto the Grassmannian by
simply projecting its symmetric part RJFTRT.

V. NUMERICAL EXPERIMENTS

We study the behavior of the algorithm TMIP
on a numerical example involving subspace tracking.
Consider the dynamics U(t) = Ujpexp(Rt), where
Uy € R™** is a given matrix on the Stiefel manifold
and R¥** is a fixed skew-symmetric matrix. Note that
U(t) may be viewed as a time-varying subspace. We
consider the problem of tracking P(t) = U(t)U(t)”
which essentially corresponds to the subspace tracking
problem.

Since R (a skew-symmetric matrix) is in the Lie
algebra of the Lie group of orthogonal matrices, it is a
standard fact that U (¢) is also on the Stiefel manifold
for all t € Rxq. It is easy to check that P(t) =
U(t)U(t)T represents the orthogonal projection onto
the column span of U(t). We consider the signal
P(t) sampled at over ¢ € [0,1] at discrete intervals
of At = 107* to obtain the discrete time signal
PJt]. The signal P[t] thus constructed, constitutes the
unknown signal. We let A : R™ — R™ be a matrix
whose entries are distributed as A;; ~ N(0, -1). The
map A acts on P(t) via y(t) = Avec(R(t)), where
vec(+) denotes the standard vectorization of a matrix.
Up and R are chosen to be random orthogonal and
skew-symmetric matrices respectively. The appropriate
discrete time signal y[t] constitute the measurements.

We run the algorithm on the task of tracking a k-
dimensinional subspace of R™ using m = Cykn ran-

tracking error

time

Fig. 1. Tracking error of a signal on the Grassmannian G (30, 5)
from m = 2kn = 300 measurements.

dom measurements at each time for some constant Cj.
The typical behavior of the algorithm (tracking error
versus time) is shown in Fig. [I] The tracking error is
expressed in terms of the Euclidean (Frobenius) norm
between the true and estimated projection matrices.
In Fig. 2] we report the probability of success as a
function of the number of measurements over a range
of numerical experiments.

Probability of Success
° ° °
= > >

<
N

o

o 05 1 15 2 25 3 35 4 45 5
m/(kn)

Fig. 2.  The probability of success in tracking the signal as a
function of the parameter > for G(20, 5).

VI. PROOFS

In this section we present the proof of Theorem
[l Due to space constraints we omit the proofs of
the other theorems, but note that their proofs are very
similar in spirit.

We define 1 (2) := 3|l Az — y[t]|.

Lemma 1: Let {z[t]}:eT be a sequence of iterates
produced by the algorithm TMIP. Under the assump-
tions of Theorem [3]

20 m
Vet +1) < 75~ u(el).



functf;rs,oﬁ Note that since :(z) is a quadratic < %||Aa:[t+1] — I+ Iyl — wlt + 1|12
1 = 2 (et +1]) + | A(2* [t + 1] — 2*[t])|®
¢t(2) - ¢t(x[t]) = <V¢($[t])yz _1'T[t]> + EHA(Z x[t])Hzg 21/Jt(I[t+ 1]) + (1 + 5/\4)“93*[75 + 1} _ x*[t]||2
< (AT (Asl] — i) = = ) + 50+ nolls —olP < By 4 (1450,
— oM

Define f;(z) := (AT (Az[t] — y[t]), z — z[t]) +
dm)||z — x[t]||. By completion of squares,

3(1+

fiz) = 3+ B0z — wft + 1]
1
meAT(Ax[t] —ylDIP,
where w(t + 1] = z[t] — 1“’1”\/1 AT (Az[t] — y[t]). Note

that

arg min_ ¢\, f(2) = Pm(wlt +1]) = z[t + 1].

Now note that

Je(xt +1]) < fi(2™[t])

— (AT(Ay — y).2°1] ~ alt)
S0+ 600l 1] — o)
< (AT (Aall] — yl]), 2" 1) — )+
P T AG ]~ ol P
= (" [1]) — () +
A ] - ol
Hence
belalt + 1)) — (elt) < fulelt +1]) < A2t
< la”ll) — lall) + T2 A — <P

|
Lemma 2: Let {z[t]}:eT be a sequence of iterates

produced by the algorithm TMIP. Under the assump-
tions of Theorem [3]

venalt + 1) < T2 Gt + (14 S)er
Proof:
Yuaa(alt + 1)) = Sllyle + 1] - Al + 1|1

Proof: [Proof of Theorem [5]] We use Lemma 2]
and the fact that 1, (x*[t]) = 0 for all ¢ to note that,

Ur(elT) < 75l — 1) + 50+ Sa)er
(o) I ()
=\1-6u 2 1— 5004

. -~ 1 lll® ) .
The choice of T' = Log((z;ﬁ)) log( e—er7) —‘ en

sures that 2¢7(z[T]) < € for € > €,’. Furthermore, by
@, (1=dp)[2[T]=2*[T]]* < | A([T] -2 [T])]* <
€. |
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