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Abstract—Hypothesis testing of covariance matrices is an
important problem in multivariate analysis. Given n data samples
and a covariance matrix Σ0, the goal is to determine whether
or not the data is consistent with this matrix. In this paper
we introduce a framework that we call sketched covariance
testing, where the data is provided after being compressed by
multiplying by a “sketching” matrix A chosen by the analyst. We
propose a statistical test in this setting and quantify an achievable
sample complexity as a function of the amount of compression.
Our result reveals an intriguing achievable tradeoff between the
compression ratio and the statistical information required for
reliable hypothesis testing; the sample complexity increases as
the fourth power of the amount of compression.

I. INTRODUCTION

Large-scale sparse covariance matrices play a prominent
role in a wide range of applications in bioinformatics, climate
studies, and economics. Therefore, statistical tasks like infer-
ence, structure estimation, and hypothesis testing involving
such matrices have been the subject of intensive study in recent
years [1]–[6].

In this paper, we focus on the hypothesis-testing problem,
which aims to distinguish between two scenarios given data.
In the first scenario, or the null-hypothesis, the data appears
to be consistent with a zero-mean Gaussian distribution with
known covariance Σ0 ∈ Rp×p. In the second scenario, or
the alternate hypothesis, the data appears to be drawn from
a zero-mean Gaussian distribution with a covariance Σ ∈ Rp
that is distinct from Σ0. We are specifically interested in
situations where Σ − Σ0 is structured, in particular, when it
is “d-distributed sparse”, where no more than d entries per
row/column of Σ differ from those of Σ0. Of course, if both
Σ0 and Σ are distributed sparse (see e.g. [2], [7], [8] for
various examples to motivate this structural assumption), then
naturally their difference is also distributed sparse. However,
our main result is more general and requires this assumption
only of the difference Σ−Σ0. Such situations arise naturally,
for instance, in anomaly detection or in testing involving
protein-protein signaling networks. In the former case, it is
of interest to find out if an underlying process was subject
to a significant (but structured) statistical change, while in
the latter, one might interested in detecting the presence of
a (structured) pattern of correlations that corresponds to a
particular biological phenomenon.

Importantly, in our setup, the statistical information from
the distribution being tested is made available to the analyst
through a dimensionality-reduction process known as a sketch.

Consider n independent samples X1, . . . , Xn drawn from a
Gaussian distribution N (0,Σ), and let A ∈ Rm×p (where typ-
ically m < p) be a “sketching” matrix that the analyst chooses
herself. Instead of directly observing the samples themselves,
she observes their sketched or compressed versions Yi given
by Yi = AXi, i = 1, 2, . . . , n. The goal then is to conduct
the hypothesis test using only these sketched samples. For
instance, when conducting hypothesis tests involving protein-
protein interactions in a cell, this approach would enable
one to dye and record expression levels corresponding to a
small number (m) of protein-pools as opposed to doing this
exhaustively across the large number (p) of proteins.

Our main result quantifies an achievable sample complexity
of the hypothesis test, i.e., the number of samples n required
to reliably distinguish between the hypothesis as a function of
the compression size m. An interesting feature of this result
is the revelation of a novel achievable compression-statistics
tradeoff; we show that the number of samples n required for
the test to succeed is inversely proportional to the fourth power
of the size m of the sketch. We believe that this phenomenon
holds broadly (i.e., beyond hypothesis testing) and that its
exploration is a fruitful avenue for future work.

II. PROBLEM SETUP AND MAIN RESULT

A. Notation, Setup, and Related Work

For n ∈ N, we write [n] to denote the set {1, 2, . . . , n}. We
index the elements of the matrix X as either Xij or [X]ij ,
and write ‖X‖∞ to denote the infinity-norm of vec(X), i.e.,
its absolute maximum element; when the context is clear, we
will use the same notation to denote the absolute maximum
element of a vector as well.

Let Σ0,Σ ∈ Rp×p�0 be two positive definite matrices, and
assume that Σ0 is known. Suppose that X1, X2, . . . , Xn are
samples drawn i.i.d. from a zero-mean multivariate normal
distribution with covariance matrix Σ; i.e., Xi ∼ N (0,Σ), i ∈
[n]. We are interested in the following hypothesis test:

H0 : Σ = Σ0 H1 : Σ 6= Σ0 (1)

The focus of this paper is the following twist on this
problem. We suppose that we can design a sketching matrix
A ∈ Rm×p with m < p and that, instead of observing the
samples Xi, i ∈ [n], we observe their compressed versions
Yi = AXi ∈ Rm, i ∈ [n]. Our goal is to design and analyze
a test statistic that reliably performs the hypothesis test (1)
based on this sketched data.



The problem of covariance estimation from full
(unsketched) data has been studied extensively (see e.g., [9]
and references there). Covariance estimation from compressed
samples has begun to receive considerable attention recently.
One line of work considers the problem of recovering low
rank covariance matrices from one-dimensional measurements
(see e.g., [10], [11] and the references therein). [12] also
considers very low-dimensional measurements, but does
not leverage any specific structure during estimation. In
the full rank case, [13] and [7] introduce a framework
(called covariance sketching) which achieves near-optimal
compression ratio for sparse covariance matrices, but does
not come with finite sample guarantees.

Similarly, hypothesis testing of covariance matrices from
full data has been a subject of intensive study; see, for
instance, [4]–[6] and the references therein. In this paper, we
consider hypothesis testing from compressed samples when
the underlying difference matrix is sparse, a framework we
call sketched covariance testing. For this problem, we quantify
an intriguing achievable compression-statistics tradeoff, which
is novel to the best of our knowledge. It is worth noting that if
the covariance matrices themselves are sparse, one might first
estimate these matrices (using covariance sketching), and then
test the estimates. However, such a procedure would also lack
finite sample guarantees, and perhaps more importantly, we
expect that this would be sub-optimal in terms of leveraging
the statistical information effectively.

B. Choice of the Sketching Matrix A

As in [7], we choose A to be the adjacency matrix of a
certain random graph. Such a sketching matrix is an appealing
choice since (a) it corresponds to a natural notion of sketching
or “pooling” where each row corresponds to a pool, and the
support of the row tells us the constituents of this pool, and
(b) it has certain combinatorial properties (which may be
thought of as a weak notion of small-set vertex expansion)
that are critical for our results∗.

Definition 1 (δ−left regular random bipartite graph [7]).
G = ([p], [m], E) is called a δ−left regular random bipartite
graph if the edge set E is generated according to the following
process. For each i ∈ [p], choose δ vertices j1, j2, . . . , jδ
uniformly and independently at random (without replacement)
from [m] and assign these as neighbors to i, i.e., {{i, jk}}δk=1

is added to the edge set E.

For ease of presentation in [7], each neighbor of i ∈ [p]
was chosen with replacement. However, as noted in [7], all the
properties derived in that paper hold when the edges are added
without replacement. Note that A is binary and relatively
sparse when δ is small. We will prove below that it suffices
that δ = O(log p), which can result in significant savings in
computational time both when sketching the data and when
performing the hypothesis test.

∗We refer the reader to [7, Section III-B] for these properties, their proofs,
and for more on how these properties are useful.

C. Main Result

Let Σ̂
(n)
Y denote the sample covariance matrix of the

sketched samples Y1, . . . , Yn, that is, Σ̂
(n)
Y = 1

n

∑n
k=1 YkY

T
k .

Note that Σ̂
(n)
Y = AΣ̂(n)AT , where Σ̂(n) is the sample co-

variance matrix corresponding to {Xi}i∈[n]. This fact follows
from the fact that if the random vector X ∼ N (0,Σ), then
Y = AX is distributed according to N (0, AΣAT ).

We now define our sketched test statistic as

T =
∥∥∥Σ̂

(n)
Y −AΣ0A

T
∥∥∥
∞

(2)

and the decision rule as

T
H1

R
H0

η. (3)

That is, we declare that the alternate hypothesis holds if T ≥ η
for an appropriately chosen η. We are now ready to state the
main result of the paper.

Theorem 1. Under H1, let d be the maximum number of
non-zeros that Γ , Σ−Σ0 has in any single row or column.
There exist constants c > 0, c0 ∈ (0, 0.25), c1 ∈ (0, 1), and
c2 > 0 such that the sketched hypothesis test (3) succeeds with
probability at least 1−4p−c provided the following conditions
hold†:
• The threshold η is set as η = Γmin

4 .
• The size of the sketch m satisfies√

2c0δ2dp
Γmax

Γmin
≤ m ≤ c1

p

log p
. (4)

• The number of samples n satisfies

n ≥ c2
(
p log p

m

)4
maxi Σ2

ii ∨maxi[Σ0]2ii
Γ2

min

. (5)

Remark 1 (Compression-statistics tradeoff). The above re-
sult reveals a graceful tradeoff between the number of samples
n and the compression ratio m/p; we see that that n scales
like (p log p/m)

4. It is interesting to consider the extremes
of this tradeoff. At the low-compression extreme, where m ∼
p/ log p, n scales as polylog(p), which may be compared with
the results of [1], [5]. At the high-compression extreme, where
m ∼

√
dp‡, it suffices if the sample complexity n scales like

Õ(p2). More generally, for m = O(pα) (α > 1
2 ), we have

an achievable sample complexity of Õ(p4(1−α)). The upper
bound on m in (4) may be an artifact of the analysis, and can
potentially be improved.

Remark 2 (Two sample testing). Theorem 1 extends readily
to two-sample testing, where, given two sets of statistical
samples, the goal is to decide whether these samples are
drawn from the same distribution or not. It can be verified
that if we define T as the maximum absolute deviation of
the corresponding sketched sample covariance matrices, then

†Γmax (resp. Γmin) is the absolute maximum (resp. minimum) non-zero
value in Γ
‡Notice that one can argue, using [7], that

√
dp (up to log factors) is an

information theoretic lower bound for m.



the results of Theorem 1 continue to hold. The “unsketched”
version of two sample testing with sparse covariance ma-
trices was studied in [5]. Notice that when presented with
sketched data, a naı̈ve application of the framework of [7]
would necessitate a statistically expensive full reconstruction
of the covariance matrices involved. However, our approach
enables the detection of any differences between these matrices
directly (and comes with finite sample guarantees).

Remark 3 (Sparsity assumption on Γ). Notice that the
smaller m is, the sparser Γ needs to be according to (4). When
m is close to its lower bound, i.e., in the high compression
regime, the hypothesis test can fail if Γ is dense even in
just a single row or column; this follows directly from the
argument in [7] that in this case, it is possible to have
AΓAT = 0. However, the sparsity requirement on Γ is not
strict; indeed Γ can be “approximately sparse” such that it
admits a decomposition Γ = Γs+Γn, where Γs is sparse with
relatively large elements and Γn is potentially dense and has
low magnitude entries. In this case, theorem 1 continues to
hold, with Γ replaced by Γs, provided that Γn is sufficiently

small, i.e., ‖Γn‖∞ ≤
(
m
pδ

)2

[Γs]min.
It should also be noted that, intuitively, denser Γ implies

Σ and Σ0 are more different, and hence the hypothesis test
should be statistically “easier”. This is reflected by the fact
that denser Γ requires larger m, and hence n can be much
smaller to achieve the same statistical performance.

Remark 4 (Other sketching matrices). It will be interesting
to see if the results of this paper and of [7] can be extended
to the case of Gaussian or other sketching matrices A, as
this might enable better statistical performance; this is an
interesting avenue for future work.

III. PROOF OF THEOREM 1

In this section we prove Theorem 1 in two parts. In part
(A), we show an upper bound on T that holds with high
probability under under H0, and in part (B) we show a lower
bound on T under H1. Putting these together, and accounting
for the probability of violation of these bounds gives us the
final result.

A. Analysis under H0

In what follows we produce an upper bound on T under
H0 that holds with high probability. Let φ = δ/(m− δ + 1).

Proposition 1. Under H0, the test statistic T is bounded from
above by ε2 with probability at least 1−m exp

(
− pφε21

2φ+2ε1/3

)
−

4m2 exp
(

−nε22
3200p4φ4(1+ε1)4(maxi∈[p][Σ0]ii)2

)
.

Proof: In order to bound T , we use Lemma 3 from Ap-
pendix A on the concentration of sample covariance matrices.
To use this, we need an upper bound on the variance of the
pooled random vector Y . Notice that there are two sources of
randomness here, the randomness due to the sampling and the
randomness in the generation of the sketching matrix A. We
first control the variance for a fixed compression matrix A.

Lemma 1. Let us fix A. For r ∈ [m] the following upper
bound holds on the r−th diagonal element of ΣY = AΣAT :
[ΣY ]rr ≤ (

∑p
i=1Ari)

2
maxi∈[p] Σii.

Proof: Observe that [ΣY ]rr = Var[Yr], where Yr =∑p
i=1AriXi is the r−th coordinate of Y . Also, Yr is 0−mean,

which implies that we have the following expression holds
[ΣY ]rr = Var [Yr] = E

[
(
∑p
i=1AriXi)

2
]
. Next, notice that

E
p∑

i,j=1

AriArjXiXj ≤ (

p∑
i=1

Ari)
2 max
i∈[p]

Σii,

where we have used the fact that the Ari’s are always non-
negative, and that Σij ≤

√
ΣiiΣjj by Hadamard’s inequality

[15].
The next step is to control the sum

∑p
i=1Ari for all r ∈ [m].

The following result gives us a high probability upper bound.

Lemma 2. When A is chosen according to the δ−left
regular bipartite random graph model of Definition 1, the
following upper bound holds with probability greater than
1−m exp

(
− pφε21

2φ+2ε1/3

)
: maxr∈[m]

∑p
i=1Ari ≤ pφ(1 + ε1)

Proof: Note that the Ari’s are mutually independent, since
the choice of neighbors for i ∈ [p] is independent of the choice
of neighbors for any other j ∈ [p]. Next, observe that Ari = 1
iff r is one of the δ neighbors chosen for the left vertex i.
Therefore, P [Ari = 1] =

(
m
δ−1

)
/
(
m
δ

)
= δ/(m − δ + 1) ,

φ(δ,m). We suppress the dependence on δ and m.
As alluded to earlier, we are interested in regimes where δ

is significantly smaller than p (and therefore m). This implies
that the random variables that make up the sum have low
variance. And, to leverage this, we use Bernstein’s inequality
(which we reproduce as Lemma 4 in Appendix A). In this case,
we have the following: |Ari − φ| ≤ 1 − φ, and Var [Ari] =
φ(1− φ) ≤ φ. Applying Lemma 4 to the Ari’s,

P

[
p∑
i=1

Ari > pφ(1 + ε1)

]
≤ exp

(
−pφε2

1/2φ+ 2ε1/3
)
.

A union bound over r ∈ [m] gives us the desired result.
Now, we notice that under H0, Σ = Σ0. Therefore, T =∥∥∥AΣ̂

(n)
0 AT −AΣ0A

T
∥∥∥
∞
. Recall that our goal is to produce a

probabilistic upper bound on T . And towards this end, letting
E1 denote the event that the implication of Lemma 2 holds,
we estimate the probability that T is larger than ε2.

P [T ≥ ε2] ≤ m exp

(
− pφε2

1

2φ+ 2ε1/3

)
+ P [T ≥ ε2|E1] . (6)

The second term above is bounded from above as follows

P [T ≥ ε2|E1]

≤
∑

r,s∈[m]

P
[∣∣∣[AΣ̂

(n)
0 AT ]rs − [AΣ0A

T ]rs

∣∣∣ > ε2

]
(a)

≤ 4m2 exp

(
−nε2

2

3200 (maxr
∑p
i=1Ari)

4
maxi([Σ0]ii)2

)
(b)

≤ 4m2 exp

(
−nε2

2

3200p4φ4(1 + ε1)4(maxi∈[p][Σ0]ii)2

)
. (7)



(a) follows from the concentration of the sample covariance
matrix (Lemma 3) along with an application of Lemma 1, and
(b) follows from Lemma 2 (or more precisely, since we are
conditioning on the event Ec1 holds). Putting equations (6) and
(7) together, we get the desired result.

B. Analysis under H1

In this section, we prove a probabilistic lower bound on T
under H1.

Proposition 2. There exists constants c0 ∈ (0, 0.25), c > 0
such that with probability at least

1−p−c −m exp

(
− pφ2ε2

1

2φ+ 2ε1/3

)
− 4m2 exp

(
−nε2

3

3200p4φ4(1 + ε1)4(maxi∈[p] Σii)2

)
the test statistic satisfies T ≥ Γmin

2 − ε3 under H1, provided

the compression size m satisfies m ≥
√

2c0δ2dpΓmax

Γmin
.

Proof: We begin the proof by first observing that

T =
∥∥∥Σ̂

(n)
Y −AΣ0A

T
∥∥∥
∞

≥
∥∥ΣY −AΣ0A

T
∥∥
∞ −

∥∥∥Σ̂
(n)
Y − ΣY

∥∥∥
∞

, T1 − T2. (8)

Therefore, to obtain a lower bound on T , we first obtain an
upper bound on T2 that holds with high probability. Notice
that this is essentially the same statement as in Proposition 1
with a different covariance matrix. Therefore, it follows that

P [T2 > ε3] ≤ m exp

(
− pφε2

1

2φ+ 2ε1/3

)
+ 4m2 exp

(
−nε2

3

3200p4φ4(1 + ε1)4(maxi∈[p] Σii)2

)
. (9)

Next, we bound T1 from below. Towards this end, as before,
we let Γ = Σ− Σ0. That is, with this notation, we can write
T1 =

∥∥AΓAT
∥∥
∞. For the sake of this proof, and for the ease

of relating our results back to those in [7], here we will work
with the “tensor product form” of the quantity AΓAT . Let γ
denote vec(Γ) ∈ Rp2 . To keep presentation simple, we write
γij to index γ where i, j ∈ [p], that is, γij = Γij . Also,
we let A ∈ Rm2×p2 denote the matrix A ⊗ A, the tensor
(or Kronecker) product of A with itself. And, as above, we
index this matrix as Ars,ij , where r, s ∈ [m] and i, j ∈ [p].
Notice that from the definition of the tensor product, Ars,ij =
AriAsj . With this notation in place, observe that the following
holds for any r, s ∈ [m]

[ΣY −AΣ0A
T ]rs =

[
AΓAT

]
rs

= [Aγ]rs =
∑
i,j∈[p]

Ars,ijγij .

And, with this notation T1 = maxr,s∈[m]

∣∣∣∑i,j∈[p]Ars,ijγij
∣∣∣.

As in [7], we may think of A = A⊗A as the adjacency matrix
of a tensor product graph G⊗G, where G is drawn randomly
according to Definition 1. Notice that G⊗G is also a bipartite
graph with left and right sets given by [p]× [p] and [m]× [m]

respectively. The edge set of G ⊗ G (denoted as E ⊗ E) is
such that (r, i), (s, j) ∈ E ⇔ (rs, ij) ∈ E ⊗ E.

Following along the lines of [7, Section IV], we begin by
considering an arbitrary ordering of the set [p] × [p] and we
order the edges in E ⊗ E lexicographically based on this
ordering, i.e., the first δ2 edges e1, . . . , eδ2 in E1 ⊗ E2 are
those that correspond to the first element as per the ordering
on [p] × [p] and so on. One can imagine that the graph
G ⊗ G is formed by including these edges sequentially as
per the ordering on the edges. This enables us to partition the
edge set into the set Eccoll of edges that do not collide with
any of the previous edges as per the ordering, and the set
Ecoll := (E ⊗ E) \ Eccoll. (A similar proof technique appears
in [16]). Let Ω ⊂ [p] × [p] denote the support of Γ, and also
we write 1ijrsE to mean 1{(ij, rs) ∈ E}.

max
r,s∈[m]

∣∣∣∣∣∣
∑
i,j∈[p]

Ars,ijγij

∣∣∣∣∣∣ = max
r,s∈[m]

∣∣∣∣∣∣
∑

(ij,rs)∈E⊗E

γij

∣∣∣∣∣∣
= max
r,s∈[m]

∣∣∣∣∣∣
∑

(ij,rs)∈Ec
coll

γij +
∑

(ij,rs)∈Ecoll

γij

∣∣∣∣∣∣
≥ max
r,s∈[m]

∣∣∣∣∣∣
∑

(i,j)∈Ω

1
ijrs
Ec

coll
γij

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

(i,j)∈Ω

1
ijrs
Ecoll

γij

∣∣∣∣∣∣
 . (10)

Before we proceed, observe that for a fixed r, s ∈ [m], the
first sum above has only one term in it by the definition of
the set Eccoll. Therefore, the first term above is bounded from
below by Γmin. This, along with a triangle inequality on the
second term above, implies that:

T1 ≥ max
r,s∈[m]

Γmin −
∑

(i,j)∈Ω

1
ijrs
Ecoll
|γij |


= Γmin − min

r,s∈[m]

∑
(i,j)∈Ω

1
ijrs
Ecoll
|γij |

≥ Γmin −
1

m2

∑
r,s∈[m]

∑
(i,j)∈Ω

1
ijrs
Ecoll
|γij | , (11)

where in the last step we use the average to bound the min-
imum. Next, we observe that

∑
r,s∈[m]

∑
i,j∈Ω 1

ijrs
Ecoll
|γij | ≤∑

i,j∈[p] cij |γij |, where cij is the number of collisions in-
volving the edges emanating from (i, j). Now, we use a key
result from [7], which we paraphrase as Lemma 5 (or more
specifically Corollary 1) in Appendix A, that guarantees that
there is a constant c0 ∈ (0, 0.25) such that cij ≤ c0δ

2 for
all (i, j) ∈ Ω with probability at least 1 − p−c provided
δ ∈ O(log p). Therefore, w.h.p, we may bound (11) as follows

T1 ≥ Γmin −
c0δ

2

m2

∑
(i,j)∈Ω

|γij | ≥ Γmin −
c0δ

2Γmaxdp

m2
. (12)

This means that T1 is bounded from below by Γmin/2 with
probability at least 1− p−c, provided m ≥

√
2c0δ2dpΓmax

Γmin
.



Putting this together with (9) in (8), we obtain the desired
result.

Finally, we combine the results of Proposition 1 and 2 to
prove Theorem 1

C. Combining Propositions 1 and 2

Notice that if we set ε3 = ε2 = η = Γmin

4 , then, by a union
bound, we have a valid test except with probability at most

m exp

(
− pφε2

1

2φ+ 2ε1/3

)
+ p−c

+ 4m2 exp

(
−nΓ2

min

16 · 3200p4φ4(1 + ε1)4(maxi∈[p][Σ0]ii)2

)
+ 4m2 exp

(
−nΓ2

min

51200p4φ4(1 + ε1)4(maxi∈[p] Σii)2

)
. (13)

First, we observe that since φ = δ
m−δ+1 , there exists a

constant c1 ∈ (0, 1) such that provided m < c1
p

log p , we have

that m exp
(
− pφε21

2φ+2ε1/3

)
≤ p−c. Next, we use the fact that

δ ∈ O(log p) to deduce that there is a constant c2 > 0 such
that if

n ≥ c2
(
p log p

m

)4
maxi Σ2

ii ∨maxi[Σ0]2ii
Γ2

min

, (14)

the third and fourth term in (13) are no greater than p−c. This
gives us the proof of Theorem 1.
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APPENDIX A
AUXILIARY RESULTS

We will need the following result on the concentration of
the elements of the sample covariance matrix about their true
values; this is a specialization of [14, Lemma 1].

Lemma 3 (Sample covariance Concentration [14]). Let
Y1, . . . , Yn be i.i.d samples from N (0,ΣY ). The sample co-
variance matrix Σ̂

(n)
Y = 1

n

∑
k∈[n] YkY

T
k satisfies the follow-

ing deviation inequalities for any fixed (r, s) ∈ [m]× [m]:

P
[∣∣∣[Σ̂(n)

Y ]rs − [ΣY ]rs

∣∣∣ > ε
]
≤4exp

{
−nε2

3200 (maxr [ΣY ]rr)
2

}
.

We will also need the Bernstein’s inequality, which we state
here [17].

Lemma 4 (Bernstein’s Inequality). Let R1, . . . , Rp be inde-
pendent 0−mean random variables such that |Ri| ≤ ζ a.s.
Let σ2 ≥ 1

p

∑p
i=1 Var [Ri]. Then for any a > 0, we have

P[
∑p
i=1Ri ≥ pa] ≤ exp

(
−pa2/2σ2 + 2ζa/3

)
.

Finally, we will state the following lemma from [7, Lemma
1] that states a crucial property of the random tensor product
graphs that we are considering here. Letting N(S) denote the
neighborhood of a left set S ⊂ [p], we have:

Lemma 5. Suppose G = ([p], [m], E) is a random δ−left
regular bipartite graph (cf. Definition 1) chosen such that δ =
O(log p) and m ∈ Ω(

√
dp log p). Let Ω ∈ [p] × [p] denote

the support of (a d−distributed sparse) Γ. Then there exists
a constant c0 ∈

(
0, 1

4

)
such that G1 ⊗ G2 has the following

properties with probability exceeding 1−p−c, for some c > 0:
(a) |N(Ω)| ≥ pδ2(1− c0). (b) For any (i, i′) ∈ ([p]× [p]) \Ω
we have |N(i, i′) ∩ N(Ω)| ≤ c0δ

2. (c) For any (i, i′) ∈ Ω,
|N(i, i′) ∩N(Ω \ (i, i′))| ≤ c0δ2.

In particular, we will need the following corollary, which
follows from part (c) in Lemma 5.

Corollary 1. Under the conditions of Lemma 5, if we let
cij , (i, j) ∈ Ω be as in the proof of Proposition 2, then we
have that cij ≤ c0δ

2 for all (i, j) ∈ Ω with probability at
least 1− p−c.


