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Abstract
We develop a theoretical and computational
framework to perform guaranteed tensor decom-
position, which also has the potential to accom-
plish other tensor tasks such as tensor comple-
tion and denoising. We formulate tensor de-
composition as a problem of measure estimation
from moments. By constructing a dual poly-
nomial, we demonstrate that the measure opti-
mization returns the correct CP decomposition
under an incoherent condition on the rank-one
factors. To address the computational challenge,
we present a hierarchy of semidefinite programs
based on the sum-of-squares relaxation to ap-
proximate the measure optimization. By show-
ing that the constructed dual polynomial is a
sum-of-squares modulo the sphere, we prove that
the smallest SDP in the relaxation hierarchy is
exact and the decomposition can be extracted
from the semidefinite program solutions under
the same incoherent condition. One implica-
tion is that the tensor nuclear norm can be com-
puted exactly using the smallest SDP as long as
the rank-one factors of the tensor are incoherent.
Numerical experiments are conducted to test the
performance of the moment approach.

1. Introduction
Tensor provides a compact and natural representation
for high-dimensional, multi-view datasets encountered in
fields such as communication, signal processing, large-
scale data analysis, and computational neuroscience, to
name a few. In many data analysis tasks, tensor-based ap-
proaches outperform matrix-based ones due to the ability
to identify non-orthogonal components, a property derived
from having access to higher order moments (Landsberg,
2009). In this work, we investigate the problem of decom-
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posing a tensor into a linear combination of a small number
of rank one tensors, also known as the CP decomposition
or the PARAFAC decomposition. Such low-rank tensor de-
composition extends the idea of singular value decompo-
sition for matrices and finds numerous applications in data
analysis (Papalexakis et al., 2013; Anandkumar et al., 2013;
2012; Cichocki et al., 2014; Comon, 2009; Kolda & Bader,
2009; Lim & Comon, 2010).

We approach tensor decomposition from the point of view
of measure estimation from moments. To illustrate the idea,
consider determining the CP decomposition of a third or-
der symmetric tensor A =

∑r
p=1 λpx

p ⊗ xp ⊗ xp, which
can be viewed as estimating a discrete measure µ? =∑r
p=1 λpδ(x − xp) supported on the unit sphere from its

3rd order moments Aijl =
∫
Sn−1 xixjxldµ

?. This formu-
lation offers several advantages. First, it provides a natural
way to enforce a low-rank decomposition by minimizing an
infinite-dimensional generalization of the `1 norm, the total
variation norm of the measure. Second, the optimal value
of the total variation norm minimization, which is a con-
vex optimization in the space of measures, defines a norm
for tensors. This norm, termed as tensor nuclear norm, is
an instance of atomic norms, which, as argued by the au-
thors of (Chandrasekaran et al., 2012), is the best possible
convex proxy for recovering simple models. Just like the
matrix nuclear norm, the tensor nuclear norm can be used
to enforce low-rankness in tensor completion, robust ten-
sor principal component analysis, and stable tensor recov-
ery. Finally, finite computational schemes developed for
atomic tensor decomposition can be readily modified to ac-
complish these more complex tensor tasks.

The theoretical analysis of atomic tensor decomposition is
fundamental in understanding the regularization and esti-
mation power of the tensor nuclear norm in solving other
tensor problems. For one thing, it tells us what types of
rank-one tensor combinations are identifiable given full,
noise-free data. For another, the dual polynomial con-
structed to certify a particular decomposition is useful in
investigating the performance of tensor nuclear norm mini-
mization for data corrupted by missing observations, noise,
and outliers. When the same measure estimation idea was
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applied to line spectral estimation in signal processing,
the dual polynomial constructed in (Candès & Fernandez-
Granda, 2014) was later utilized to analyze the ability of
frequency estimation from incomplete, noisy, and grossly
corrupted data (Tang et al., 2014b;a; 2013; Chi & Chen,
2014). We expect that the tensor decomposition results will
find similar uses in the corresponding tensor tasks.

Our contributions in this work are three folds. First of all,
we formulate atomic tensor decomposition as a moment
problem and apply the Lasserre sum-of-squares (SOS) re-
laxation hierarchy to obtain a series semidefinite programs
(SDPs) to approximately solve the moment problem. Sec-
ondly, we explicitly construct a dual polynomial to certify
that a decomposition with incoherent components {xp, p =
1, . . . , r} is the unique atomic tensor decomposition. The
incoherence condition requires that the matrix formed by
the vectors {xp} is well-conditioned. Last but not least,
by showing that the constructed dual polynomial is an SOS
modulo the sphere, we establish that the smallest SDP in
the Lasserre hierarchy exactly solves the atomic decompo-
sition under the same incoherent assumption. Such a re-
sult is different from existing approximation results for the
Lasserre hierarchy, where there is no guarantee on the size
of the SDP at which exact relaxation occurs (Nie, 2014).
The effectiveness of the lowest order relaxations has enor-
mous consequences for computation, as the Lasserre hier-
archy is considered impractical due to the rapid increase of
the sizes of SDPs in the hierarchy.

2. Connections to Prior Art
Add comparison with Barak & Moitra (2015); Expand the
comparison with Anandkumar as mentioned in the review.

CP tensor decomposition is a classical tensor problem that
has been studied by many authors (cf. (Comon, 2009;
Kolda & Bader, 2009)). Most tensor decomposition ap-
proaches are based on alternating minimization, which typ-
ically do not offer any global convergence guarantees (Bro,
1997; Harshman, 1970; Kolda & Bader, 2009; Papalex-
akis et al., 2013; Comon et al., 2009). However, recent
work that combines the idea of alternating minimization
and power iteration has yielded guaranteed tensor decom-
position in a probabilistic setting (Anandkumar et al., 2013;
2014). In contrast, the theoretical guarantee of our moment
approach is deterministic, which is more natural since there
is no randomness in the problem formulation.

Another closely related line of work is matrix comple-
tion and tensor completion. Low-rank matrix completion
and recovery based on the idea of nuclear norm minimiza-
tion has received a great deal of attention in recent years
(Candès & Recht, 2009; Recht et al., 2010; Recht, 2011).
A direct generalization of this approach to tensors would

be using tensor nuclear norm to perform low-rank tensor
completion and recovery. However, this approach was not
pursued due to the NP-hardness of computing the tensor
nuclear norm (Hillar & Lim, 2013). The mainstream ten-
sor completion approaches are based on various forms of
matricization and application of matrix completion to the
flattened tensor (Gandy et al., 2011; Liu et al., 2013; Mu
et al., 2013; Yuan & Zhang, 2014). Alternating minimiza-
tion can also be applied to tensor completion and recov-
ery with performance guarantees established in recent work
(Huang et al., 2014). Neither matricization nor alternat-
ing minimization approaches yields optimal bounds on the
number of measurements needed for tensor completion.

In contrast, we expect that the atomic norm, when spe-
cialized to tensors, will achieve the information theoreti-
cal limit for tensor completion as it does for compressive
sensing, matrix completion (Recht, 2011), and line spectral
estimation with missing data (Tang et al., 2013). Given a
set of simple models or atoms, the atomic norm is an ab-
straction of `1-type regularization that favors models com-
posed of fewer atoms.Using the notion of descent cones,
the authors of (Chandrasekaran et al., 2012) argued that the
atomic norm is the best possible convex proxy for recover-
ing simple models. Particularly, atomic norms were shown
in many problems beyond compressive sensing and matrix
completion to be able to recover simple models from min-
imal number of linear measurements. For example, when
specialized to the atomic set formed by complex exponen-
tials, the atomic norm can recover signals having sparse
representations in the continuous frequency domain with
the number of measurements approaching the information
theoretic limit without noise (Tang et al., 2013), as well
as achieving near minimax denoising performance (Tang
et al., 2014a). Continuous frequency estimation using the
atomic norm is also an instance of measure estimation from
(trigonometric) moments.

The tensor decomposition considered in this work is a spe-
cial case of atomic decompositions, i.e., decompositions
that achieve the atomic norm. Due to the fundamental
role of atomic decomposition in understanding the power
and limitations of and in developing further theories for
atomic norm regularization, sufficient conditions character-
izing such decompositions have been developed by explic-
itly constructing a dual polynomial. This dual polynomial
played an instrumental role in establishing the information-
theoretic optimality of atomic norms in performing com-
pletion and denoising tasks. For finite atomic sets, it is now
well-known that if the atoms satisfy certain incoherence
conditions such as the restricted isometry property, then a
sparse decomposition achieves the atomic norm (Candes,
2008). For the set of rank-one, unit-norm matrices, the
atomic norm (i.e., the matrix nuclear norm), is achieved
by orthogonal decompositions (Recht et al., 2010). When
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the atoms are complex sinusoids parametrized by the fre-
quency, Candès and Fernandez-Granda showed that atomic
decomposition is solved by atoms with well-separated fre-
quencies (Candès & Fernandez-Granda, 2014). Similar
separation conditions also show up when the atoms are
translations of a known waveform (Tang & Recht; Bendory
et al., 2014b), spherical harmonics (Bendory et al., 2014a),
and radar signals parametrized by translations and modu-
lations (Heckel et al., 2014). The incoherence requirement
for our tensor decomposition is also one form of separation
condition. In (Tang, 2015), the author showed that such
separation conditions are necessary as a consequence of
Markov-Bernstein type inequalities. We cite such a resolu-
tion limit result in Theorem 2 to complement our sufficient
decomposition result.

The computational foundation of our moment approach is
based on SOS relaxations, particularly the Lasserre hierar-
chy for moment problems (Parrilo, 2000; Lasserre, 2001).
After more than a decade’s developments, SOS relaxations
have produced a large body of literature (cf. the mono-
graphs (Blekherman et al., 2013), (Lasserre, 2009) and ref-
erences therein). The Lasserre hierarchy provides a series
of SDPs that can approximate moment problems increas-
ingly tight (Lasserre, 2001; Parrilo, 2000; Lasserre, 2008).
Indeed, it has been shown that as one moves up the hier-
archy, the solutions of the SDP relaxations converge to the
infinite-dimensional measure optimization (Nie, 2014). In
many cases, finite convergence is also possible, though it
is typically hard to determine the sizes of those exact re-
laxations (Nie, 2014). We show that for the tensor decom-
position problem, exact relaxation occurs for the smallest
SDP in the hierarchy under certain incoherence conditions.
Combining with the necessary condition in Theorem 2, we
can roughly say that when the atomic tensor decomposi-
tion is solvable by the total variation norm minimization, it
is also solvable by a small SDP; when the lowest order SDP
relaxation does not work, the original infinite-dimensional
measure optimization is also unlikely to work.

3. Model and Algorithm
3.1. Model for tensor decomposition

We focus on third order, symmetric tensors in this work.
Given such a tensor A = [Aijl]

n
i,j,l=1 ∈ S3(Rn), we are

interested in decompositions of the form

A =

r∑
p=1

λpx
p ⊗ xp ⊗ xp (1)

where ‖xp‖ = 1 and λp > 0. The decomposition ex-
pressing a tensor as the sum of a finite number of rank-
one tensors is called the CP decomposition (Canonical
Polyadic Decomposition), which also goes by the name

of CANDECOMP (Canonical Decomposition) (Carroll &
Chang, 1970) and PARAFAC (Parallel Factors Decompo-
sition) (Harshman, 1970). The positive coefficient assump-
tion does not reduce the generality of the model since the
sign of λp can be absorbed into the vector xp. The smallest
r that allows such a decomposition is called the symmetric
rank of A, denoted by srank(A). A decomposition with
srank(A) terms is always possible, though like many other
tensor problems, determining the symmetric rank of a gen-
eral 3rd-order, symmetric tensor is NP-hard (Hillar & Lim,
2013).

Denote the unit sphere of Rn as Sn−1, and the set of (non-
negative) Borel measures on Sn−1 as M+(Sn−1) . We
write the CP decomposition in (1) as

A =

∫
Sn−1

x⊗ x⊗ xdµ? (2)

where the decomposition measure µ? =
∑r
p=1 λpδ(x −

xp) ∈ M+(Sn−1). Hereafter, we use a superscript ? to
indicate that the measure is the “true”, unknown decompo-
sition measure to be identified from the tensor A. Since
the entries of A are 3rd order moments of the measure µ?,
tensor decomposition is an instance of measure estimation
from moments. Model (2) is more general than (1) in the
sense that it allows decompositions involving infinite num-
ber of rank-one tensors. However, in most cases the de-
compositions of interest involve finite terms. In particular,
we restate the problem of determining srank(A) as

minimize
µ∈M+(Sn−1)

‖µ‖0 subject to A =

∫
Sn−1

x⊗ x⊗ xdµ (3)

where ‖µ‖0 is the support size of µ. This is a generaliza-
tion of the `0 “norm” minimization problem to the infinite-
dimensional measure space.

Following the idea of using the `1 norm as a convex proxy
for the `0 “norm” and recognizing “‖µ‖`1 = µ(Sn−1)”, we
formulate symmetric tensor decomposition as the follow-
ing optimization

minimize
µ∈M+(Sn−1)

µ(Sn−1)

subject to A =

∫
Sn−1

x⊗ x⊗ xdµ (4)

Note the total mass µ(Sn−1) is the restriction of the total
variation norm to the set of (non-negative) Borel measures.
For any third order symmetric tensor A, the optimal value
of (4) defines the tensor nuclear norm ‖A‖∗, which is a spe-
cial case of the more general atomic norms. According to
the Caratheodory’s convex hull theorem (Barvinok, 2002),
there always exists optimal solutions with finite supports.
We call a decomposition corresponding to an optimal, fi-
nite measure solving (4) an atomic tensor decomposition.

The optimization (4) is an instance of the problem of mo-
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ments (Lasserre, 2008), whose dual is

maximize
Q∈S3(Rn)

〈Q,A〉

subject to 〈Q, x⊗ x⊗ x〉 ≤ 1,∀x ∈ Sn−1. (5)

We have used 〈A,B〉 =
∑
i,j,lAijlBijl to denote the in-

ner product of two 3rd order tensors. The homogeneous
polynomial q(x) := 〈Q, x⊗ x⊗ x〉 =

∑
i,j,kQijkxixjxk

corresponding to a dual feasible solution is called a dual
polynomial. We will see that the dual polynomial associ-
ated with the optimal dual solution can be used to certify
the optimality of a particular decomposition.

3.2. Moment Relaxation

The tensor decomposition problem (4) is a special trun-
cated moment problem (Nie, 2012), where we observe only
third order moments of a measure µ? supported on the unit
sphere. Therefore, we can apply the Lasserre SDP hier-
archy (Lasserre, 2001) to approximate the infinite dimen-
sional linear program (4). We first introduce a few no-
tations in order to describe the SDP hierarchy. We use
α = (α1, . . . , αn) ∈ Nn to denote a multi-integer index.
The notation xα represents the monomial xα1

1 xα2
2 · · ·xαn

n .
The size of α, |α| =

∑
αi, is the degree of xα. The set

Nnk = {α : |α| ≤ k} ⊂ Nn consists of indices with sizes
less than of equal to k. The notation RNn

k (RNn
k×N

n
k , resp.)

represents the set of real vectors (matrices, resp.) whose
entries are indexed by elements in Nnk (Nnk × Nnk , resp.).

For k = 2, 3, 4, · · · and a vector z ∈ RNn
2k , we use the

matrix Mk(z) ∈ RNn
k×N

n
k to denote the moment matrix as-

sociated with the vector z ∈ RNn
2k , whose (α, β)th entry is

zα+β for α, β ∈ Nnk . The notation Lk−1(z) ∈ RNn
k−1×N

n
k−1

is reserved for the localizing matrix of the polynomial
p(x) := ‖x‖22 − 1, whose (α, β)th entry is

[Lk−1(z)]α,β =
∑
|γ|≤2

pγzα+β+γ , α, β ∈ Nnk−1 (6)

with pγ the coefficient for the monomial xγ in p(x).

Each measure µ supported on Sn−1 is associated with an
infinite sequence ȳ ∈ RNn

, called the moment sequence,
via ȳα :=

∫
Sn−1 x

αdµ, α ∈ Nn. When α = (0, 0, . . . , 0),
we use ȳ0 =

∫
Sn−1 1dµ = µ(Sn−1) to denote the total

mass of the measure µ. Denote by M(Sn−1) ⊂ RNn

the set
of all such moment sequences. Instead of optimizing with
respect to a measure µ in (4), we can equivalently optimize
with respect to a moment sequence:

minimize
ȳ∈M(Sn−1)

ȳ0 subject to ȳα = Aijk if xα = xixjxk (7)

The constraint that ȳ ∈ M(Sn−1) involves an infinite se-
quence. To obtain a finite optimization, we relax (7) by
replacing ȳ with its 2k-truncation y ∈ RNn

2k and replac-
ing the constraint ȳ ∈ M(Sn−1) with the following easy-

to-enforce conditions for y to be the finite truncation of a
moment sequence (Lasserre, 2009):

Mk(y) < 0, Lk−1(y) = 0. (8)

Both the linear matrix inequality and equality can be
proved by considering their quadratic forms and using the
fact that µ is a Borel (hence nonnegative) measure on Sn−1

and p(x) = ‖x‖22 − 1 ≡ 0 on Sn−1.

Hence, we obtain a finite-dimensional relaxation for (7):

minimize
y∈RNn

2k

y0 subject to yα = Aijl if xα = xixjxl

Mk(y) < 0, Lk−1(y) = 0. (9)

Denote by ‖A‖k,∗ the optimal value of (9). One can verify
that ‖·‖k,∗ indeed defines a norm in the space of symmetric
tensors. Clearly ‖A‖k,2 is smaller than ‖A‖∗ for all sym-
metric tensors A and increasing k (i.e., using longer trun-
cation) allows us to get better approximatations. In a more
general setting, it has been shown that the optimal value of
(9) converges to that of (4) as k → ∞ even in finite steps
(Nie, 2014). Furthermore, if the moment matrix Mk(ŷ) as-
sociated with the optimal solution ŷ of (9) satisfies the flat
extension condition, i.e., rank(Mk(ŷ) = rank(Mk−1(ŷ)),
then we can apply an algebraic procedure to recover the
measure µ̂ from the moment matrix (Curto & Fialkow,
1996; Henrion & Lasserre, 2005). Our goal is to show
that under reasonable conditions on the true decomposition
measure µ? that generates observations in A, the smallest
relaxation with k = 2 is exact, i.e., ‖A‖2,∗ = ‖A‖∗, and
is sufficient for the recovery of µ?. The facial structures of
the norm ‖ · ‖2,∗ at these tensors are the same as the facial
structures of the tensor nuclear norm ‖ · ‖∗.

By following a standard procedure of deriving the La-
grange dual, we get the following dual problem of (9):

maximize
Q∈S3(Rn),H,G

〈Q,A〉

subject to e0 − 1Ω(vec(Q)) = M∗k (H) + L∗k−1(G)

H < 0 (10)

Here ∗ represents the adjoint operator; e0 ∈ RNn
2k denotes

the first canonical basis vector; and the operation vec(Q)
takes the unique entries in the symmetric tensor Q to form
a vector, which is then embedded by 1Ω into the third order
moment vector space RNn

3 .

We show that (9) is an SOS relaxation by rewriting its dual
(10) as an SOS optimization. For this purpose, we denote
the vector consisting of all monomials of x of degrees up to
k by νk(x), also known as the Veronese map. For example,
when k = 2, ν2(x) has the following form:

ν2(x) =
[
1 x1 · · · xn x2

1 x1x2 · · · x2
n

]T
(11)

Define two polynomials σ(x) := νk(x)′Hνk(x) and
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s(x) := νk−1(x)′Gνk−1(x) for feasible solutions H and
G of (10). Since H < 0, the polynomial σ(x) is the Gram
matrix representation of an SOS polynomial and s(x) is an
arbitrary polynomial of degree 2k− 2. We now rewrite the
optimization (10) as an SOS optimization:

maximize
Q∈S3(Rn)

〈Q,A〉

subject to 1− q(x) = s(x)(‖x‖2 − 1) + σ(x)

deg(s(x)) ≤ 2k − 2

σ(x) is an SOS with deg(σ(x)) ≤ 2k (12)

where q(x) = 〈Q, x ⊗ x ⊗ x〉 is the dual polynomial de-
fined before. Compared with the dual polynomial in (5),
the one here q(x) = 1 − σ(x) − s(x)(‖x‖2 − 1) has a
more structured form. We call 1−q(x) an SOS modulo the
sphere.

4. Main Results
The main theorem of this work relies on the construction of
dual polynomials that certify the optimality of the decom-
position measure µ?. Due to space limitation, the detailed
construction of the dual polynomials are deferred to the
supplemental materials. The constructed dual polynomials
are also essential to the development of noise performance
and tensor completion results using the moment approach.
We record the following proposition, which forms the basis
of the dual polynomial proof technique.

Proposition 1. Suppose supp(µ?) = {xp, p = 1, . . . , r}
is such that {xp ⊗ xp ⊗ xp, p = 1, . . . , r} forms a linearly
independent set.
1. If there exists a Q ∈ S3(Rn) such that the associated
dual polynomial q(x) satisfies

q(xp) = 1, p = 1, . . . , r (13)
q(x) < 1, x 6= xp,∀p, (14)

then µ? =
∑r
p=1 λpδ(x− xp) is the unique solution of the

moment problem (4).
2. If in addition to part 1, the dual polynomial q(x) also
has the form 1 − σ(x) − s(x)(‖x‖2 − 1), where σ(x) is
an SOS with deg(σ(x)) ≤ 2k, and deg(s(x)) ≤ 2(k − 1),
then the optimization (9) is an exact relaxation of (4), i.e.,
‖A‖k,∗ = ‖A‖∗. Furthermore, y?, the 2k-truncation of the
moment sequence for µ? is an optimal solution to (9).
3. Suppose {xp, p = 1, . . . , r} are linearly independent.
(So r ≤ n.) In addition to the conditions in parts 1 and
2, if the Gram matrix H for the SOS σ(x) in part 2 has
rank |Nnk | − r, then y?, the 2k-truncation of the moment
sequence for µ?, is the unique solution to (9) and we can
extract the measure µ? from the moment matrix Mk(y?).

A dual polynomial satisfying the interpolation and bound-
edness conditions (13) and (14) is used frequently as
the starting point to derive several atomic decomposition

and super-resolution results (Candès & Fernandez-Granda,
2014; Tang & Recht; Bendory et al., 2014b;a; Heckel et al.,
2014). The second part of Proposition 1, which addition-
ally requires the polynomial to be an SOS modulo the
sphere to certify the exact relaxation of the SDP (9), is a
contribution of this work. Part 3 is a consequence of the flat
extension condition (Curto & Fialkow, 1998; 1996). We re-
mark that there is a version of part 3 that allows r > n un-
der additional assumptions, which we did not present here.
Constructing a structured dual polynomial satisfying con-
ditions in parts 2 and 3 allows us to identify the class of
polynomial-time solvable instances of the tensor decompo-
sition problem, which are NP hard in the worst case.

We are now ready to state our major theorem:

Theorem 1. For a symmetric tensor A =
∑r
p=1 λpx

p ⊗
xp ⊗ xp, if the vectors {xp} are incoherent, that is, the
matrix X = [x1, x2, . . . , xr] satisfies

‖XTX − Ir‖ ≤ 0.0016, (15)

then there exists a dual symmetric tensor Q such that the
dual polynomial q(x) = 〈Q, x⊗x⊗x〉 satisfies the condi-
tions in all three parts of Proposition 1 with k = 2. Thus,
A =

∑r
p=1 λpx

p ⊗ xp ⊗ xp is the unique decomposition
that achieves both the tensor nuclear norm ‖A‖∗ and its re-
laxation ‖A‖2,∗. Furthermore, this unique decomposition
can be also found by solving (9) of the smallest size.

A few remarks follow. The constant 0.0016 in the incoher-
ent condition (15) is not material and is not optimized.

The condition (15) requires r ≤ n, which seems weak con-
sidering that the generic rank of a 3rd order symmetric ten-
sor is at least (n+2)(n+1)

6 for all n except n = 5 (Comon
et al., 2008). Furthermore, the Kruskal’s sufficient condi-
tion states that a decompositionA =

∑r
p=1 λpx

p⊗xp⊗xp

is unique as long as r ≤ 3kX−2
2 where kX is the Kruskal

rank, or the maximum value of k such that any k columns
of the matrix X = [x1, · · · , xr] are linearly independent
(Landsberg, 2009). Since kX ≤ n, the Kruskal rank condi-
tion is valid for r as large as 3n−2

2 .

There are two reasons for the requirement of r ≤ n. The
first one is technical: we used a perturbation analysis of the
orthogonal symmetric tensor decomposition, which pre-
vents r > n in the first place. The second reason is due
to the use of k = 2 in the relaxation (9) and is more fun-
damental. In order to extract the decomposition, we apply
the flat extension condition M1(y) = M2(y) and the pro-
cedure developed in (Henrion & Lasserre, 2005). Since the
size of M1(y) is n + 1, there is no way to identify more
than n+ 1 components from the moment matrix M2(y). If
the goal is extract the decomposition from the moment ma-
trix, as addressed in this paper, we will need to increase the
relaxation to k ≥ 3 to recover decompositions with more
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than n + 1 components. However, if the goal is denoising
or tensor completion, it is still possible to achieve optimal
noise performance and exact completion using k = 2 even
if r > n+ 1. Indeed, numerical experiments in Section 6.2
show that the smallest SDP of (9) can recover all moments
up to order 4 correctly for r as large as 2n.

To complement the sufficient condition in Theorem 1, we
cite a theorem of (Tang, 2015) which demonstrates that a
separation or incoherence condition on {xp} is necessary.

Theorem 2. (Tang, 2015) Consider a set of vectors S =
{xp, p = 1, . . . , r} ⊂ Sn−1. If any signed measure sup-
ported on S is the unique solution to the optimization

minimize
µ∈M(Sn−1)

‖µ‖TV subject to A =

∫
Sn−1

xm⊗dµ (16)

then the maximal incoherence of points in S satisfies

max
i6=j

(|〈xi, xj〉|) ≤ cos(2/m). (17)

HereM(Sn−1) is the set of all signed measures on Sn−1

and ‖ · ‖TV denotes the total variation norm of a measure.

The incoherence condition (17) is a separation condition on
points on Sn−1 as it is equivalent to that the angle between
any two points xi and xj is greater than 2/m. The upper
bound in (17) further confirms that knowledge of higher
moments reduces the incoherence requirement. Note that
whenm is odd, we can again focus on Borel (non-negative)
measures supported on S = {±xp, p = 1, . . . , r}, and the
total variation norm ‖µ‖TV can be replaced by the total
mass µ(Sn−1). We also observe that the incoherence con-
dition (15) in Theorem 1 for 3rd order symmetric tensor im-
plies maxi 6=j(|〈xi, xj〉|) ≤ 0.0016 < cos(2/3) ≈ 0.7859,
which is stronger than the necessary condition (17).

5. Extensions
5.1. Tensor completion and denoising

Since the optimal value of (4) defines the tensor nuclear
norm ‖ · ‖∗, the results developed for tensor decomposition
will form the foundation for tensor completion and stable
low-rank tensor recovery. Similar to its matrix counterpart,
the tensor nuclear norm favors low-rank solutions when the
observations are corrupted by noise, missing data, and out-
liers. For example, when a low-rank tensor A? is partially
observed on an index set Ω, we can fill in the missing en-
tries by solving a tensor nuclear norm minimization prob-
lem (Jain & Oh, 2014; Acar et al., 2011; Yuan & Zhang,
2014; Huang et al., 2014; Gandy et al., 2011):

minimize
A

‖A‖∗ subject to AΩ = A?Ω. (18)

This line of thinking was previously considered infeasible
due to the intractability of the tensor nuclear norm. How-
ever, we can use the relaxed norm ‖ · ‖k,∗ to approximate

(18):

minimize
A

‖A‖k,∗ subject to AΩ = A?Ω. (19)

which is equivalent to the SDP:

minimize
y∈RNn

2k

y0

subject to yα = Aijl when xα = xixjxl and (i, j, l) ∈ Ω

Mk(y) < 0, Lk−1(y) = 0. (20)

Building on the dual polynomial of Theorem 1, we expect
to show that ‖·‖2,∗ can be used to perform completion with
a minimal number of tensor measurements, given that the
tensor factors are incoherent.

Gaussian-type noise, which is unavoidable in practical sce-
narios, can also be handled using the tensor nuclear norm:

minimize
A

1

2
‖A−B‖22 + γ‖A‖∗, (21)

where B is the observed noisy entries of the tensor and γ
is a regularization parameter. Replacing ‖ · ‖∗ with ‖ · ‖k,∗
gives rise to a hierarchy of SDP relaxations for (21):

minimize
y∈RNn

2k

1

2
‖A−B‖22 + γy0

subject to yα = Aijl when xα = xixjxl

Mk(y) < 0, Lk−1(y) = 0. (22)

We conducted numerical experiments to demonstrate the
performance of tensor completion and denoising using the
smallest SDP relaxations in (20) and (22).

5.2. Non-symmetric and high-order tensors

We briefly discuss extensions to non-symmetric and high-
order tensor problems. Consider decomposing a non-
symmetric tensor A = [Aijk] ∈ Rn1×n2×n3 into the form
A =

∑r
p=1 λpx

p ⊗ yp ⊗ zp, where ‖xp‖ = ‖yp‖ =
‖zp‖ = 1 and λp > 0. Similar to (4), we formulate the
non-symmetric tensor decomposition again as estimating a
measure µ supported on K = Sn1 × Sn2 × Sn3 :

minimize
µ∈M+(K)

µ(K) subject to A =

∫
K

x⊗ y ⊗ zdµ. (23)

Optimization (23) admits a similar SDP relaxation hierar-
chy for k = 2, 3, · · · :
minimize
m∈RNn

2k

m0

subject to mα = Aijl when ξα = xiyjzl

Mk(m) < 0, Lh1

k−1(m), Lh2

k−1(m), Lh3

k−1(m) = 0,

(24)

where ξ = (x, y, z), and {Lhi

k−1} are localizing matrices
corresponding to the constraints h1(ξ) = ‖x‖22 − 1 =
0, h2(ξ) = ‖y‖22 − 1 = 0 and h3(ξ) = ‖z‖22 − 1 = 0.
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The SDPs in (24) can be modified to solve tensor comple-
tion and denoising problems.

The measure formulation extends easily to higher-order
tensors. For the SDP relaxation hierarchy, we just need
to fill in the moment vector with the observed, high-order
moments, and add more constraints corresponding to the
constraints defining the measure domain K. However, the-
oretical treatment might be more challenging, especially if
we would like to allow the rank r to go beyond the individ-
ual tensor dimensions.

6. Numerical Experiments
We performed a series of experiments to illustrate the per-
formance of the SDP relaxations (9) in solving the tensor
decomposition and other related problems. All the SDPs
are solved using the CVX package.

6.1. Phase transitions with full data

Figure 1 shows the phase transitions for the success rate of
the SDP relaxation (9) with k = 2 when we vary the rank
r, the incoherence ∆ = maxi6=j |〈xi, xj〉|, and the dimen-
sion n. The purpose is to figure out the critical incoherence
value. In preparing the upper plot in Figure 1, we took n =
10, r ∈ {2, 4, . . . , 20}, and ∆ ∈ {0.38, 0.39, . . . , 0.52}.
We choose the maximal incoherence ∆ instead of the quan-
tity in condition (15) because in the experiments the rank
r goes beyond n, in which case condition (15) is always
violated. To compute the success rate, we produced T =
10 instances for each (r,∆) configuration. We used the
acceptance-rejection method to generate an instance with
r vectors such that maxi 6=j |〈xi, xj〉| ≤ ∆. This method
becomes inefficient when ∆ < 0.38, forcing us to test ∆s
in the chosen range. After being passed through the SDP
(9), an instance is declared success if the difference be-
tween the recovered moment vector and the true moment
vector has an `2 norm less than 10−4. Again, we choose
this success criterion instead of correct identification of the
decomposition because the rank r goes beyond n, in which
case we can not identify the decomposition from the mo-
ment matrix. It is easy to see that when r ≤ n and the
4th order moment matrix is recovered correctly, the flat ex-
tension condition is satisfied and the decomposition can be
extracted from the moment matrix.

We observe from the upper plot of Figure 1 that the inco-
herence condition can be relaxed for smaller tensors with
smaller ranks. For rank r ≤ n = 10, a critical separa-
tion of ∆ = 0.45 is sufficient for exact recovery. Though
the figure does not show the transition for ∆ < 0.38 due
to the difficulty of generating vectors maintaining such a
small incoherence, by extrapolation we expect that when
∆ ≤ 0.38, the relaxation (9) can recover instances with
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Figure 1. Color coded success rates of the lowest order SDP in
recovering the 4th order moment vector: rank r vs incoherence ∆
(Upper) for n = 10 and rank r vs dimension n for ∆ = 0.38.

rank up to r = 15 = 3n
2 . We comment that the limitation

to the range ∆ ≤ 0.38 is due to the inefficiency of our re-
jection sampling methods to generate vectors with maximal
incoherence smaller than 0.38. There are many vector con-
figurations with a far smaller incoherence (Rankin, 1955),
but we are not aware of an efficient algorithms to generate
them (except for the orthogonal ones).

In the next experiment, we examine the phase transition
when the dimension n and the rank r are varied while the
incoherence ∆ is fixed to 0.38. The purpose is to deter-
mine the critical rank r when the vectors {xp} are well-
separated. We observe a clear phase transition, whose
boundary is roughly r = 2.1n− 6.4.

6.2. Phase transition for completion

In this set of experiments, we test the power of the SDP re-
laxation (20) in performing symmetric tensor completion.
In figure 2, we plot the success rates for tensors with or-
thogonal components when the number of observations,
the rank r, and the dimension n are varied. To compute
the success rate, the following procedure was repeated 10
times for each (m, r) or (m,n) configuration, where m is
the number of measurements. A set of r random, orthonor-
mal vectors {xp} together with a vector λ ∈ Rr following
the uniform distribution on [0, 1] were generated to pro-
duce the tensor A =

∑r
p=1 λpx

p ⊗ xp ⊗ xp. A uniform
random subset of the tensor entries were sampled to form
the observations. Since symmetric tensors have duplicated
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entries, we made sure only the unique entries were sampled
and counted towards the measurements. The optimization
(20) was then run to complete the tensor as well as esti-
mating all the moments up to order 4. The optimization
was successful if the `2 norm between the recovered 4th
order moment vector and the true moment vector is less
than 10−4. We applied the same procedure to prepare the
phase transition plots in Figure 3 except that the vectors
{xp} are not orthogonal, but rather maintain an incoher-
ence maxi 6=j |〈xi, xj〉 ≥ 0.38.

For orthogonal tensor completions shown in Figure 2, we
observe clear phase transitions for both the number of mea-
surements versus the rank r, and versus the dimension n.
Even though the degree of freedom for a dimension n, rank
r, third-order symmetric tensor is rn, which is linear in
both r and n, the boundaries in both plots of Figure 2
are curved. This phenomenon is seen in other completion
tasks such as matrix completion (Candès & Recht, 2009)
and compressed sensing off the grid (Tang et al., 2013).
For non-orthogonal tensor completion, the phase transition
boundaries are more blurred as seen from Figure 3. We be-
lieve this is because our selected value for the incoherence,
0.38, is still too large.
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Figure 2. Color coded success rate of the lowest order SDP for or-
thogonal symmetric tensor completion: the number of measure-
ments vs. rank r for fixed n = 16 (Upper), and the number of
measurements vs. dimension n for fixed r = 4 (Lower).

6.3. Noise robustness

In the last experiment, we show one example to demon-
strate that the moment approach for tensor recovery is ro-
bust to Gaussian type noise. For n = 5, we generated a
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Figure 3. Color coded success rate of the lowest order SDP for
non-orthogonal, symmetric tensor completion: the number of
measurements vs. rank r for fixed n = 10 (Upper), and the num-
ber of measurements vs. dimension n for fixed r = 4 (Lower).

tensor with r = 6 random rank-one factors maintaining an
incoherence less than 0.38. Gaussian noise of standard de-
viation σ equal to half the average magnitude of the tensor
elements was added to all the unique entries of the tensor.
We then ran the optimization (22) with k = 2 to perform
denoising. The penalization parameter γ is set to equal
σ. The noise-free and recovered 4th order moment vec-
tors (except for the 0th order moments), and the observa-
tions are plotted in Figure 4. Note only 3rd order moments
are observed while the algorithm returns all moments up to
order 4. We chose to remove the 0th order moments be-
cause they are large and including them makes the plot less
discernible. We see from Figure 4 that in addition to de-
noise the observed 3rd moments, which are entries of the
tensor, the algorithm can also interpolates 0th to 2nd order
moments and extrapolates the 4th order moments.

7. Conclusions
In this work, we formulated tensor decomposition as a
measure estimation problem from observed moments, and
used the total mass minimization to seek for a low-rank CP
decomposition. We approximate this infinite-dimensional
measure optimization using a hierarchy of SDPs. For third
order symmetric tensors, by explicitly constructing an in-
terpolation dual polynomial, we established that tensor de-
composition is possible using the moment approach under
an incoherence condition. Furthermore, by showing that
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Figure 4. Tensor denoising using (22). Best viewed in color.

the constructed dual polynomial is a sum-of-square modulo
the sphere, we demonstrated that the smallest SDP in the
relaxation hierarchy is exact, and the CP tensor decompo-
sition can be identified from the recovered, truncated mo-
ment matrix. A complimentary resolution limit result was
cited to show that certain incoherent condition was neces-
sary. We discussed possible extensions to non-symmetric,
and higher-order tenors, as well as generalizations to tensor
completion and denoising. Numerical experiments were
performed to test the power of the moment approach in ten-
sor decomposition, completion, and denoising.
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Supplementary Material
7.1. Proof of Proposition 1

Proof. 1. Any symmetric tensor Q that satisfies the con-
ditions in part 1 of Proposition 1 is dual feasible. The de-
composition measure µ? is clearly primal feasible. We also
have

〈Q,A〉 =

r∑
p=1

λp〈Q, xp⊗xp⊗xp〉

=

r∑
p=1

λpq(x
p) =

r∑
p=1

λp = µ?(Sn−1),

establishing a zero duality gap at the primal-dual feasible
solution pair (µ?, Q). Therefore, µ? is primal optimal and
Q is dual optimal.

For uniqueness, suppose µ̂ is another optimal solution. We
then have

µ?(Sn−1) = 〈Q,A〉

=

〈
Q,

∫
Sn−1

x⊗x⊗xdµ̂
〉

=
∑

x∈ supp(µ?)

µ̂(x)q(x)

+

∫
Sn−1/ supp(µ?)

q(x)dµ̂

<
∑

x̂p∈ supp(µ?)

λ̂p +

∫
Sn−1/ supp(µ?)

1dµ̂

= µ̂(Sn−1)

due to condition (14) if µ̂(Sn−1/ supp(µ?)) > 0, contra-
dicting the optimality of µ̂. So all optimal solutions are sup-
ported on supp(µ?). Since the tensors {xp ⊗ xp ⊗ xp} for
xp ∈ supp(µ?) are linearly independent, the coefficients
are also uniquely determined.

2. Denote by p0 and d0 the optimal values for the primal
problem (4) and the dual problem (5), respectively; and de-
note by p1 and d1 the optimal values for the primal-dual
problems (9) and (12) (or (10)), respectively. We next ar-
gue that these four quantities are equal. First, part 1 estab-
lishes p0 = d0. Second, weak duality and the construction
of relaxations (9) and (12) imply that d1 ≤ p1 ≤ p0 = d0.
Also the feasible set of (12) projected onto the Q space
is a subset of the feasible set of (5). Since the conditions
of part 2 states that the optimal dual solution Q to (5) is
also feasible to (12), we hence conclude that Q is also an
optimal solution to (12) and obtain d1 = d0. Therefore,
p0 = d0 = d1 = p1, and the relaxations (9) and (12) are
tight.

To show the optimality of y?, the 2k-truncation of the (in-
finite) moment vector ȳ? corresponding to the measure µ?.

We first note that y? is feasible to (9). Then zero duality
gap, as verified below

y?0 = µ?(Sn−1) = p0 = d1 = 〈Q,A〉 ,
establishes the optimality of y?.

3. Denote by σ(x) = νk(x)′Hνk(x) the SOS polynomial
associated with H . Note νk(xp)′Hνk(xp) = σ(xp) = 1−
q(xp) = 0 for p = 1, . . . , r, implying Hνk(xp) = 0, p =
1, . . . , r due to H < 0. Since rank(H) = |Nnk | − r by
the assumption, the null space of H is span{νk(xp), p =
1, . . . , r}.

For any optimal solution ŷ of (9), complementary slackness
implies that

HMk(ŷ)) = 0.

So the eigen-space of Mk(ŷ) is a subspace of
span{νk(xp), p = 1, . . . , r}. We hence write

Mk(ŷ) = V DV ′

where V =
[
νk(x1) · · · νk(xr)

]
and D is an r× r semidef-

inite matrix (not necessarily diagonal at this point). Note
that Mk(y?) = V ΛV ′. We next argue that D = Λ.

The moment matrix Mk(ŷ) contains a submatrix specified
by the third order moments in the tensor A, and hence is
equal to the corresponding submatrix in Mk(y?). More
precisely, Mk(ŷ) contains the block (at the location indi-
cated by the orange color in Figure 5):∫

Sn−1

x1

...
xn

 [x2
1 x1x2 · · · xn−1xn x2

n

]
dµ?

=XΛV ′2

where X =
[
x1 · · ·xp

]
, V2 is the submatrix of V whose

rows correspond to the second-order monomials in νk(x),
and Λ = diag([λ1, . . . , λr]). Therefore, we have

XΛV ′2 = XDV ′2 (25)

Due to Lemma 3.1 (ii) of (De Lathauwer, 2008),
rank(X) = r implies that rank(V2) = r. Multiplying both
sides of (25) by the pseudo-inverse matrices X† from left
and (V ′2)† from right yield D = Λ. So Mk(ŷ) = Mk(y?),
and ŷ = y? is the unique solution of (9).

To see that we can extract the measure µ? from Mk(ŷ) =
Mk(y?), we note that the matrix Mk(y?) = V ΛV ′ has
rank r for all k ≥ 1. Hence the flat extension condition
rank(Mk−1(y?) = Mk(y?)) is satisfied for all k ≥ 2.
Therefore, according to (Curto & Fialkow, 1996; Henrion
& Lasserre, 2005), we could recover the measure from the
moment matrix Mk(y?).
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Figure 5. The colors code the degrees of the entries in the moment
matrix for an instance with n = 3, k = 2.

7.2. Dual Certificate: the Orthonormal Case

The proof of Theorem 1 is based on a perturbation anal-
ysis of the orthogonal case. In this and the next sections,
we focus on constructing a dual polynomial for orthogonal
decompositions. Hereafter, the relaxation order is fixed to
k = 2.

When the vectors {xp, p = 1, . . . , r} are orthonormal, we
verify that the symmetric tensor

Q =

r∑
p=1

xp ⊗ xp ⊗ xp

satisfies the conditions in part 1 of Proposition 1. To see
this, note

q(xp) = 〈Q, xp ⊗ xp ⊗ xp〉 =

r∑
p′=1

〈xp
′
, xp〉3 = 1.

In addition, for any fixed x ∈ Sn−1 we have

q(x) = 〈Q, x⊗ x⊗ x〉 =

r∑
p=1

〈xp, x〉3

≤ max
p
〈xp, x〉

r∑
p=1

〈xp, x〉2

≤ ‖XTx‖2

where we used maxp〈xp, x〉 ≤ maxp ‖xp‖‖x‖ = 1 for
all p. Due to the orthogonality of the columns of X =
[x1 · · ·xr], we clearly have ‖XTx‖2 ≤ ‖x‖2 = 1. For
q(x) = 1, all the involved inequalities must be equalities.
For maxp〈xp, x〉 = 1, we need x = xp for some p, which
is the only possible case that q(x) = 1. For all other cases,

q(x) < 1. Therefore, Q =
∑
p x

p ⊗ xp ⊗ xp satisfies
the conditions of part 1 in Proposition 1. This argument
combined with part 1 of Proposition 1 lead to

Theorem 3. If the vectors in supp(µ?) are orthonormal,
then µ? is the unique optimal solution to (4).

7.3. SOS Dual Certificate: the Orthonormal Case

In the following, we show that for q(x) =
∑r
p=1〈x, xp〉3,

we could find an SOS σ(x) and a polynomial s(x) with
degrees 4 and 2 respectively, such that

1− q(x) = σ(x) + s(x)(‖x‖22 − 1)

We start with assuming xp = ep, the pth canonical basis
vector, for p = 1, 2, . . . , r, in which case q(x) becomes∑r
p=1 x

3
p. Later on we will apply a rotation to derive the

general case from this special case.

We take s(x) = − 3
2

(∑r
p=1 x

2
p

)
− 3

2

(∑n
p=r+1 x

2
p

)
=

ν1(x)′G0ν1(x) with

G0 =

[
0
− 3

2In

]
. (26)

Consider

1− q(x)− s(x)(‖x‖22 − 1)

=1−
r∑
p=1

x3
p +

3

2

(
r∑
p=1

x2
p

)(
n∑
p=1

x2
p − 1

)

+
3

2

(
n∑

p=r+1

x2
p

)(
n∑
p=1

x2
p − 1

)

=1− 3

2

(
r∑
p=1

x2
p

)
− 3

2

(
n∑

p=r+1

x2
p

)
−

r∑
p=1

x3
p

+
3

2

r∑
p=1

x4
p +

3

2

n∑
p=r+1

x4
p

+ 3

r∑
p<p′=1

x2
px

2
p′ + 3

n∑
p<p′=r+1

x2
px

2
p′ + 3

r∑
p=1

n∑
p′=1

x2
px

2
p′ .

(27)

We show that this polynomial is an SOS σ(x) with Gram
matrix H0 defined on top of the next page. Here the row
partition of H0 corresponds to the partition of the Veronese
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H0 =



1 −1′r f1′n−r
1
2Ir − 1

2Ir
aIn−r

ICr
2

bIr(n−r)
cICn−r

2

−1r − 1
2Ir

1
2Ir + 1r1

′
r d1r1

′
n−r

f1n−r d1n−r1
′
r

(
3
2 − e

)
In−r + e1n−r1

′
n−r


(28)

map ν2(x) given in the following

ν2(x) =



1x1

...
xr

xr+1

...
xn


x1x2

x1x3

...
xr−1xr

x1xr+1

...
xrxn

xr+1xr+2

...
xn−1xn

x
2
1
...
x2
r

x
2
r+1
...
x2
n





:=



ν0
2(x)
ν1

2(x)
ν2

2(x)
ν3

2(x)
ν4

2(x)
ν5

2(x)
ν6

2(x)
ν7

2(x)


(29)

and a, b, c, d, e, f are parameters to be determined later.

Since

ν2(x)′H0ν2(x)

=1− 3

2

r∑
p=1

x2
p + (a+ 2f)

n∑
p=r+1

x2
p −

r∑
p=1

x3
p

+
3

2

r∑
p=1

x4
p +

3

2

n∑
p=r+1

x4
p

+ 3

r∑
p<p′=1

x2
px

2
p′ + (c+ 2e)

n∑
p<p′=r+1

x2
px

2
p′

+ (b+ 2d)

r∑
p=1

n∑
p′=1

x2
px

2
p′

comparison of coefficients with those of 1 − q(x) −
s(x)(‖x‖22 − 1) in (27) gives

a+ 2f = −3

2
c+ 2e = 3

b+ 2d = 3

We will judiciously choose the parameters so that H0 is
PSD. Note that H0 must have r zero eigenvalues with
eigenvectors {ν2(ep) : p = 1, . . . , r}. For later analy-
sis, we also need H0 to have precisely r zero eigenvalues,
and the smallest non-zero eigenvalue of H0 to be lower
bounded by a numerical constant regardless of n and r.

For that purpose, we next find all the eigenvalues of H0.
The obvious ones include a, 1, b and c of multiplicities
n − r, Cr2 , r(n − r) and Cn−r2 , respectively. The rest of
eigenvalues are those of E defined as

1 −1′r f1′n−r
1
2Ir − 1

2Ir
−1r − 1

2Ir
1
2Ir + 1r1

′
r d1r1

′
n−r

f1n−r d1n−r1
′
r

(
3
2 − e

)
In−r + e1n−r1

′
n−r


We choose e + a = 3

2 and decompose E as A + B such
that A is

1 −1′r f1′n−r
1
2r1r1

′
r − 1

2r1r1
′
r

−1r − 1
2r1r1

′
r

(
1 + 1

2r

)
1r1
′
r d1r1

′
n−r

f1n−r d1n−r1
′
r (e+ a

(n−r) )1n−r1
′
n−r


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and B is
0

1
2

(
Ir − 1

r1r1
′
r

)
− 1

2

(
Ir − 1

r1r1
′
r

)
− 1

2

(
Ir − 1

r1r1
′
r

)
1
2

(
Ir − 1

r1r1
′
r

)
∗


where the right-bottom block of B occupied by ∗ is
a
(
In−r − 1

n−r1n−r1
′
n−r

)
. It is easy to verify that AB =

BA = 0. Hence the eigenvalues of E consist of those of A
and B. The eigenvalues of B are 0, 1, and a of multiplici-
ties r + 3, r − 1, n− r − 1, respectively.

Next we choose the parameters such that the eigenvalues of
A are easy to compute. We first ensure that A has rank 3,
which requires the matrix, by rank invariance of Gaussian
elimination,

1
1
2r1r1

′
r

0r (d+ f)1r1
′
n−r

(d+ f)1n−r1
′
r ∗


whose bottom-right block is

(
e+ a

(n−r) − f
2
)
1n−r1

′
n−r,

to have rank 3, or equivalently, d+ f = 0.

Multiplying A with a vector of the form v :=


α
β1r
γ1r
δ1n−r


shows that the eigenvectors of A are of the form v. Conse-
quently, the non-zero eigenvalues ofA can be computed by
solving a smaller set of eigenvalue equations

1 0 −r f(n− r)
0 1/2 −1/2 0
−1 −1/2 r + 1/2 −f(n− r)
f 0 −fr (n− r)e+ a



α
β
γ
δ

 = λ


α
β
γ
δ


(30)

We already have five equations on a, b, c, d, e, f :

a+ 2f = −3

2
c+ 2e = 3

b+ 2d = 3

e+ a =
3

2
d+ f = 0

or,

b = 3− 2d = 3− 3

2
− a =

3

2
− a

c = 3− 2e = 2a

d =
3

4
+
a

2

e =
3

2
− a

f = −3

4
− a

2

Plugging these into the matrix in (30) leads to a matrix in-
volving a single parameter a:

1 0 −r −
(

3
4 + a

2

)
(n− r)

0 1/2 −1/2 0
−1 −1/2 r + 1/2

(
3
4 + a

2

)
(n− r)

−
(

3
4 + a

2

)
0

(
3
4 + a

2

)
r (n− r)

(
3
2 − a

)
+ a


Symbolic calculation shows the non-zero eigenvalues of
this matrix are zeros of the polynomial

h(λ; r, n, a) = (2 + r)(15(−n+ r)

+ 4a(−4 + (7 + a)n− (7 + a)r))

+ 2(16 + 39n− 31r + 15(n− r)r
− 4a2(n− r)(1 + r) + 4a((1 + r)(8 + 7r)− n(11 + 7r)))λ

+ 16(−4− 3n+ 2a(−1 + n− r) + r)λ2 + 32λ3

We want to make sure λ = a 6= 0 is one non-zero eigen-
value, which means h(a; r, n, a) = 0, or after simplifica-
tion:

a3(r − 3) + 15(r + 2) + 4a2(13r + 32)− 2a(29r + 67)

= 0

We pick the smallest positive root branch a = a(r), which
is an increasing function of r with limit a(+∞) = 1

2 ,
and a(1) > 0.3387. We next argue that, after plug-
ging a = a(r), h(λ; r, n, a(r)) has two other zeros that
are larger than 1

2 (hence larger than a(r)), which means
the other two non-zero eigenvalues of A are greater than
a(r) ∈ (0.3387, 0.5). The argument is based on me-
dian value theorem by showing h(1/2; r, n, a(r)) > 0,
h(n/2; r, n, a(r)) < 0 combined with the obvious fact
limλ→∞ h(λ; r, n, a(r)) = +∞.

We first show h(1/2; r, n, a) > 0 for 1 ≤ r ≤ n and a ∈
[0.2, 0.5). As a function of r with parameter n and a, the
function

h(1/2; r, n, a) = 4− 8a− 3n+ 20an+ 4a2n

+ (3− 20a− 4a2)r

is linear in r and is decreasing since 3− 20a− 4a2 < 0 for
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a ∈ [0.2, 0.5). Therefore, we obtain

h(1/2; r, n, a) ≥ h(1/2;n, n, a)

= 4− 8a

> 0.

Second, we show that h(n/2; r, n, a) < 0 for a ∈ [0.2, 0.5)
and r ∈ [0, n]:

h(n/2; r, n, a)

=(−2 + n)(16a+ (7− 4a(9 + a))n+ 8(−1 + a)n2)

+ (30− 8a(9 + a)− 46n+ 8a(11 + a)n

+ (19− 4a(9 + a))n2)r + (−1 + 2a)(15 + 2a)(−1 + n)r2

≤(−2 + n)(16a+ (7− 4a(9 + a))n

+ 8(−1 + a)n2) + 2(1− 2a)(15 + 2a)(−1 + n)nr

+ (−1 + 2a)(15 + 2a)(−1 + n)r2.

We used the fact that

30− 8a(9 + a)− 46n+ 8a(11 + a)n+ (19− 4a(9 + a))n2

≤ 2(1− 2a)(15 + 2a)(n− 1)n

which can be proved by observing that

2(1− 2a)(15 + 2a)(n− 1)n− (30− 8a(9 + a)− 46n

+ 8a(11 + a)n+ (19− 4a(9 + a))n2)

= −30 + 8a(9 + a)

+ (46− 8a(11 + a)− 2(1− 2a)(15 + 2a))n

+ (−19 + 4a(9 + a) + 2(1− 2a)(15 + 2a))n2

is an increasing function of n (since (46 − 8a(11 + a) −
2(1 − 2a)(15 + 2a)) > 0 for a ∈ [0.2, 0.5)), and its value
at n = 1 is −3 + 12a(9 + a)− 8a(11 + a) ≥ 1.

Now the upper bound on h(n/2; r, n, a) is an increasing
function of r for r ∈ [1, n]. We therefore further bound
h(n/2; r, n, a) by setting r = n in its upper bound:

h(n/2; r, n, a) ≤ −32a− 14n+ 8a(11 + a)n

+ 8(1− 3a)n2 + (7− 4a(5 + a))n3

:= u(n; a)

Since d
dnu(n; a) is

−14 + 8a(11 + a) + 16(1− 3a)n+ 3(7− 4a(5 + a))n2

is decreasing for n ≥ 0 due to 3(7 − 4a(5 + a)) < 0 and
16(1− 3a) < 0 when a ∈ (0.3387, 0.5), we have

d

dn
u(n; a) ≤ d

dn
u(8; a)

=1458− 8a(517 + 95a)

<0

for n ≥ 8 and a ∈ (0.3387, .5). Therefore, u(n; a) is

further upper bounded by its value at n = 8 for n ≥ 8:

h(n/2; r, n, a) ≤u(8; a) = −16(−249 + 2a(347 + 62a))

<0

for a ∈ (0.3387, .5).

To sum, we showed that h(λ; r, n, a(r)), whose ze-
ros are eigenvalues of A, has the property that λ1 =
a(r) ∈ (0.3387, 1/2) is a zero, and h(1/2; r, n, a(r)) >
0, h(n/2; r, n, a(r)) < 0, and h(+∞; r, n, a) > 0. There-
fore, the other two zeros of h(λ; r, n, a(r)) are greater than
1/2 > a(r).

In sum, the matrix H0 has rank |Nn2 | − r and the minimal
non-zero eigenvalue for H0 is

min

{
a(r),

3

2
− a(r), 2a(r),

1

2
, 1

}
= a(r)

since a(r) ∈ (0.3387, 1/2). This shows that H0 is PSD.

When supp(µ?) is orthonormal, but not canonical basis
vectors, we augment the matrix X =

[
x1 · · · xr

]
to

an orthonormal matrix P =
[
X P1

]
and transform the

variable x to z = P ′x = P−1x. Then the tensor A =∑
p x

p⊗xp⊗xp is transformed to
∑
p ep⊗ ep⊗ ep. Then

the dual polynomial

q0(z) = 1− ν2(z)′H0ν2(z) +
3

2
‖z‖22(‖z‖22 − 1)

with H0 constructed above satisfies the conditions in
Proposition 1, and certifies the optimality of the decom-
position

∑
p ep ⊗ ep ⊗ ep. We transform this polynomial

back to the x-domain to obtain

q(x) := q0(P ′x) = 1−ν2(P ′x)′H0ν2(P ′x)+
3

2
‖x‖22(‖x‖22−1)

where we have used ‖P ′x‖22 = ‖x‖22 since P is orthonor-
mal. According to Lemma 1, the polynomial

ν2(P ′x)H0ν2(P ′x) = ν2(x)′(J ′H0J)ν2(x)

is an SOS with the Gram matrix J ′H0J , whose smallest
eigenvalue is greater than 1

2 × 0.3387 > 1
6 . One can verify

that q(x) satisfies all the conditions in Proposition 1. As a
consequence, we obtain:

Theorem 4. If the vectors in supp(µ?) are orthonormal,
then the SDP relaxation (9) with k = 2 gives the exact
decomposition. Furthermore, the constructed dual polyno-
mial has the form

q(x) =1− ν2(x)′Hν2(x) +
3

2
‖x‖22(‖x‖22 − 1)

where H has r zero eigenvalues, and the (r+ 1)th smallest
eigenvalue is greater than 1

6 . When the support are formed
by a subset of canonical basis vectors, the lower bound on
eigenvalues can be chosen as 1

3 .

The SOS matrix decomposition is verified by Matlab. With
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n = 7 and r = 3, we have the following plot for H0:

Figure 6. H0 has r = 4 zero eigenvalues and the 5th smallest is
a(4) = 0.3789.

7.4. Dual Certificate: The Non-Orthonormal Case

We now proceed to apply a perturbation analysis to con-
struct a dual polynomial for the non-orthonormal case.

Suppose the measure µ? =
∑r
k=1 λkδ(x − xk) where

{xk, k = 1, . . . , r} are not orthogonal. Define X =
[x1, · · · , xr] and find N ∈ Rn×(n−r) which has orthonor-
mal columns and is orthogonal to X . Further define P =[
X N

]
. Then the transformation x 7→ z = P−1x maps

xk to the kth canonical basis vector ek. The unit sphere is
mapped to an ellipsoid En−1 = {z : z′P ′Pz = 1}.

If we could construct a polynomial q(z) = 〈Q, z ⊗ z ⊗ z〉
with symmetric Q such that

q(ek) = 1, k = 1, . . . , r (31)

|q(z)| < 1, z ∈ En−1, z 6= ek (32)

then the polynomial q1(x) := q(P−1x) = 〈Q,P−1x ⊗
P−1x⊗ P−1x〉 would satisfy

q1(xk) = q(ek) = 1, k = 1, . . . , r

|q1(x)| = |q(P−1x)| < 1, x ∈ Sn−1, x 6= xk.

To construct q(z), we note that it must satisfy q(ek) = 1
and q(z) achieves maximum at z = ek for k = 1, . . . , r.
Denote L(z; ν) = q(z)−ν(z′P ′Pz−1) as the Lagrangian.
A necessary condition for q(z) to achieve maximum at ek
is given by the KKT condition:

∂L(z)

∂z
|z=ek =

∂q(z)

∂z
|z=ek − ν

∂

∂z
(z′P ′Pz − 1)|z=ek

=3

n∑
i=1

〈Q, ek ⊗ ek ⊗ ei〉ei − 2νP ′Pek

=0

Taking inner product with ek yields

3q(ek) = 3〈Q, ek ⊗ ek ⊗ ek〉 = 2νe′kP
′Pek =3,

implying ν = 3
2 . Therefore, the symmetric tensor Q must

satisfy
n∑
i=1

〈Q, ek ⊗ ek ⊗ ei〉ei = P ′Pek, k = 1, . . . , r. (33)

Note the condition (31) is a consequence of (33). We pick

Q =

r∑
k=1

ek ⊗ ek ⊗ P ′Pek +

r∑
k=1

ek ⊗ P ′Pek ⊗ ek

+

r∑
k=1

P ′Pek ⊗ ek ⊗ ek − 2

r∑
k=1

(e′kP
′Pek)︸ ︷︷ ︸

=1

ek ⊗ ek ⊗ ek

which actually has minimal energy among all symmetricQ
that satisfies (33). The dual polynomial is then given by

q(z) =〈Q, z ⊗ z ⊗ z〉

=

r∑
k=1

[3z2
k(z′P ′Pek)− 2z3

k]

=

r∑
k=1

[3(z′P ′Pek)− 2zk]z2
k.

Clearly, q(z) satisfies the interpolation condition (31). In
the following, we show that q(z) also satisfies the condition
(32). The argument is based on partitioning the ellipsoid
En−1 into a region that is far from any ek and a region that
is near to some ek.

First note

q(z) ≤max
k

[3(z′P ′Pek)− 2zk]

r∑
k=1

z2
k

When z ∈ En−1, due to ‖P ′P −I‖ ≤ ε, we have−εz′z ≤
1− z′z ≤ εz′z, implying

1

1 + ε
≤ z′z ≤ 1

1− ε
Therefore, we can further upper bound q(z) as

q(z) ≤ max
k

[3(z′P ′Pek)− 2zk]

r∑
k=1

z2
k

≤ 1

1− ε
max
k

[3(z′P ′Pek)− 2zk]

So, if

max
k

[3(z′P ′Pek)− 2zk] < 1− ε

then q(z) < 1. We showed that q(z) < 1 in the “far-away”
region.

Define Nk = {z : 3(z′P ′Pek) − 2zk ≥ 1 − ε, z′P ′Pz =
1}. When P ′P ≈ I , this is saying zk ≥ 1 − ε, so z ∈ Nk
is close to ek. The union of Nks defines the “near region”.
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We want to make sure that q(z) is strictly less than 1 in
each Nk except when z = ek ∈ Nk. For that purpose,
we perform a Taylor expansion of the Lagrangian L(z) =
L(z; 3/2) in Nk around z = ek

L(z) = q(z)− 3

2
(z′P ′Pz − 1)

= L(ek) + (z − ek)′
∂L

∂z
|z=ek

+
1

2
(z − ek)′H(ξz)(z − ek)

= 1 +
1

2
(z − ek)′H(ξz)(z − ek)

where H(ξz) is the Hessian of L(z) evaluated at ξz and
ξz ∈ Nk depends on z ∈ Nk.

Since q(z) = L(z) on the ellipsoid En−1, it suffices to
show 1

2 (z− ek)′H(ξz)(z− ek) < 0 for z ∈ Nk/{ek}. For
this purpose, we compute the Hessian matrix H(ξ):

H(ξ) =
∂

∂z

[
3

n∑
i=1

〈Q, z ⊗ z ⊗ ei〉ei − 3P ′Pz

]
|z=ξ

= 6

n∑
i,j=1

〈Q, ξ ⊗ ej ⊗ ei〉ei ⊗ ej − 3P ′P

Plugging in the expression for Q, we get that the Hessian
H(ξ) equals

6

n∑
i,j=1

[ξje
′
iP
′Pej + ξie

′
jP
′Pei]ei ⊗ ej

+ 6

n∑
i=1

[(ξ′P ′Pei)− 2ξi]ei ⊗ ei − 3P ′P

To get a sense why this Hessian guarantees a negative sec-
ond order term in the Taylor expansion, we set ξ = ek to
get

H(ek) = 6

n∑
i,j=1

[ek(j)e′iP
′Pej + ek(i)e′jP

′Pei]ei ⊗ ej

+ 6

n∑
i=1

[(e′kP
′Pei)− 2ek(i)]ei ⊗ ei − 3P ′P

= 6

∑
i

(e′iP
′Pek)ei ⊗ ek +

∑
j

(e′jP
′Pek)ek ⊗ ej


+ 6

n∑
i=1

[(e′kP
′Pei)− 2ek(i)]ei ⊗ ei − 3P ′P

When P ′P ≈ I ,

H(ek) ≈ 12ek ⊗ ek − 6ek ⊗ ek − 3I

= 6ek ⊗ ek − 3I

which is PSD except in the direction ek, which is orthog-
onal to the tangent space of En−1 ≈ Sn−1 at z = ek.

Therefore, the Hessian projected onto the tangent space is
negative definite, as desired.

Returning to the non-orthogonal case, we bound

H(ξ) = 6

n∑
i,j=1

[ξje
′
iP
′Pej + ξie

′
jP
′Pei]ei ⊗ ej

+ 6

n∑
i=1

[(ξ′P ′Pei)− 2ξi]ei ⊗ ei − 3P ′P

for ξ ∈ Nk with

Nk = {ξ : 3(ξ′P ′Pek)− 2ξk ≥ 1− ε, ξ′P ′Pξ = 1}
Note

n∑
i,j=1

(ξje
′
iP
′Pej)ei ⊗ ej = P ′P diag(ξ)

n∑
i,j=1

(ξie
′
jP
′Pei)ei ⊗ ej = diag(ξ)P ′P

n∑
i=1

(ξ′P ′Pei)ei ⊗ ei = diag(P ′Pξ)

n∑
i=1

ξiei ⊗ ei = diag(ξ)

lead to the following concise expression for the Hessian
matrix H(ξ):

6(P ′P diag(ξ) + diag(ξ)P ′P + diag(P ′Pξ)− 2 diag(ξ))

− 3P ′P

We want to show that

(z − ek)′H(ξ)(z − ek) < 0,∀ξ, z ∈ Nk.
We first argue that z ∈ Nk = {z : 3(z′P ′Pek)−2zk ≥ 1−
ε, z′P ′Pz = 1} imposes certain restrictions on the size of
z, and implies that z is close to ek. Indeed, ‖I −P ′P‖ ≤ ε
and z′P ′Pz = 1 imply that

1

1 + ε
≤ 1

λmax(P ′P )
≤ ‖z‖2 ≤ 1

λmin(P ′P )
≤ 1

1− ε
.

To show the closeness of z and ek, we observe that

3z′P ′Pek − 2zk = 3z′(P ′P − I)ek + 3z′ek − 2zk

= zk + 3z′(P ′P − I)ek

Since |3z′(P ′P − I)ek| ≤ 3‖z‖‖P ′P − I‖ ≤ 3ε√
1−ε , zk is

bounded from below as follows:

zk ≥ 1− ε− 3z′(P ′P − I)ek

≥ 1− ε− 3ε√
1− ε

.

On the other hand, zk ≤ ‖z‖ ≤ 1√
1−ε .
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A consequence of the sizes of z and zk is that

‖z − zkek‖2 =
∑
j 6=k

z2
j

= ‖z‖2 − z2
k

≤ 1

1− ε
−
(

1− ε− 3ε√
1− ε

)2

Therefore, we have

‖z − ek‖∞

≤max{ε+
3ε√
1− ε

,
1√

1− ε
− 1,√

1

1− ε
−
(

1− ε− 3ε√
1− ε

)2

}

:=c1(ε)

=O(ε)

and

‖z − ek‖2

=
∑
j 6=k

z2
j + (zk − 1)2 ≤ ‖z − zkek‖2

+ max

{
ε+

3ε√
1− ε

,
1√

1− ε
− 1

}2

=
1

1− ε
−
(

1− ε− 3ε√
1− ε

)2

+ max

{
ε+

3ε√
1− ε

,
1√

1− ε
− 1

}2

=c2(ε)

Next we show that each term in

P ′P diag(ξ) + diag(ξ)P ′P + diag(P ′Pξ)− 2 diag(ξ)

is close to eke
′
k, except the last term which is close to

2eke
′
k. The first term is bounded as follows:

‖P ′P diag(ξ)− eke′k‖
≤‖P ′P diag(ξ)− P ′Peke′k‖+ ‖P ′Peke′k − eke′k‖
≤‖P ′P‖‖ξ − ek‖∞ + ‖P ′P − I‖
≤(1 + ε)c1(ε) + ε

Similar bounds hold for the term diag(ξ)P ′P .

‖diag(P ′Pξ)− eke′k‖
=‖P ′Pξ − ek‖∞
≤‖P ′Pξ − ξ‖∞ + ‖ξ − ek‖∞
≤‖P ′P − I‖‖ξ‖2 + c1(ε)

≤ ε√
1− ε

+ c1(ε)

and the term diag(ξ)

‖diag(ξ)− eke′k‖ ≤ ‖ξ − ek‖∞ ≤ c1(ε)

These bounds imply that

‖P ′P diag(ξ) + diag(ξ)P ′P + diag(P ′Pξ)− 2 diag(ξ)

− eke′k‖

≤2(1 + ε)c1(ε) + 2ε+
ε√

1− ε
+ c1(ε) + c1(ε)

:=c3(ε)

=O(ε)

Furthermore, we have

‖P ′Peke′kP ′P − ekek‖
=‖P ′Peke′kP ′P − P ′Peke′k + P ′Peke

′
k − eke′k‖

≤‖P ′P‖‖eke′k‖‖P ′P − I‖+ ‖P ′P − I‖‖eke′k‖
≤(1 + ε)ε+ ε

=O(ε)

Therefore, we get

‖H(ξ)− (6P ′Peke
′
kP
′P − 3P ′P )‖

≤6c3(ε) + 6ε(2 + ε)

:=c4(ε)

=O(ε)

For any z ∈ Nk, we show (z − ek)′P ′Pek is small due to
the fact that both z and ek lie on En−1:

1 = z′P ′Pz

= e′kP
′Pek + 2(z − ek)′P ′Pek + (z − ek)′P ′P (z − ek)

= 1 + 2(z − ek)′P ′Pek + (z − ek)′P ′P (z − ek)

implying

|(z − ek)′P ′Pek| =
1

2
(z − ek)P ′P (z − ek)

≤ 1

2
‖P ′P‖‖z − ek‖2

≤ 1

2
(1 + ε)‖z − ek‖2
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The following chain of inequalities

(z − ek)′H(ξ)(z − ek)

≤(z − ek)′(6P ′Peke
′
kP
′P − 3P ′P )(z − ek)

+ ‖z − ek‖22c4(ε)

=6[(z − ek)′P ′Pek]2 − 3(z − ek)′P ′P (z − ek)

+ ‖z − ek‖2c4(ε)

=
3

2
(1 + ε)2‖z − ek‖4 − 3(z − ek)′P ′P (z − ek)

+ ‖z − ek‖2c4(ε)

≤3

2
(1 + ε)2‖z − ek‖4 − 3(1− ε)‖z − ek‖2

+ ‖z − ek‖2c4(ε)

=
3

2
(1 + ε)2‖z − ek‖4 − (3− 3ε− c4(ε))‖z − ek‖2

show that the second order term is negative if
3

2
(1 + ε)2‖z − ek‖2 < 3− 3ε− c4(ε)

So it suffices to require

c2(ε)
3

2
(1 + ε)2 < 3− 3ε− c4(ε)

Numerical computation shows that the above inequality
holds if

ε 6 0.0016.

We summarize the above argument into a theorem:

Theorem 5. For a symmetric tensor A =
∑r
p=1 λpx

p ⊗
xp ⊗ xp, if the vectors {xp} are near orthogonal, that is,
the matrix X = [x1, x2, . . . , xr] satisfies

‖X ′X − Ir‖ ≤ 0.0016,

then there exists a dual symmetric tensor Q such that the
dual polynomial q(x) = 〈Q, x⊗x⊗x〉 satisfies the condi-
tions in part 1 of Proposition 1. Thus, A =

∑r
p=1 λpx

p ⊗
xp ⊗ xp is the unique decomposition that achieves the ten-
sor nuclear norm, and can be found by solving (4).

7.5. SOS Dual Certificate: The Non-Orthonormal Case

After rotating to the canonical basis vectors, the dual poly-
nomial we constructed for the orthogonal case is

q0(z) =

r∑
k=1

z3
k

while the one for the non-orthogonal case is

q(z) =

r∑
k=1

[3(z′P ′Pek)− 2zk]z2
k.

We first show that this 1 − q(z) is an SOS modulo the el-
lipsoid En−1. We know that q0(z) is an SOS modulo the
sphere, that is, there exist symmetric matrices H < 0 and

G ∈ Rr×r such that

1− q0(z) = ν2(z)′Hν2(z) + ν1(z)′Gν1(z)(‖z‖2 − 1).

In Section 7.3, we constructed G = G0 in (26) and H =
H0 in (28). So (H0, G0) is in the feasible set of the follow-
ing two constraints:

ν2(z)′Hν2(z) + ν1(z)′Gν1(z)(‖z‖2 − 1) = 1− q0(z),∀z
H < 0. (34)

Note that any feasible H must satisfy ν2(ei)
′Hν2(ei) = 0

for i = 1, 2, . . . , r, implying that {ν2(ei) : i = 1, 2, . . . , r}
spans a subspace of the null space of H .

Define matrices Bα and C0
α that satisfy

ν2(z)ν2(z)′ =
∑
|α|≤4

Bαz
α

ν1(z)ν1(z)′(‖z‖2 − 1) =
∑
|α|≤4

C0
αz

α

These notations allow us to write

ν2(z)′Hν2(z) = 〈ν2(z)ν2(z)′, H〉 =
∑
|α|≤4

〈Bα, H〉zα

ν1(z)′Gν1(z)(‖z‖2 − 1) = 〈ν1(z)ν1(z)′(‖z‖2 − 1), G〉

=
∑
|α|≤4

〈C0
α, G〉zα

Denote by b0α the coefficient for zα in 1 − q0(z).
We write the polynomial equation ν2(z)′Hν2(z) +
ν1(z)′Gν1(z)(‖z‖2 − 1) = 1− q0(z) equivalently as

〈Bα, H〉+ 〈C0
α, G〉 = bα, |α| ≤ 4

Therefore, we obtain the SDP formulation of (34)

find G,H

subject to 〈Bα, H〉+ 〈C0
α, G〉 = b0α, |α| ≤ 4

H < 0. (35)

As aforementioned,G0 andH0 defined respectively in (26)
and (28) form a feasible point for (35).

Now we switch to the non-orthogonal case, and we would
like to show that

q(z) =

r∑
k=1

[3(z′P ′Pek)− 2zk]z2
k

is an SOS module the ellipsoid En−1. That is, we want to
solve the feasibility problem

find G and H
subject to

ν2(z)′Hν2(z) + ν1(z)′Gν1(z)(z′P ′Pz − 1) = 1− q(z)
H < 0. (36)
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or equivalently in SDP

find G and H
subject to

〈Bα, H〉+ 〈Cα, G〉 = bα, |α| ≤ 4

H < 0. (37)

Here Bα is defined as before, while bα is the coefficient for
zα in 1− q(z) for |α| ≤ 4 and Cα is defined via

ν1(z)ν1(z)′(z′P ′Pz − 1) =
∑
|α|≤4

Cαz
α

We again note that any feasible H must satisfy
ν2(ei)

′Hν2(ei) = 0 for i = 1, 2, . . . , r, implying that
{ν2(ei) : i = 1, 2, . . . , r} spans a subspace of the null
space of H .

When ‖P ′P−I‖ ≤ εwith ε small,Cα is close toC0
α and bα

is close to b0α. We claim that, when ε is sufficiently small,
we can always take G1 = G0 and H1 in the neighborhood
of H0 that form a feasible point of (37). Denote ∆H =
H1 − H0 and eα = (bα − b0α) − (〈Cα, G0〉 − 〈C0

α, G0〉),
then ∆H must satisfy

〈Bα,∆H〉 = eα, |α| ≤ 4

These set of equality constraints, which are equivalent to

ν2(z)′∆Hν2(z) =
∑
|α|≤4

eαz
α

= q(z)− q0(z)− ν1(z)′G0ν1(z)(z′P ′Pz − z′z),
also implies that ν2(ei)

′∆Hν2(ei) = 0, i = 1, . . . , r.
Therefore, {ν2(ei) : i = 1, 2, . . . , r} spans a subspace of
the null space of H0, H1 and ∆H . Since the null space
of H0 is exactly span({ν2(ei) : i = 1, 2, . . . , r}), and the
minimal non-zero eigenvalue of H0 is strictly greater than
1/3 according to Theorem 4, it suffices to find a symmetric
∆H that satisfies

〈Bα,∆H〉 =eα, |α| ≤ 4

and ‖∆H‖ is very small, much smaller than 1
3 .

In the following, we will complete the argument by show-
ing that the solution ∆Ĥ to

minimize ‖∆H‖F
subject to 〈Bα,∆H〉 = eα, |α| ≤ 4. (38)

satisfies ‖∆H‖F ≤ 0.0048 under the conditions of ‖P ′P−
I‖ ≤ 0.0016, implying that ∆H̄ = 1

2 (∆Ĥ + ∆Ĥ ′) is the
desired ∆H .

We first estimate ‖e‖∞. Note

q(z)− q0(z) =

r∑
k=1

[3(z′P ′Pek)− 2zk]z2
k −

r∑
k=1

z3
k

= 3

r∑
k=1

[(z′P ′Pek)− zk]z2
k

which involves only third order monomials of the form
z3
k, k = 1, . . . , r, z2

kzj : k = 1, . . . , r; j = r + 1, . . . , n,
and z2

kzj : j 6= k = 1, . . . , r. The coefficient for z3
k

is 3(1 − e′kP
′Pek) = 0, and the coefficient for z2

kzj is
−3e′jP

′Pek. When k = 1, . . . , r; j = r + 1, . . . , n,
−3e′jP

′Pek = 0 due to the construction of P ; when
j 6= k = 1, . . . , r, −3e′jP

′Pek is non-zero. Therefore,
we get

‖b− b0‖∞ ≤3 max
1≤j 6=k≤r

|e′jP ′Pek| ≤ 3ε.

We next bound

|〈Cα, G0〉 − 〈C0
α, G0〉| = |〈Cα − C0

α, G0〉|

=
3

2
| trace(Cα − Cα)|

To control trace(Cα − C0
α), we write∑

|α|≤4

(Cα − C0
α)zα =ν1(z)ν1(z)′[z′(P ′P − I)z]

Taking trace on both sides gives∑
|α|≤4

trace(Cα − C0
α)zα

= trace(ν1(z)ν1(z)′)[z′(P ′P − I)z]

=

(
1 +

r∑
i=1

z2
i

)
[z′(P ′P − I)z]

=

(
1 +

r∑
i=1

z2
i

) ∑
1≤j 6=k≤r

(P ′P − I)jkzjzk

Since the diagonal of P ′P −I constitutes of zeros, the only
monomials that have non-zero coefficients are of the forms
z2
i zjzk with 1 ≤ i ≤ r, 1 ≤ j 6= k ≤ r, and zjzk with

1 ≤ j 6= k ≤ r. To compute the coefficients for z2
i zjzk, we

consider two separate cases. When j = i, the coefficient
for the term z3

i zk is (P ′P − I)ik + (P ′P − I)ki. When
j 6= i and k 6= i, the coefficient for the term z2

i zjzk is
(P ′P − I)jk + (P ′P − I)kj . In both cases, we can bound
the absolute value of the coefficient by

max
j 6=k
|(P ′P − I)jk + (P ′P − I)kj | ≤ 2ε.

A similar argument shows that the coefficients for zjzk
with 1 ≤ j 6= k ≤ r are also bounded by 2ε. Hence,
we get

max
|α|≤4

| trace(Cα − C0
α)| ≤ 2ε.
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Since the components of bα− b0α and 〈Cα−C0
α, G0〉 attain

non-zero at different αs, we conclude that

‖e‖∞ ≤ 3ε.

Denote by S ∈ R|Nn
4 |×|N

n
2 |

2

the matrix whose αth row is
vec(Bα)T for |α| ≤ 4. The solution to (38) is given by
vec(∆H) = S†e where we used † to represent pseudo-
inverse.

We want to control

‖S†‖∞,2 = max
α
‖[S†]α‖2

where [S†]α is the αth row of S†. Note S has orthogonal
rows, and each vec(Bα) is composed of zeros and ones,
and the ones indicate where the monomial zα locates in
ν2(z)ν2(z)′. As a consequence, we have SS′ is a diagonal
matrix with the diagonal element dα counts the number of
appearances of zα in ν2(z)ν2(z)′, which is always greater
than or equal to 1. Therefore, we get

‖S†‖∞,2 = ‖S′(SS′)−1‖∞,2
≤ max

β
‖[S′]β diag(d−1)‖2

≤ max
β
‖Sβ‖2

where Sβ represents that βth column of S. The index β in-
dexes the rows and columns of ν2(z)ν2(z)′. Each column
of S consists of zeros and a single one, with the latter rep-
resenting which zα is at the entry of ν2(z)ν2(z)′ specified
by the column index β. Therefore, we obtain

‖S†‖∞,2 ≤max
β
‖Sβ‖2 ≤ 1

We conclude that

‖∆H̄‖F ≤ ‖∆Ĥ‖F
= ‖S†e‖2 ≤ ‖S†‖∞,2‖e‖∞
≤ 3ε

≤ 0.0048

for ε ≤ 0.0016. Therefore, the minimal non-zero eigen-
value of the Gram matrixH1 = H0+∆H̄ is lower bounded
by 1/3− 0.0048 > 0.

So far we have showed that q(z) is a SOS modulo the el-
lipsoid {z : z′P ′Pz = 1}. To prove Theorem 1, we need
to map z back into x, and make sure the after the mapping,
the new Gram matrix still have rank |Nn2 | − r. It suffices
to show that the change of basis transformation on Rn that
maps x to z induces a well-conditioned transformation be-
tween ν2(x) and ν2(z). This is given in Lemma 1 devel-
oped in the next section. Therefore, we have completed the
proof of Theorem 1.

7.6. Change of Basis Formula

Consider two n-dimensional variables x and z linked by a
change of basis transformation x = Pz or z = P−1x. We
aim at finding the matrix J that expresses ν2(z) in terms of
ν2(x), i.e.,

ν2(z) = ν2(P−1x) = Jν2(x).

The transform J is well defined since a polynomial of de-
gree k in z is always transformed into a polynomial of de-
gree k in x under z = P−1x. It’s easy to see J has the
form:

J =

1
P−1

J2


where J2 expresses all quadratic monomials of z in terms
of quadratic monomials of x. To find J2, we rewrite the
relationship zz′ = P−1xx′P−1′ as

vec(zz′) = P−1 ⊗K P−1 vec(xx′)

where the subscript in the Kronecker product notation ⊗K
is used to distinguish it from the tensor product notation
⊗, and vec(·) vectorizes a matrix column-wise. Denote
by ν̄2(x) all unique quadratic monomials in x, and write
ν̄2(x) = Π vec(xx′), where Π is the matrix that picks
and averages the duplicated quadratic monomials of x in
vec(xx′). One can verify that vec(xx′) = Π†ν̄2(x), and
the smallest and largest singular values of Π are 1√

2
and 1

respectively. Consequently, we have

ν̄2(z) = Π vec(zz′) = Π
(
P−1 ⊗K P−1

)
Π†ν̄2(x),

or equivalently J2 = ΠP−1⊗KP−1Π†. So if ‖PP ′−I‖ ≤
ε, the singular values of J2 are lower bounded and upper
bounded by 1√

2
1

1+ε and
√

2
1−ε respectively. The same holds

for J . We summarize these results in the following lemma.

Lemma 1. The change of basis transformation x = Pz
induces a linear transformation between ν2(z) and ν2(x)

ν2(z) = Jν2(x) =

1
P−1

Π
(
P−1 ⊗K P−1

)
Π†

 ν2(x)

such that the singular values of J fall into the interval
[ 1√

2
1

1+ε ,
√

2
1−ε ].


