Covariance Sketching

Parikshit Shah

Joint work with Gautam Dasarathy, Badri Bhaskar, Rob Nowak

Motivation: Covariance Estimation Covariance matrix: $\Sigma = \mathbb{E}[XX^T]$. Cap-

tures statistical dependencies. $\Sigma = \mathbb{E}[\lambda \lambda]$

Covariance estimation: ubiquitious problem in science and engineering. Particularly relevant to model interaction between variates in "high-dimensional data"

However: estimation in high-dimensional Image: Boone et al. regime hard (MLE is useless).

Meaningful structure often present:

- 1. Sparsity in covariance matrices mean few statistical interactions.
- 2. Low rankitude mean few "principal components".

Structure exploitation: $\log p$ samples sufficient for sparse Σ ! [Bickel,Levina]

Motivation: Sketching

In some applications: hard to access/store all the variates. For example, some variates may be latent.

Basic idea in CS to deal with "big data": sketch.

Less storage, efficient to communicate.

Today: A method for sketching/pooling information for estimating Σ .

Applications: "pooling" in biological experiments, efficient storage/communication

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \ldots, X_{n} .

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$Y_i = AX_i, \qquad i = 1, \ldots, n.$$

Q1: How do we sketch? randomly pool. Good combinatorial reasons: graph expansion, etc.

Q2: Can we reconstruct Σ ? In general, no. When model is structurally constrained, ℓ_1 minimization.

Notice that sketching completely destroys the independence structure.

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \ldots, X_{n} .

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$Y_i = AX_i, \qquad i = 1, \ldots, n.$$

Q1: How do we sketch? randomly pool. Good combinatorial reasons: graph expansion, etc.

Q2: Can we reconstruct Σ ? In general, no. When model is structurally constrained, ℓ_1 minimization.

Notice that sketching completely destroys the independence structure.

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \dots, X_{n} .

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$Y_i = AX_i, \qquad i = 1, \ldots, n.$$

Q2: Can we reconstruct Σ ? In general, no. When model is structurally constrained, ℓ_1 minimization.

Notice that sketching completely destroys the independence structure.

Idealized model

Given sample sketches: Y_1, \ldots, Y_n .

Empirical covariance matrix: $\hat{\Sigma}_{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{T} = A \left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T} \right) A^{T}.$

Idealization: Given $\Sigma_Y = A \Sigma A^T$. Given Σ_Y , recover Σ .

Sensing matrix

Note that
$$A\Sigma A^T = (A \otimes A) \operatorname{vec}(\Sigma)$$
.

Denote sparsity of Σ by Ω .

In general, $A \otimes A$ is a bad sensing matrix. Standard CS analysis breaks down.

Sensing matrix

Note that
$$A\Sigma A^T = (A \otimes A) \operatorname{vec}(\Sigma)$$
.

Denote sparsity of Σ by Ω .

In general, $A \otimes A$ is a bad sensing matrix. Standard CS analysis breaks down.

Identifiability

Intuition: "sparse" models should be identifiable.

Theorem

If Σ is d-distributed sparse, $A \in \mathbb{R}^{m \times p}$ with $m > \sqrt{2dp}$, and every m columns of A are linearly independent, then model is identifiable.

Non-trivialty: Sensing operator is $A \otimes A$, $vec(X) \in \mathbb{R}^{p^2}$, *dp*-sparse, and structurally constrained.

ℓ_1 Recovery

Recovery algorithm: solve

$$\begin{array}{ll} \underset{X}{\text{Minimize}} & \|X\|_1\\ \text{subject to} & AXA^T = \Sigma_Y. \end{array}$$

Theorem

Suppose Σ is d-distributed sparse. If $A \in \mathbb{R}^{m \times p}$ is a random δ -left-regular bipartite graph, $\delta = O(\log^3(p))$, and $m = O(\sqrt{dp}\log^3(p))$ then w.h.p. $X^* = \Sigma$.

Proof ideas

Transverse intersection: $N_A \cap \mathcal{T}_{\Sigma} = 0$

Sufficient to show the Nullspace Property with respect to Ω , *A*: For all *V* such that $AVA^{T} = 0$ we have

$$\|V_{\Omega}\|_{1} \leq \frac{\epsilon}{1-\epsilon} \|V\|_{1}.$$

Satisfied w.h.p. because $A \otimes A$ with left set Ω has some special combinatorial properties.

Graph Properties: Expansion

Random bipartite graphs are expanders.

(Plentiful applications, e.g. distributed routing, storage, ECCs)

Nullspace property implied by expansion + small collisions. [Berinde et al.]

What properties does $A \otimes A$ have? General expansion fails ...

Distributed Expansion and Small Crossover

Failure of "standard approaches"

- ► If A is random Gaussian, then entries of A ⊗ A are not i.i.d., thus RIP seems difficult.
- For instance, δ^{RIP}_k(A ⊗ A) ≥ δ^{RIP}_k(A) [Jokar'10], can only recover √dp-sparse matrices.
- Related: even though A is i.i.d., the entries of AΣA^T are all dependent.
- Gaussian width: Ker(A ⊗ A) is not a uniformly random subspace.
- Similar obstructions for frame-based arguments, coherence, ...

Experiments

Exact Recovery: $\approx 50\%$ compression of Σ by sketching.

Current Efforts

- Recovery from $\hat{\Sigma}_{Y}$: robustness to Wishart noise.
- Analysis for Gaussian A?
- Tensor recovery from tensor product sensing matrices?
- Extensions to low-rank case, sparse + low-rank, etc...
- Daydream: recover Markov structure, graphical models.