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Motivation: Covariance Estimation
Covariance matrix: Σ = E[XX T ]. Cap-
tures statistical dependencies.

Covariance estimation: ubiquitious prob-
lem in science and engineering. Particu-
larly relevant to model interaction between
variates in “high-dimensional data”

However: estimation in high-dimensional
regime hard (MLE is useless).

Meaningful structure often present:

1. Sparsity in covariance matrices
mean few statistical interactions.

2. Low rankitude mean few “principal
components”.

Structure exploitation: log p samples suffi-
cient for sparse Σ! [Bickel,Levina]

Image: Boone et al.
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Motivation: Sketching

In some applications: hard to access/store all the
variates.
For example, some variates may be latent.

Basic idea in CS to deal with “big data”: sketch.

Less storage, efficient to communicate.

Today: A method for sketching/pooling informa-
tion for estimating Σ.

Applications: “pooling” in biological experiments,
efficient storage/communication

Dataset
x1, . . . , xn

S

y1, . . . , yn
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Covariance Sketching Problem

Statistical setup: X ∼ N (0,Σ), X ∈ Rp.
Samples not directly accessible: X1, . . . ,Xn.

Sampling: sketch via fixed A ∈ Rm×p:

Yi = AXi , i = 1, . . . ,n.

N (0,⌃)

X1 X2 . . . Xn

A

Y1 Y2 . . . Yn

Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.

Q2: Can we reconstruct Σ? In general, no.
When model is structurally constrained, `1 minimization.

Notice that sketching completely destroys the independence
structure.
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Idealized model

A =

2
64

1 1 0 . . .
0 1 1 . . .
...

. . .

3
75

1 2 3 . . . p

1
2
...
m

...
...

Left: [p] Right: [m]

Given sample sketches: Y1, . . . ,Yn.

Empirical covariance matrix:
Σ̂Y = 1

n
∑n

i=1 YiY T
i = A

(1
n
∑n

i=1 XiX T
i
)

AT .

Idealization: Given ΣY = AΣAT .
Given ΣY , recover Σ.
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Sensing matrix
Note that AΣAT = (A⊗ A)vec(Σ).

Denote sparsity of Σ by Ω.

...
...

... ...Left: [p] Right: [m]

2 10

20

(1, 1)

(1, 2)

(1, 3)

(p, p)

(10, 10)

(10, 20)

(20, 10)

(20, 20)

(i1, i2)

...

...

(j1, j2)

(m, m)

Left: [p] ⇥ [p]

Right: [m] ⇥ [m]

e(i1) ⇥ e(i2)

A ⌦ AA
1

In general, A⊗ A is a bad sensing matrix.
Standard CS analysis breaks down.
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Identifiability
Intuition: “sparse” models should be identifiable.

"Arrow" matrix Distributed d-sparse matrix
Support: ⌦

Theorem
If Σ is d-distributed sparse, A ∈ Rm×p with m >

√
2dp, and

every m columns of A are linearly independent, then model is
identifiable.

Non-trivialty: Sensing operator is A⊗ A, vec(X ) ∈ Rp2
,

dp-sparse, and structurally constrained.
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`1 Recovery

Recovery algorithm: solve

Minimize
X

‖X‖1
subject to AXAT = ΣY .

Theorem
Suppose Σ is d-distributed sparse. If A ∈ Rm×p is a random
δ-left-regular bipartite graph, δ = O(log3(p)), and
m = O(

√
dp log3(p)) then w.h.p. X ∗ = Σ.
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Proof ideas

NA =
�
V : AV AT = 0

 

⌃, support ⌦

{X : kXk1  k⌃k1}

T⌃

Transverse intersection: NA \ T⌃ = 0

Sufficient to show the Nullspace Property with respect to Ω, A:
For all V such that AVAT = 0 we have

‖VΩ‖1 ≤
ε

1− ε ‖V‖1 .

Satisfied w.h.p. because A⊗ A with left set Ω has some special
combinatorial properties.
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Graph Properties: Expansion

Random bipartite graphs are expanders.
(Plentiful applications, e.g. distributed routing, storage, ECCs)

...

...

Left: [p] Right: [m]

...

...

S
N(S)

⇡ �(1 � ✏)|S|

out-degree= �

A

Nullspace property implied by expansion + small collisions.
[Berinde et al.]

What properties does A⊗ A have?
General expansion fails ...
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Distributed Expansion and Small Crossover

...

...

Left: [p] Right: [m]

...

...

⌦
N(⌦)

⇡ O(p)

A ⌦ A
...

Left: [p] Right: [m]

...

...

N(⌦)

A ⌦ A

⌦

N(j, j0)

✏�2

outdegree=�2

⌦ distributed d-sparse
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Failure of “standard approaches”

I If A is random Gaussian, then entries of A⊗A are not i.i.d.,
thus RIP seems difficult.

I For instance, δRIP
k (A⊗ A) ≥ δRIP

k (A) [Jokar’10], can only
recover

√
dp-sparse matrices.

I Related: even though A is i.i.d., the entries of AΣAT are all
dependent.

I Gaussian width: Ker(A⊗ A) is not a uniformly random
subspace.

I Similar obstructions for frame-based arguments,
coherence, ...
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Experiments
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Exact Recovery: ≈ 50% compression of Σ by sketching.
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Current Efforts

I Recovery from Σ̂Y : robustness to Wishart noise.
I Analysis for Gaussian A?
I Tensor recovery from tensor product sensing matrices?
I Extensions to low-rank case, sparse + low-rank, etc...
I Daydream: recover Markov structure, graphical models.
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