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Motivation: Covariance Estimation
Covariance matrix: ¥ = E[XXT]. Cap-_

tures statistical dependencies.

Covariance estimation: ubiquitious prob-
lem in science and engineering. Particu-
larly relevant to model interaction between
variates in “high-dimensional data”

However: estimation in high-dimensionallmage: Boone et al.
regime hard (MLE is useless).

Meaningful structure often present:

1. Sparsity in covariance matrices
mean few statistical interactions.

2. Low rankitude mean few “principal |
components”.

Structure exploitation: log p samples suffi- | e ~J
cient for sparse X! [Bickel,Levina] ' ’



Motivation: Sketching

In some applications: hard to access/store all the
variates.
For example, some variates may be latent.

Basic idea in CS to deal with “big data”: sketch.

Less storage, efficient to communicate.

Today: A method for sketching/pooling informa-

tion for estimating .

Applications: “pooling” in biological experiments,
efficient storage/communication

Dataset
Llyee.yLp




Covariance Sketching Problem

N(0,%)
Statistical setup: X ~ N (0,X), X € RP.
Samples not directly accessible: Xi, ..., X;.
Sampling: sketch via fixed A € R™*P: | | |
X3 X5 Xn
Y, = AX i=1,....n | A |
Vool !
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Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.
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Covariance Sketching Problem

N(0,%)
Statistical setup: X ~ N (0,X), X € RP.
Samples not directly accessible: Xi, ..., X;.
Sampling: sketch via fixed A € R™*P: | | |
X3 X5 Xn
Y, = AX i=1,....n | A |
Vool !
Y1 Y, Y,

Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.

Q2: Can we reconstruct X? In general, no.
When model is structurally constrained, /1 minimization.

Notice that sketching completely destroys the independence
structure.
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Idealized model

=
N
w

—_ O
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m

Given sample sketches: Yi,..., Y.

Empirical covariance matrix:

ZY*1Z/ 1YYT

Idealization: Given Xy =

Given Xy, recover X.

( E/ 1XXT)A '

AT AT,

Right: [m]
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Sensing matrix

Note that AZA” = (A® A)vec(X).

Denote sparsity of & by Q.

Left: [p] Right: [m]

AR A

(1,1)

2@ 1721
<1,3>‘ 2, 1)

(2',2)

e(iy) x e(iz)

(i1, 12)
O]l Jj2)

Om, m)

» p)‘ Right: [m] x [m]

In general, A® A is a bad sensing matrix.
Standard CS analysis breaks down.
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Sensing matrix
Note that AYA” = (A® A)vec(X).
Denote sparsity of & by Q.

AR A
(1,1)
(1,1)
1.2@ 1 2)
3@ (2, 1)

» e(ir) x e(iz)

e LZ)K O(]l J2)
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(p.p) ‘

Left: [p] x [p]

In general, A® A is a bad sensing matrix.
Standard CS analysis breaks down.

Right: [m] x [m
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|dentifiability

Intuition: “sparse” models should be identifiable.

"Arrow" matrix Distributed d-sparse matrix
Support: Q

Theorem
If ¥ is d-distributed sparse, A € R™*P with m > /2dp, and

every m columns of A are linearly independent, then model is
identifiable.

Non-trivialty: Sensing operator is A® A, vec(X) € R,
dp-sparse, and structurally constrained.
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/1 Recovery

Recovery algorithm: solve
Minimize 1 X]]1
X
subjectto  AXAT =x%y.
Theorem
Suppose X is d-distributed sparse. If A € R™*P js a random

§-left-regular bipartite graph, § = O(log®(p)), and
m = O(\/dplog®(p)) then w.h.p. X* = %.
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Proof ideas

>3, support 2

Na={V:AVAT =0}

Transverse intersection: Na4N7x =0

Sufficient to show the Nullspace Property with respect to Q, A:
For all V such that AVAT = 0 we have

Vally < V15 -

€
1—¢

Satisfied w.h.p. because A ® A with left set 2 has some special

combinatorial properties.
10/15



Graph Properties: Expansion

Random bipartite graphs are expanders.
(Plentiful applications, e.g. distributed routing, storage, ECCs)

Left: [p] Right: [m]

Nullspace property implied by expansion + small collisions.
[Berinde et al.]

What properties does A ® A have?
General expansion fails ...
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Distributed Expansion and Small Crossover

AR A
@ AR A O O O
8 N() 8 N(Q)
Q o ~ow T O
O QO €62
o outdegree=42 O N(]?]/)
O O
' :
Left: [p] Right: [m] Left: [p] Right: [m]

() distributed d-sparse
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Failure of “standard approaches”

» If Ais random Gaussian, then entries of A® A are not i.i.d.,
thus RIP seems difficult.

» For instance, 6F'P (A ® A) > /P (A) [Jokar'10], can only
recover /dp-sparse matrices.

» Related: even though A'is i.i.d., the entries of AAT are all
dependent.

» Gaussian width: Ker(A ® A) is not a uniformly random
subspace.

» Similar obstructions for frame-based arguments,
coherence, ...
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Experiments

10 20 30 40

10 20 30 40

Exact Recovery: ~ 50% compression of ¥ by sketching.
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Current Efforts

Recovery from ¥ y: robustness to Wishart noise.

v

v

Analysis for Gaussian A?

v

Tensor recovery from tensor product sensing matrices?
Extensions to low-rank case, sparse + low-rank, etc...
Daydream: recover Markov structure, graphical models.

v

v
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