Covariance Sketching

Parikshit Shah

Joint work with Gautam Dasarathy, Badri Bhaskar, Rob Nowak

Motivation: Covariance Estimation

Covariance matrix: $\Sigma=\mathbb{E}\left[X X^{T}\right]$. Captures statistical dependencies.

Covariance estimation: ubiquitious problem in science and engineering. Particularly relevant to model interaction between variates in "high-dimensional data"

However: estimation in high-dimensionalmage: Boone et al. regime hard (MLE is useless).

Meaningful structure often present:

1. Sparsity in covariance matrices mean few statistical interactions.
2. Low rankitude mean few "principal components".
Structure exploitation: $\log p$ samples sufficient for sparse Σ ! [Bickel,Levina]

Motivation: Sketching

In some applications: hard to access/store all the variates.
For example, some variates may be latent.

Basic idea in CS to deal with "big data": sketch.

Less storage, efficient to communicate.

Today: A method for sketching/pooling information for estimating Σ.

Applications: "pooling" in biological experiments, efficient storage/communication

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \ldots, X_{n}.

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$
Y_{i}=A X_{i}, \quad i=1, \ldots, n
$$

Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.
Q2: Can we reconstruct \sum ? In general, no.
When model is structurally constrained, ℓ_{1} minimization.
Notice that sketching completely destroys the independence
structure.

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \ldots, X_{n}.

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$
Y_{i}=A X_{i}, \quad i=1, \ldots, n
$$

Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.
Q2: Can we reconstruct \sum ? In general, no.
When model is structurally constrained,
Notice that sketching completely destroys the independence
structure.

Covariance Sketching Problem

Statistical setup: $X \sim \mathcal{N}(0, \Sigma), X \in \mathbb{R}^{p}$. Samples not directly accessible: X_{1}, \ldots, X_{n}.

Sampling: sketch via fixed $A \in \mathbb{R}^{m \times p}$:

$$
Y_{i}=A X_{i}, \quad i=1, \ldots, n
$$

Q1: How do we sketch? randomly pool.
Good combinatorial reasons: graph expansion, etc.
Q2: Can we reconstruct Σ ? In general, no.
When model is structurally constrained, ℓ_{1} minimization.
Notice that sketching completely destroys the independence structure.

Idealized model

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & \ldots & p \\
{\left[\begin{array}{cccc}
1 & 1 & 0 & \ldots \\
0 & 1 & 1 & \ldots \\
\vdots & & \ddots &
\end{array}\right] \begin{array}{c}
1 \\
2 \\
\vdots \\
m
\end{array}}
\end{array}\right.
$$

Given sample sketches: Y_{1}, \ldots, Y_{n}.
Empirical covariance matrix:
$\hat{\Sigma}_{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{T}=\boldsymbol{A}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T}\right) \boldsymbol{A}^{T}$.
Idealization: Given $\Sigma_{Y}=A \Sigma A^{T}$.
Given Σ_{Y}, recover Σ.

Sensing matrix

Note that $A \Sigma A^{T}=(A \otimes A) \operatorname{vec}(\Sigma)$.
Denote sparsity of Σ by Ω.

In general, $A \otimes A$ is a bad sensing matrix. Standard CS analysis breaks down.

Sensing matrix

Note that $A \Sigma A^{T}=(A \otimes A) \operatorname{vec}(\Sigma)$.
Denote sparsity of Σ by Ω.

In general, $A \otimes A$ is a bad sensing matrix.
Standard CS analysis breaks down.

Identifiability

Intuition: "sparse" models should be identifiable.

"Arrow" matrix

Distributed d-sparse matrix Support: Ω

Theorem
If Σ is d-distributed sparse, $A \in \mathbb{R}^{m \times p}$ with $m>\sqrt{2 d p}$, and every m columns of A are linearly independent, then model is identifiable.

Non-trivialty: Sensing operator is $A \otimes A, \operatorname{vec}(X) \in \mathbb{R}^{p^{2}}$, $d p$-sparse, and structurally constrained.

ℓ_{1} Recovery

Recovery algorithm: solve

$$
\begin{aligned}
\underset{X}{\operatorname{Minimize}} & \|X\|_{1} \\
\text { subject to } & A X A^{T}=\Sigma_{Y} .
\end{aligned}
$$

Theorem
Suppose Σ is d-distributed sparse. If $A \in \mathbb{R}^{m \times p}$ is a random δ-left-regular bipartite graph, $\delta=O\left(\log ^{3}(p)\right)$, and $m=O\left(\sqrt{d p} \log ^{3}(p)\right)$ then w.h.p. $X^{*}=\Sigma$.

Proof ideas

$$
\text { Transverse intersection: } N_{A} \cap \mathcal{T}_{\Sigma}=0
$$

Sufficient to show the Nullspace Property with respect to Ω, A : For all V such that $A V A^{T}=0$ we have

$$
\left\|V_{\Omega}\right\|_{1} \leq \frac{\epsilon}{1-\epsilon}\|V\|_{1} .
$$

Satisfied w.h.p. because $A \otimes A$ with left set Ω has some special combinatorial properties.

Graph Properties: Expansion

Random bipartite graphs are expanders.
(Plentiful applications, e.g. distributed routing, storage, ECCs)

Nullspace property implied by expansion + small collisions. [Berinde et al.]
What properties does $A \otimes A$ have?
General expansion fails ...

Distributed Expansion and Small Crossover

Ω distributed d-sparse

Failure of "standard approaches"

- If A is random Gaussian, then entries of $A \otimes A$ are not i.i.d., thus RIP seems difficult.
- For instance, $\delta_{k}^{\mathrm{RIP}}(\boldsymbol{A} \otimes A) \geq \delta_{k}^{\mathrm{RIP}}(A)$ [Jokar'10], can only recover $\sqrt{d p}$-sparse matrices.
- Related: even though A is i.i.d., the entries of $A \Sigma A^{T}$ are all dependent.
- Gaussian width: $\operatorname{Ker}(A \otimes A)$ is not a uniformly random subspace.
- Similar obstructions for frame-based arguments, coherence, ...

Experiments

Exact Recovery: $\approx 50 \%$ compression of Σ by sketching.

Current Efforts

- Recovery from $\hat{\Sigma}_{Y}$: robustness to Wishart noise.
- Analysis for Gaussian A ?
- Tensor recovery from tensor product sensing matrices?
- Extensions to low-rank case, sparse + low-rank, etc...
- Daydream: recover Markov structure, graphical models.

