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Abstract—Learning covariance matrices from high-
dimensional data is an important problem that has received
a lot of attention recently. We are particularly interested
in the high-dimensional setting, where the number of
samples one has access to is fewer than the number of
variates. Fortunately, in many applications of interest, the
underlying covariance matrix is sparse and hence has
limited degrees of freedom. In most existing work however,
it is assumed that one can obtain samples of all the variates
simultaneously. This could be very expensive or physically
infeasible in some applications. As a means of overcoming
this limitation, we propose a new procedure that “pools”
the covariates into a small number of groups and then
samples each pooled group. We show that in certain cases it
is possible to recover the covariance matrix from the pooled
samples using an efficient convex optimization program,
and so we call the procedure “covariance sketching”.

I. INTRODUCTION

An important feature of many modern data analysis
problems is the presence of a large number of variates
relative to the amount of available data. Such high-
dimensional settings arise in a range of applications
in bioinformatics, climate studies, and economics. A
fundamental problem that arises in the high-dimensional
regime is the poor behaviour of sample statistics such
as empirical covariance matrices [3], [4]. Accordingly,
a fruitful and active research agenda over the last few
years has been the development of methods for high-
dimensional statistical inference and modeling that take
into account structure in the underlying model. Some
examples of structural assumptions on statistical models
include models with a few latent factors (leading to
low-rank covariance matrices) [10], models specified
by banded or sparse covariance matrices [3], [4], and
Markov or graphical models [18], [19], [21].

In this paper we consider a scenario in which an
unknown high-dimensional covariance matrix Σ is to
be estimated. Due to the dimensionality of the variates,
it is either infeasible, or prohibitively expensive to ac-
quire samples of each variate. An alternative acquisition
mechanism is to pool variates together and acquires
samples of the pooled variates. The two questions of
interest then are (a) whether it is possible to reliably
reconstruct properties of the original high-dimensional
covariance matrix Σ from pooled data, and (b) the
design of statistically sound methods for pooling data.

To understand the recoverability of Σ from this form of
pooled data, we study an idealization of the problem that
reveals interesting insights into the problem.

To answer the first question we show that, while in
general Σ may not be identifiable under such a sensing
design, if Σ has a certain form of structured sparsity,
it is indeed possible to recover it reliably via convex
optimization. The notion of structured sparsity consid-
ered in this paper, which we call “distributed sparsity”,
is natural in many statistical and data analysis settings
[3], [9]. It essentially corresponds to the situations where
each variate is correlated with only a small fraction of
the other variates leading to a dependency graph that is
“bounded degree”.

The answer to the second question reveals that random
pooling achieves near optimal compression properties
for distributed sparse covariance matrices. This notion
of compression and its analysis has interesting links to
expander graphs and their combinatorial properties.

Our work is related to the notion of sketching in
computer science; this literature deals with the idea of
compressing high-dimensional data vectors via projec-
tion to low-dimensions while preserving pertinent geo-
metric properties. The celebrated Johnson-Lindenstrauss
Lemma [13] is one such result, and the idea of sketching
has been explored in various contexts [1], [15]. Another
related line of work is the literature on compressive
sensing in the signal processing community [5] that es-
sentially deals with recovering sparse high-dimensional
signals from low-dimensional projections. The idea of
using random bipartite graphs and their related expansion
properties, which play an important role in our analysis,
have also been studied in past work [2], [16].

While much related work exists in the aforementioned
communities to deal with sparse high-dimensional data,
the problem considered here is technically challenging
in our setting because the sensing mechanism in our
case is constrained to have a tensor product structure.
Many standard techniques fail in this setting. Restricted
isometry based approaches [6] fail due to a lack of
independence structure in the sensing matrix. Indeed, the
restricted isometry constants as well as the coherence
constants are known to be poor for tensor product sens-
ing operators [8], [14]. Gaussian width based analysis



approaches [7] fail because the kernel of the sensing
matrix is not a uniformly random subspace and hence not
amenable to an application of Gordon’s (“escape through
the mesh”) theorem. We overcome these technical diffi-
culties by working directly with combinatorial properties
of the tensor product of a random bipartite graph, and
exploiting those to prove the so-called nullspace prop-
erty.

The rest of this paper is organized as follows. In
Section I-A we set the problem up formally. In Section
II we setup the necessary preliminaries and notation. In
Section III we state the main result in Theorem 1. In
Section IV we state a key technical result pertaining to
tensor products of random bipartite graphs in Lemma 1
and sketch its proof. In Section V we prove the main
result and in Section VI we validate our theory with
computational experiments.

A. The Problem Setup and An Idealization

The covariance sketching problem can be stated as
follows. Let Σ ∈ Rp×p be an unknown positive definite
matrix and let X1, X2, . . . , Xn ∈ Rp be n independent
and identically distributed random vectors drawn from
the multivariate normal distribution N (0,Σ). Now, sup-
pose that one has access to the m−dimensional sketch
vectors Yi such that

Yi = AXi, i = 1, 2, . . . , n,

where A ∈ Rm×p,m < p is what we call a sketching
matrix. The goal then is to recover Σ using only {Yi}ni=1.
The sketching matrices we will focus on later will have
randomly-generated binary values, so each element of Yi
is a sum (or “pool”) of a random subset of the variates.

Notice that the sample covariance matrix computed
using the vectors {Yi}ni=1 satisfies the following.

Σ̂(n)
Y :=

1
n

n∑
i=1

YiY
T
i

= A

(
1
n

n∑
i=1

XiX
T
i

)
AT

= AΣ̂(n)AT ,

where Σ̂(n) := 1
n

∑n
i=1XiX

T
i is the (maximum likeli-

hood) estimate of Σ from the samples X1 . . . , Xn.
In this paper, to gain a better understanding of the

covariance sketching problem, we explore a natural
idealization that the above calculation suggests. The
question we ask is whether and how one can recover
Σ ∈ Rp×p from the “measurement” ΣY := AΣAT ∈
Rm×m. This idealization exposes the most unique and

challenging aspects of the covariance sketching problem.
First, observe that the following identity is true.

vec (ΣY ) = vec
(
AΣAT

)
= (A⊗A) vec (Σ) . (1)

Here vec(·) is the “vectorization” operator that trans-
forms a matrix into a long column vector by stacking
the columns of the matrix and A ⊗ A stands for the
tensor (or Kronecker) product of A with itself, i.e., it is
the Rm2×p2 matrix

a11A a12A · · · a1pA
a21A a22A · · · a2pA

...
...

. . .
...

am1A am2A · · · ampA

 (2)

Upon inspecting equation (1), it is clear that one could
think of the (idealized) covariance sketching problem as
the problem of inverting an underdetermined linear sys-
tem. That is, we want to recover a vector vec(Σ) ∈ Rp2

from (A⊗A)vec(Σ) ∈ Rm2
, where m < p. While this

is not possible in general, the rapidly growing literature
on what has come to be known as compressed sensing
suggests that this can be done under certain assumptions.
In particular, taking cues from this literature, one might
think that if vec(Σ) is sparse, i.e., has few non-zeros,
then the inversion can be done to find vec(Σ) efficiently.
As in the case of compressed sensing, it should then
be possible to extend the results to the case where we
have only have access to “noisy data”, i.e., the samples
Y1, . . . , Yn.

Note that assuming that vec(Σ) has fewer than p non-
zeros does not correspond to realistic instances of the
covariance estimation problem, since it must be that each
variate depends on at least a few other variates. So, we
begin by asking if recovery of Σ is possible when vec(Σ)
has O(p) non-zeros. It turns out that the answer is no,
in general. Figure 1 shows two matrices with O(p) non-
zeros. Let us first suppose that the non-zero pattern in Σ
looks like that of the matrix on the left side, which we
will dub as the “arrow” matrix. Further, suppose that an
oracle reveals to us the non-zero pattern of Σ beforehand.
It is not hard to see that it is still impossible to recover
Σ from AΣAT . For instance, if v ∈ ker(A), then the
matrix Σ̃, with v added to the first column of Σ is such
that AΣAT = AΣ̃AT and Σ̃ is also an arrow matrix and
hence indistinguishable from Σ. In what follows, we will
show that if the sparsity pattern of Σ is more distributed,
as in the right side of figure 1, then one can recover Σ
and do so efficiently. In fact, our analysis will also reveal
what that the size of the sketch m needs to be able to
perform this task and we will see that this is very close
to being optimal.
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"Arrow" matrix Distributed sparse matrix

Fig. 1. Two matrices with O(p) non-zeros. The “arrow” matrix is
impossible to recover by covariance sketching while the distributed
sparse matrix is.

We finally remark that while Σ is assumed to be
distributed sparse, the observed covariance ΣY = AΣAT

is unstructured (and dense in general). Indeed a pooling
mechanism such as the one studied in this paper de-
stroys the independence/correlation structure among the
variates, and a central technical challenge is recovering
this structure nevertheless.

II. PRELIMINARIES AND NOTATION

For any p ∈ N, we define [p] := {1, 2, . . . , p}. A
graph G = ([p], E) is defined in the usual sense as an
ordered pair with the vertex set [p] and the edge set E
which is a set of 2-element subsets of [p], i.e., E ⊂

(
[p]
2

)
.

We assume that all the graphs that we consider here
include all the self loops, i.e., {i, i} ∈ E for all i ∈ [p].
For any S ⊂ [p], the set of neighbors N(S) is defined
as

N(S) = {j ∈ [p] : i ∈ S, {i, j} ∈ E} .

For any vertex i ∈ [p], the degree deg(i) is defined as
deg(i) := |N(i)|.

Definition 1 (Bounded degree graphs and regular
graphs). A graph G = (V,E) is said to be a bounded
degree graph with (maximum) degree d if for all i ∈ [p],

deg(i) ≤ d

The graph is said to be d−regular if deg(i) = d for all
i ∈ [p].

We will be interested in another closely related com-
binatorial object. Given p,m ∈ N, a bipartite graph
G = ([p], [m], E) is a graph with the left set [p] and
right set [m] such that the edge set E only has pairs
{i, j} where i ∈ [p] and j ∈ [m]. A bipartite graph G is
said to be δ−left regular if for all i ∈ [p], deg(i) = δ.
Given two sets A ⊂ [p], B ⊂ [m], we define the set

E (A : B) := {(i, j) ∈ E : i ∈ A, j ∈ B} ,

which we will find use for in our analysis. This set is
sometimes known as the cut set.

We let Sp denote the set of all symmetric matrices in
Rp×p. We will be particularly interested in the following
subset of Sp.

Definition 2 (d−distributed sparse matrices). We say
that a matrix Σ ∈ Sp is d− distributed sparse if the
following hold true.

1) For i = 1, 2, . . . , p, Σii 6= 0
2) Each row/column of the matrix has no more than

d non-zeros.
We will denote the set of all d−distributed sparse ma-
trices in Sp by Spd .

Examples:
• Any diagonal matrix is d−distributed sparse for
d ≥ 1.

• The adjacency matrix of a bounded degree graph
with maximum degree d−1 is d−distributed sparse

Let Ω ⊂ [p]× [p] be the support set of a d−distributed
sparse Σ, i.e.,

Ω := {(i, j) ∈ [p]× [p]} .

Then, Ω has the property that for all k ∈ [p], (1)
(k, k) ∈ Ω and, (2) the cardinalities of the sets Ωk :=
{(i, j) ∈ Ω : i = k} and Ωk := {(i, j) ∈ Ω : j = k}
are upper bounded by d. We say that such a set is
d−distributed.

Given a matrix Σ ∈ Rp×p, as mentioned earlier,
we write vec(Σ) to denote the Rp2 vector obtained by
stacking the columns of Σ. Suppose σ = vec(Σ). It will
be useful to not forget that σ was actually derived from
the matrix Σ and hence we will employ slight abuses of
notation as follows:

1) We will say σ is d−distributed sparse when we
actually mean that the matrix Σ is.

2) We will write (i, j) to denote the index of σ
corresponding to Σij , i.e.,

σij := σ(i−1)p+j = Σij .

Definition 3. (Tensor graph) Given a bipartite graph
G = ([p], [m], E), we define its tensor graph G⊗ to be
the bipartite graph ([p]× [p], [m]× [m], E⊗) where E⊗

is such that {(i, i′), (j, j′)} ∈ E⊗ if and only if {i, j}
and {i′, j′} are both in E.

Notice that if the adjacency matrix of G =
([p], [m], E) is A′ ∈ Rp×m, then the adjacency matrix
of G⊗ is (A⊗A)′ ∈ Rp2×m2

.
Throughout this paper, unless explicitly stated, the `1-

norm ‖·‖1 applied to a matrix X stands for the absolute
sum of all the elements of the matrix, i.e.,

‖X‖1 := ‖vec(X)‖1
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III. MAIN RESULT

In section I-A, we argued why it makes sense to
assume that Σ is sparse and in particular, sparse in a
distributed manner. Our goal, therefore, is to recover
Σ ∈ Spd from the observation matrix ΣY := AΣAT .
A natural, albeit highly impractical, approach to solve
this problem is the following: search over all matrices
X ∈ Rp×p such that AXAT agrees with ΣY and find
the sparsest one; the hope being that this would in fact
be Σ. Of course, there is no guarantee that this approach
might work and worse still, such a search procedure is
known to be NP-Hard.

Therefore, we resort to what has now become conven-
tional wisdom again and consider instead the optimiza-
tion program (P1), which is a convex relaxation of the
naive approach proposed above.

minimize
X

‖X‖1
subject to AXAT = ΣY .

(P1)

The rest of the paper is devoted to showing that the
solution X∗ of (P1) does equal Σ with very high
probability. In particular, we prove the following result.

Theorem 1. Suppose Σ ∈ Spd and A ∈ {0, 1}m×p is
chosen as the adjacency matrix of a random bipartite
graph with

m = O(
√
dp log3 p).

Then the optimal solution X∗ of (P1) is such that X∗ =
Σ with probability exceeding 1− p−c, for some c > 0.

We will make the phrase “random bipartite graph”
more explicit in section IV, but let us pause here and
consider some interesting implications of the above
statement:

1) (P1) does not impose any structural restrictions on
X . In other words, even though Σ is assumed to
be distributed sparse, this (highly non-convex) con-
straint need not be factored in to the optimization
problem for it to work.

2) Recall that what we measure can be thought of as
the Rm2

vector (A ⊗ A)vec(Σ). Since Σ ∈ Spd ,
vec(Σ) has O(dp) non-zeros. Now, even if an
oracle were to reveal the exact locations of the
non-zeros in vec(Σ), we would require at least
O(dp) measurements to be able to perform the
necessary inversion to recover Σ. In other words,
it is absolutely necessary for m2 to be at least
O(dp). Comparing this to Theorem 1 shows that
the simple algorithm we propose is near optimal
in this sense.

3) While the main result stated in this paper is in the
context of covariance estimation, we remark that
(P1) and the proof rely neither on the symmetry
of covariance matrices (i.e. that Σij = Σji), nor
on their positive-definiteness (Σ � 0). Indeed our
results extend more generally to guarantee that
distributed sparse signals of sparsity level O(p)
in p2 dimensions may be recovered from random
tensor product sensing operators of the form A⊗A
(or even A⊗B) where A ∈ RO(

√
p)×p.

Note that if ΣY was not observed exactly, but rather
available only via an empirical estimate Σ̂Y , a natural
relaxation to (P1) would be

minimize
X

‖X‖1
subject to ‖AXAT − Σ̂Y ‖ ≤ κ.

(P2)

While we will not study the properties of (P2) here,
we remark here that if A is the identity matrix, then
the optimal solution of this problem corresponds to
a thresholded version of Σ̂Y (the threshold parameter
being determined by κ) so that one recovers the estimator
studied by Bickel and Levina [3].

IV. UNIFORMLY RANDOM BIPARTITE GRAPHS AND
WEAK DISTRIBUTED EXPANSION

As alluded to earlier, we will choose the sensing
matrix A to be the adjacency matrix of a random graph.
The precise definition of this notion follows.

Definition 4 (Uniformly Random δ−left regular bipartite
graph). We say that G = ([p], [m], E) is a uniformly
random δ−left regular bipartite graph if the edge set E
is a random variable with the following property: for
each i ∈ [p] there exist δ vertices j1, j2, . . . , jδ chosen
uniformly at random (without replacement) from [m]
such that {{i, jk}}δk=1 ⊂ E.

The probabilistic claims in this paper are made with
respect to this probability distribution on the space of all
bipartite graphs.

In past work [2], [16], the authors show that a random
graph generated as above has the vertex expansion prop-
erty, i.e., for all sets S such that |S| ≤ k, the size of the
neighborhood |N(S)| is no less than (1 − ε)δ |S|. If A
is the adjacency matrix of such a graph, then it can then
be shown that this implies that `1 minimization would
recover a k−sparse vector x if one observes the sketch
Ax. Unfortunately, it turns out that G⊗ does not have
this property.

However, we prove that if A ∈ Rm×p is picked as
in Definition 4, then the tensor graph corresponding
to A ⊗ A, G⊗ = ([p] × [p], [m] × [m], E⊗), satisfies
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what can be considered a weak distributed expansion
property. This roughly says that the neighborhood of a
d−distributed Ω ⊂ [p] × [p] is large enough. Moreover,
we show that this is in fact sufficient to prove that
(P1) recovers Σ with high probability. We follow up
the statement of the lemma with a proof sketch which
omits rigorous concentration arguments which can be
reconstructed from our exposition.

Lemma 1. Suppose that G = ([p], [m], E) is a uni-
formly random δ−left regular bipartite graph with δ =
O(log3 p) and m = O(

√
dp log3 p). Let Ω be a fixed

d-distributed subset of [p] × [p]. Then there exists an
ε ∈

(
0, 1

4

)
such that G⊗ has the following properties

with probability exceeding 1− p−c, for some c > 0.
1) |N(Ω)| ≥ pδ2(1− ε).
2) For any (i, i′) ∈ ([p]× [p])\Ω we have |N(i, i′)∩

N(Ω)| ≤ εδ2.
3) For any (i, i′) ∈ Ω, |N(i, i′)∩N(Ω\(i, i′))| ≤ εδ2.

Proof: Part 1. Since Ω is d−distributed, the “diago-
nal” set D := {(1, 1), . . . , (p, p)} is a subset of Ω. Now,
notice that for j 6= j′ ∈ [m], i ∈ [p],

P [(j, j′) ∈ N((i, i))] =
δ(δ − 1)
m(m− 1)

(3)

This implies that

P [(j, j′) /∈ N(D)] =
(

1− δ(δ − 1)
m(m− 1)

)|D|
Therefore, we have

E
[
|N(Ω)|

]
≥ E

[
|N (D)|

]
=

∑
jj′∈[m]×[m]

P [(j, j′) ∈ N(D)]

≥
∑

jj′∈[m]×[m],
j 6=j′

P [(j, j′) ∈ N(D)]

=
∑

jj′∈[m]×[m],
j 6=j′

(
1−

(
1− δ(δ − 1)

m(m− 1)

)|D|)

= m(m− 1)

(
1−

(
1− δ(δ − 1)

m(m− 1)

)|D|)

≥ m(m− 1)

(
|D| δ(δ − 1)
m(m− 1)

− |D|
2
δ2(δ − 1)2

m2(m− 1)2

)

= |D| δ2

(
1−

(
1
δ

+
(δ − 1)2 |D|
m(m− 1)

))
= pδ2 (1− ε) .

Where the last step follows if p is large enough and m is
chosen as prescribed. To complete the proof, it suffices to
show that the random quantity |N(Ω)| does not deviate
too much from its mean. While we will not prove this
rigorously here, we will sketch the argument. As a first
step towards this, we define the random variables χjj′ :=
1{(j,j′)∈N(D)} and note that

|N(D)| =
∑

jj′∈[m]×[m]

χjj′ .

Now, notice that each term in the above sum is dependent
on no more than 2m − 1 terms. Therefore, using tech-
niques similar to [17], [20], one can bound the deviation
of this sum from its expected value.

Part 2. To prove the second part, we note that the
probability that a random edge emanating from the
vertex (i, i′) ∈ [p]2 hits an arbitrary vertex (j, j′) ∈ [m]2

is given by 1/m2. The probability that this edge lands
in N(Ω) is, therefore, given by |N(Ω)| /m2. Since there
are δ2 edges that are incident on (i, i′), the expected size
of overlap between N(i, i′) and N(Ω) is upper bounded
by

δ2 |N(Ω)|
m2

.

Again, if m and δ are chosen as prescribed, the de-
sired expression holds true, in expectation. To show
that this quantity concentrates, we again employ sim-
ilar arguments as before and define indicator random
variables χ1 . . . , χδ2 each of which corresponds to one
of the edges emanating from the vertex (i, i′) and then
observing that the sum

∑δ2

k=1 χk is precisely equal to
the random quantity |N(i, i′) ∩N(Ω)|. To conclude that
this random quantity concentrates, one needs to bound
|N(Ω)| from below and since Ω is d−distributed sparse,
part 1 of this lemma allows us to do precisely this. Using
this, one can show that the result holds with probability
exceeding 1− p−c if m and δ are chosen as prescribed.

The proof of part 3 follows along the same lines as
above after carefully accounting for the possibility that
i = i′.

V. PROOF OF THEOREM 1

In this section, we will prove the main theorem.
To reduce clutter in our presentation, we will employ
certain notational shortcuts. When the context is clear,
the ordered pair (i, i′) will simply be written as ii′ and
the set [p]× [p] will be written as [p]2.

We will consider an arbitrary ordering ≺ of the set
[p] × [p] and we will order the edges in E⊗ lexico-
graphically based on this ordering, i.e., the first δ2 edges
e1, . . . , eδ2 in E⊗ are those that correspond to the first
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element as per ≺ and so on. Therefore, one can imagine
that the graph G⊗ is formed by including these edges
sequentially as per the ordering on the edges. This allows
us to partition the edge set into the set E⊗1 of edges that
do not collide with any of the previous edges as per ≺
and the set E⊗2 := E⊗ − E⊗1 . (We note that a similar
proof technique was adopted in Berinde et al. [2]).

Proposition 1 (L1-RIP). Suppose X ∈ Rp×p is
d−distributed sparse and is A is the adjacency matrix
of a random bipartite δ−left regular graph. Then there
exists an ε > 0 such that

(1− 2ε)δ2 ‖X‖1 ≤ ‖AXA
′‖1 ≤ δ

2 ‖X‖1 , (4)

with probability exceeding 1− p−c for some c > 0.

Proof: The upper bound follows (deterministically)
from the fact that the induced (matrix) `1-norm of A⊗A,
i.e., the maximum column sum of A ⊗ A, is precisely
δ2. To prove the lower bound, we need the following
lemma.

Lemma 2. For any X ∈ Rp×p,∥∥AXAT∥∥
1

≥ δ2 ‖X‖1 − 2
∑

jj′∈[m]2

∑
ii′∈[p]2

1{ii′,jj′}∈E⊗2 |Xii′ |

(5)

Proof: In what follows, we will denote the indicator
function 1{ii′,jj′}∈A by 1{ii

′jj′}
A . We begin by observing

that∥∥AXAT∥∥
1

=
∑

jj′∈[m]2

∣∣∣∣∣∣
∑

ii′∈[p]2

1{ii
′jj′}

E⊗ Xii′

∣∣∣∣∣∣
=

∑
jj′∈[m]2

∣∣∣∣∣∣
∑

ii′∈[p]2

1{ii
′jj′}

E⊗1
Xii′ +

∑
ii′∈[p]2

1{ii
′jj′}

E⊗2
Xii′

∣∣∣∣∣∣
≥

∑
jj′∈[m]2

∣∣∣∣∣∣
∑

ii′∈[p]2

1{ii
′jj′}

E⊗1
Xii′

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

ii′∈[p]2

1{ii
′jj′}

E⊗2
Xii′

∣∣∣∣∣∣
(a)

≥
∑

jj′∈[m]2

( ∑
ii′∈[p]2

1{ii
′jj′}

E⊗1
|Xii′ |

−
∑

ii′∈[p]2

1{ii
′jj′}

E⊗2
|Xii′ |

)
=

∑
ii′∈[p]2,jj′∈[m]2

1{ii
′jj′}

E⊗ |Xii′ |

− 2
∑

ii′∈[p]2jj′∈[m]2

1{ii
′jj′}

E⊗2
|Xii′ | ,

where the inequality (a) follows after observing that
the first (double) sum has only one term and ap-
plying triangle inequality to the second sum. Since∑
ii′∈[p]2,jj′∈[m]2 1{ii

′jj′}
E⊗ |Xii′ | = δ2 ‖X‖1, this con-

cludes the proof of the lemma.
Now, to complete the proof of Proposition 1, we need

to bound the sum in the LHS of (5). Notice that∑
ii′jj′:(ii′jj′)∈E⊗2

|Xii′ | =
∑
ii′

|Xii′ | rii′ =
∑
ii′∈Ω

|Xii′ | rii′ .

where rii′ is the number of collisions of edges emanating
from ii′ with all the previous edges as per the ordering≺.
Since Ω is d−distributed, from the third part of Lemma
1, we have that for all ii′ ∈ Ω, rii′ ≤ εδ2 with probability
exceeding 1− p−c and therefore,∑

ii′∈Ω

|Xii′ | rii′ ≤ εδ2 ‖X‖1 .

This concludes the proof.

Proposition 2 (Nullspace Property). Suppose A ∈
{0, 1}m×p is the adjacency matrix of a random bi-
partite δ−left regular graph with δ = O(log3 p) and
m = O(

√
dp log3 p). Let X ∈ Sp be such that AXA′ =

0 and suppose that Ω ⊂ [p]× [p] is a d−distributed set,
then with probability exceeding 1− p−c.

‖XΩ‖1 ≤
ε

1− 2ε
‖X‖1 . (6)

for some ε ∈ (0, 1
4 ) and for some c > 0.

Proof: Let X be any symmetric matrix such
that AXAT = 0. Let x = vec(X) and note that
vec
(
AXAT

)
= (A⊗A)x = 0. Let Ω be a d-distributed

set. We define N(Ω) ⊆ [m]2 to be the set of neighbors
of Ω with respect to the graph G⊗. Let (A ⊗ A)N(Ω)

denote the submatrix of A⊗A that contains only those
rows corresponding to N(Ω) (and all columns). We will
abuse notation and use xΩ to denote vec(XΩ). Note that
the following chain of inequalities is true:

0 =
∥∥(A⊗A)N(Ω)x

∥∥
1

=
∥∥(A⊗A)N(Ω)(xΩ + xΩc)

∥∥
1

≥
∥∥(A⊗A)N(Ω)xΩ

∥∥
1
−
∥∥(A⊗A)N(Ω)xΩc

∥∥
1

= ‖(A⊗A)xΩ‖1 −
∥∥(A⊗A)N(Ω)xΩc

∥∥
1

(a)

≥ (1− 2ε)δ2 ‖XΩ‖1 −
∥∥(A⊗A)N(Ω)xΩc

∥∥
1
,

where (a) follows from Proposition 1. Resuming the
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Fig. 2. The matrix on the left is a 40×40 sparse covariance matrix and
the matrix on the right is a perfect reconstruction with with m = 21.

chain of inequalities, we have:

0 ≥ (1− 2ε)δ2 ‖XΩ‖1 −
∑
ii′∈Ωc

∥∥(A⊗A)N(Ω)x{ii′}
∥∥

1

≥ (1− 2ε)δ2 ‖XΩ‖1 −
∑

ii′:(ii′,jj′)∈E⊗,
jj′∈N(Ω)

|Xii′ |

≥ (1− 2ε)δ2 ‖XΩ‖1 −
∑
ii′∈Ωc

|E⊗(ii′ : N(Ω))| |Xii′ |

(b)

≥ (1− 2ε)δ2 ‖XΩ‖1 −
∑
ii′∈Ωc

εδ2 |Xii′ |

≥ (1− 2ε)δ2 ‖XΩ‖1 − εδ
2 ‖X‖1 ,

where (b) follows from the second part of Lemma 1.
Rearranging, we get the required result.

Proof of Main Theorem: Let Ω be the support of
Σ. Notice that Ω is d−distributed. Suppose that there
exists an X̃ such that AX̃AT = ΣY . Observe that
A
(
X̃ − Σ

)
AT = 0. Now, consider

‖Σ‖1 ≤
∥∥∥Σ− X̃Ω

∥∥∥
1

+
∥∥∥X̃Ω

∥∥∥
1

=
∥∥∥(Σ− X̃

)
Ω

∥∥∥
1

+
∥∥∥X̃Ω

∥∥∥
1

(a)

≤ ε

1− 3ε

∥∥∥(Σ− X̃
)

Ωc

∥∥∥+
∥∥∥X̃Ω

∥∥∥
1

=
ε

1− 3ε

∥∥∥−X̃Ωc

∥∥∥+
∥∥∥X̃Ω

∥∥∥
1

<
∥∥∥X̃∥∥∥

1

where (a) follows from proposition 2, and the last
line follows from the fact that ε < 1

4 , again from
proposition 2. Therefore, the unique solution of (P1) is
Σ with probability exceeding 1 − p−c, for some c > 0.

Fig. 3. Phase transition plot. The (i, j)-th pixel shows (an approxi-
mation) to the probability of success of the optimization problem (P1)
in recovering a distributed sparse Σ ∈ Ri×i with sketch-size j.

VI. EXPERIMENTS

We demonstrate the validity of our theory with some
preliminary experiments in this section. Figure 2 shows
a 40 × 40 distributed sparse matrix on the left side.
The matrix on the right is a perfect reconstruction using
only m = 21 samples (i.e., each sketch is only ∼ 50%
of the length of the sample vectors). Figure 3 is what
is known now as the “phase transition diagram”. Each
coordinate (i, j) ∈ {10, 12, . . . , 60} × {2, 4, . . . , 60} in
the figure corresponds to p = i and m = j. The value
at the coordinate (i, j) was generated as follows. A
random 4-distributed sparse Σ ∈ Ri×i was generated
and a random A ∈ Rj×i was generated as adjacency
matrix of a graph as described in Definition 4. Then the
optimization problem (P1) was solved using the CVX
toolbox [12], [11]. The solution X∗ was compared to
Σ in the ‖·‖∞ norm (upto numerical precision errors).
This was repeated 38 times and the average number
of successes was reported in the (i, j)-th spot. In the
figure, the deep blue region denotes success during each
trial and the deep red region denotes failure in every
single trial and there is a sharp phase transition between
successes and failures. And in fact, the curve that borders
this phase transition region roughly looks like the curve
p = 1

14m
2 which is what our theory predicts (upto log

factors).
To conclude, we also ran some preliminary tests on

trying to reconstruct a covariance matrix from sketches
of samples drawn from the original distribution.To factor
in the “noise”, we replaced the equality constraint in
(P1) with a constraint which restricts the feasible set to
be the set of all X such that

∥∥∥AXAT − Σ̂(n)
Y

∥∥∥
2
≤ κ

instead. The parameter κ was picked by cross-validation.

7



Fig. 4. The matrix on the left is a 40× 40 distributed sparse matrix.
The matrix on the right was reconstructed using n = 2100 samples
and with sketches of size m = 21.

Figure 4 shows a representative result which is encour-
aging. The matrix on the left is a 40 × 40 distributed
sparse covariance matrix and the matrix on the right is a
reconstruction using n = 2100 sketches of size m = 21
each.
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