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Abstract—In many signal processing applications, one
aims to reconstruct a signal that has a simple representation
with respect to a certain basis or frame. Fundamental
elements of the basis known as “atoms” allow us to define
“atomic norms” that can be used to construct convex
regularizers for the reconstruction problem. Efficient algo-
rithms are available to solve the reconstruction problems
in certain special cases, but an approach that works well
for general atomic norms remains to be found. This paper
describes an optimization algorithm called CoGEnT , which
produces solutions with succinct atomic representations for
reconstruction problems, generally formulated with atomic-
norm constraints. CoGEnT combines a greedy selection
scheme based on the conditional gradient approach with a
backward (or “truncation”) step that exploits the quadratic
nature of the objective to reduce the basis size. We
establish convergence properties and validate the algorithm
via extensive numerical experiments on a suite of signal
processing applications. Our algorithm and analysis are
also novel in that they allow for inexact forward steps. In
practice, CoGEnT significantly outperforms the basic con-
ditional gradient method, and indeed many methods that
are tailored to specific applications, when the truncation
steps are defined appropriately. We also introduce several
novel applications that are enabled by the atomic-norm
framework, including tensor completion, moment problems
in signal processing, and graph deconvolution.

I. INTRODUCTION

Minimization of a convex loss function with a con-
straint on the “simplicity” of the solution has found
widespread applications in communications, machine
learning, image processing, genetics, and other fields.
While exact formulations of the simplicity requirement
are often intractable, it is sometimes possible to de-
vise tractable formulations via convex relaxation that
are (nearly) equivalent. Since these formulations differ
so markedly across applications, a principled and uni-
fied convex heuristic for different notions of simplicity
has been proposed using notions of atoms and atomic

norms [1]. Atoms are fundamental basis elements of the
representation of a signal, chosen so that “simplicity”
equates to “representable in terms of a small number of
atoms.” We list several applications, describing for each
application a choice of atoms that captures the concept
of simplicity for those applications.

For instance, a sparse signal x may be represented
as x =

∑
j∈S cjej , where the ej are the standard unit

vectors and S captures the support of x. One can view
the set {±ej} as atoms that constitute the signal, and
the convex hull of these atoms is a set of fundamental
importance called the atomic-norm ball. The operation
of inflation/deflation of the atomic norm ball induces a
norm (the atomic norm), which serves as an effective
regularizer (see Sec. I-A for details). The atomic set
{±ej , j = 1, 2, . . . , p} induces the `1 norm [2], now
well-known to be an effective regularizer for sparsity.
However, this idea can be generalized. For instance, the
atomic norm induced by the convex hull of all unit rank
matrices is the nuclear norm, often used as a heuristic
for rank minimization [3], [4]. Other novel applications
of the atomic-norm framework include the following.

• Group-norm-constrained multitask learning
problems with group-`2 norms [5]–[7] or group-`∞
norms [8]–[10] have as atoms unit Euclidean balls
and unit `∞-norm balls, respectively, restricted to
specific groups of variables.

• Group lasso with overlapping groups arises from
applications in genomics, image processing, and
machine learning [5], [7]. It is shown in [11] that the
sum of `2 norms of overlapping groups of variables
is an atomic norm.

• Moment problems, which arise in applications
such as radar, communications, seismology, and
sensor arrays, have an atomic set which is uncount-
ably infinite [12]. Each atom is a trigonometric
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moment sequence of an atomic measure supported
on the unit interval [12]. This methodology can be
extended to signal classes such as Bessel functions,
Gaussians, and wavelets.

• Group testing on graphs and network tomography
finds widespread applications in sensor, computer,
social, and biological networks [7], [13]. In such
applications, it is typically required to identify a set
of faulty edges/nodes from measurements that are
based on the known structure of the graph. Each
atom can be defined as a subset of nodes or edges
in the graph.

• Hierarchical norms arise in topic modeling [14],
climate and oceanology applications [15], and fMRI
data analysis [16]. The atoms here are hybrids of
group-sparse and sparse atoms.

• OSCAR-regularized problems use an octagonal
penalty to simultaneously identify a sparse set of
pairwise correlated variables [17]. The atoms are
vectors containing at most two nonzeros, with each
nonzero entry being ±1.

• Tensor Completion: Signals modeled as tensors
have recently enjoyed renewed interest in machine
learning [18]. In the case we consider here, in which
the tensor is symmetric, orthogonally decompos-
able, and low (symmetric) rank, the atoms consist
of unit-rank symmetric tensors.

• Deconvolution is the problem of splitting a signal
z = x + y into its constituent components x and
y [19], where x and y are succinct with respect
to different sets of atoms. Typical cases include
the atomic sets being sparse and low rank [20],
sparse in the canonical and discrete cosine trans-
form (DCT) bases, and sparse and group sparse
[21].

We present a general method called CoGEnT (for
“Conditional Gradient with Enhancement and Trunca-
tion”) that can be applied to general atomic norm
problems, in particular to all the applications discussed
above. CoGEnT reconstructs signals by minimizing a
least-squares loss function that measures the difference
between the signal representation and the observations,
subject to a “simplicity” constraint on the signal, im-
posed in terms of an atomic norm. Besides its generality,
novel aspects of CoGEnT include (a) introduction of
enhancement steps at each iteration to improve solution
fidelity, (b) introduction of efficient backward steps that
dramatically improves the performance, (c) introduction
of the notion of inexactness in the forward step. A
comprehensive convergence result is presented.

A. Preliminaries and Notation

We assume the existence of a known atomic set A and
an unknown signal x in some “ambient” space, where x
is a superposition of a small number of atoms from A.
(We emphasize that the set of atoms need not be finite.)
We assume further that the set A is symmetric about the
origin, that is, a ∈ A ⇒ −a ∈ A. The representation of
x as a conic combination of atoms a ∈ At in a subset
At ⊂ A is written as follows:

x =
∑
a∈At

caa, with ca ≥ 0 for all a ∈ At. (1)

where the ca are scalar coefficients. We write

x ∈ co(At, τ), (2)

for some given τ ≥ 0, if it is possible to represent the
vector x in the form (1), with the additional constraint∑

a∈At

ca ≤ τ. (3)

We use At to denote a linear operator which maps the
coefficient vector c (with cardinality |At|) to a vector in
the ambient space, using the vectors in At, that is,

Atc :=
∑
a∈At

caa. (4)

Since there is a one-to-one relationship between At
and the linear operator At, we use the notation (4)
more often, and sometimes slightly abuse terminology
by referring to At as the “basis” at iteration t. We
sometimes refer to the “columns” of At, by which we
mean the elements of the corresponding basis At.

The atomic norm [1] is the gauge functional induced
by A:

‖x‖A := inf{t > 0 : x ∈ t(conv(A))}, (5)

where conv (·) denotes the convex hull of a collection of
points. Equivalently, we have

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
. (6)

Given a representation (1), the sum of coefficients in (3)
is an upper bound on the atomic norm ‖x‖A. The dual
atomic norm is given by

‖x‖∗A = sup
‖u‖A≤1

〈u,x〉. (7)

The dual atomic norm is key to our approach — the
atom selection step in CoGEnT amounts to choosing
the argument that achieves the supremum in (7), for a
particular choice of x.
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Our algorithm CoGEnT solves the convex optimiza-
tion problem:

min
x
f(x) :=

1

2
‖y −Φx‖22 s.t. ‖x‖A ≤ τ, (8)

where y = Φx + w corresponds to observed measure-
ments, with noise vector w. The regularizing constraint
on the atomic norm of x enforces “simplicity” with
respect to the chosen atomic set. Efficient algorithms
are known for this problem when the atoms are standard
unit vectors ±ej (for which the atomic norm is the
`1 norm) [22]–[24] and rank-one matrices (for which
the atomic norm is the nuclear norm) [7], [25], [26].
CoGEnT targets the general formulation (8), opening up
a suite of new applications with rigorous convergence
guarantees and state-of-the-art empirical performance.

We remark that while (8) is a convex formulation,
tractable algorithms for solving it are not known in full
generality. Indeed, characterization of the atomic norm
is itself intractable in some cases. From an optimization
perspective, interior point methods are often impractical,
being either difficult to formulate or too slow for large-
scale instances. First order greedy methods are often the
methods of choice. Greedy schemes are popular in high
dimensional signal recovery settings because of their
computational efficiency, scalability to large datasets,
and interesting global rate-of-convergence properties.
They have found widespread use in large scale machine
learning applications [27]–[33].

B. Past Work: Conditional Gradient Method

A conditional gradient (CG) algorithm for (8) was
introduced in [29]. This greedy approach is often known
as “Frank-Wolfe” after the authors who proposed it in
the 1950s [34]. At each iteration, it finds the atom that
optimizes a first-order approximation to the objective
over the feasible region, and adds this atom to the basis
for the solution. Each iteration of CoGEnT performs a
“forward step” of this type. Although CoGEnT includes
various enhancements, it is this forward step that drives
the convergence theory, which is similar to that of stan-
dard conditional gradient methods [28], [29], although
with a different treatment of inexactness in the choice
of search direction.

Although greedy methods require more iterations than
such prox-linear methods as SpaRSA [22], FISTA [35],
and Nesterov’s accelerated gradient method [36], each
iteration is typically less expensive. For example, in ma-
trix completion applications, prox-linear methods require
computation of an SVD of a matrix [37] (or at least
a substantial part of it), while CG requires only the
computation of the leading singular vectors. In other

applications, such as structural SVM [38], CG schemes
are the only practical way to solve the optimization
formulation. Latent group lasso [7] can be extended to
perform regression on very large signals by employing
a “replication” strategy, but as the amount of group
overlap increases, prox-linear methods quickly become
memory intensive. CG offers a scalable method to solve
problems of this form. The procedure to choose each new
atom has a linear objective, as opposed to the quadratic
program required to perform projection steps in prox-
linear methods. The linear subproblem is often easier
to solve; in some applications, it makes the difference
between tractability and intractability. Moreover, the
linear problem need only be solved approximately to
retain convergence guarantees [27], [31].

C. Backward (Truncation) Steps

In signal processing applications, one is interested
not only in minimizing the loss function, but also in
the “simplicity” of the solutions. For example, when
the solution corresponds to the wavelet coefficients of
an image, sparsity of the representation is key to its
usefulness as a compact representation. In this regard,
the basic CG and indeed all greedy schemes suffer from
a significant drawback: atoms added at some iterations
may be superseded by others added at later iterations,
and ultimately may not contribute much to reducing the
loss function. By the time the loss function has been
reduced to an acceptable level, the basis may contain
many such atoms of dubious usefulness, thus detracting
from the quality of the solution.

Backward steps in CoGEnT allow atoms to be re-
moved from the basis when they are found to be un-
helpful in reducing the objective. We define this step in
a flexible way, the only requirement being that it does
not degrade the objective function too greatly in com-
parison to the gain that was obtained at the most recent
“forward” iteration. The enhancement / reoptimization
step discussed below is one way to perform truncation;
we can simply discard those atoms whose coefficients
are reduced to zero when we reoptimize over the current
basis. This step may be expensive to implement, so we
seek alternatives. One such alternative is to test one-
by-one the effect of removing each atom in the current
basis — an operation that can be performed efficiently
because of the least-squares nature of the loss function
in (8) — and remove the atom(s) that do not deteriorate
the objective beyond a specified limit. A third alternative
is to seek a completely new set of basis atoms that can
be combined to obtain a vector with similar objective
value to the latest iteration.
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We note that the backward steps in CoGEnT are quite
different from the “away steps” analyzed in [27], [39].
These steps move in the opposite to the “worst possible”
linearized direction, and thus add a new element to the
basis at each iteration, rather than removing elements,
as we do here. While away steps have been shown to
improve the convergence properties of CG method, they
do not contribute to enhancing sparsity of the solution.

Forward-backward greedy schemes for `1 constrained
minimization have been considered previously in [40]–
[43]. These methods build on the Orthogonal Matching
Pursuit (OMP) algorithm [23], and cannot be readily
extended to the general setting (8).

D. Enhancement (Reoptimization) Steps

The enhancement / reoptimization step in Co-
GEnT takes the current basis and seeks a new set of
coefficients in the representation (4) that reduces the
objective while satisfying the norm constraint. (A “full
correction” step of this type was described in [27].) The
step is implemented as a linear least-squares objective
over a simplex. CoGEnT solves it with a gradient pro-
jection method, using a warm start based on the current
set of coefficients. Projection onto the simplex can be
performed in O(nt+1) operations, where nt+1 is the
dimension of the simplex (which equals the number
of elements in the current basis At+1). Since gradient
projection is a descent method that maintains feasibility,
it can be stopped after any number of iterations, without
prejudice to the convergence of CoGEnT .

E. Outline of the Paper

The rest of the paper is organized as follows. We
specify CoGEnT in the next section, describing different
variants of the backward step that promote parsimonious
solutions (involving small numbers of atoms). In Sec-
tion III, we state convergence results, deferring proofs
to an appendix. Section IV describes the application
of CoGEnT to a number of existing applications, and
compares it to various other methods that have been
proposed for these applications. In Section V, we apply
CoGEnT for a variety of new applications, for which
current methods, if they exist at all, do not scale well to
large data sets. In Section VI we extend our algorithm
to deal with deconvolution problems.

II. ALGORITHM

CoGEnT is specified in Algorithm 1. Its three major
elements — the forward (conditional gradient) step,
the backward (truncation) step, and the enhancement

(reoptimization) step — have been discussed in Section I.
We note that these three steps are constructed so that the
iterates at each step are feasible (that is, ‖xt‖A ≤ τ ).
We make further notes in this section about alternative
implementations of these three steps.

Algorithm 1 CoGEnT: Conditional Gradient with En-
hancement and Truncation

1: Input: Characterization of A, bound τ , acceptance
threshold η ∈ (0, 1/2];

2: Initialize, a0 ∈ A, t ← 0, A0 ← [a0], c0 ← [τ ],
x0 ← A0c0;

3: repeat
4: at+1 ← arg mina∈A〈∇f(xt),a〉; {FORWARD}

5: Ãt+1 ← [At at+1];
6: γt+1 ← arg minγ∈[0,1] f(xt + γ(τat+1 − xt));

{LINE SEARCH}
7: c̃t+1 ← [(1− γt+1)ct γt+1τat+1];
8: Optional: Approximately solve

c̃t+1 ← arg minct+1 f(Ãt+1ct+1) s.t. ‖ct+1‖1 ≤
τ, ct+1 ≥ 0 with the output from Step 7 as a
warm start; {ENHANCEMENT}

9: x̃t+1 = Ãt+1c̃t+1;
10: Threshold Ft+1 := ηf(xt) + (1− η)f(x̃t+1);
11: [At+1, ct+1, xt+1]

= TRUNCATE(Ãt+1, c̃t+1, τ, Ft+1);
{BACKWARD}

12: t← t+ 1;
13: until convergence
14: Output: xt

The forward step (Step 4) is equivalent to solving an
approximation to (8) based on a linearization of f around
the current iterate. Specifically, it is easy to show that
τat solves the following problem:

min
x

f(xt) + 〈∇f(xt),x− xt〉 s.t. ‖x‖A ≤ τ.

(A simple argument reveals that the minimizer of this
problem is attained by τa, where a is an atom.) For
many applications of interest, this step can be performed
efficiently, often more efficiently than the corresponding
projection/shrinkage step in prox-linear methods.

The line search of Step 6 can be performed exactly,
because of the quadratic objective in (8). We obtain

γt+1 = min

{
〈y −Φxt,Φv〉
‖Φv‖2

, 1

}
, v := τat+1 − xt.

We now discuss two options for performing the back-
ward (truncation) step (Step 11), whose purpose is to
compactify the representation of xt, without degrading
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the objective more than a specified amount. The pa-
rameter η defines a sufficient decrease criterion that the
modified solution needs to satisfy. A value of η closer
to its upper bound will yield more frequent removal of
atoms and hence a sparser solution, at the expense of
more modest progress per iteration.

Our first implementation of the truncation step seeks
to purge one or more elements from the expanded basis
At+1, using a quadratic prediction of the effect of
removal of each atom in turn. The approach is outlined
in Algorithm 2. Removal of an atom a from the current
iterate x̃t+1 in Step 4 of Algorithm 2 would result in
the following change to the objective:

f(x̃t+1 − caa) (9)

= f(x̃t+1)− ca〈∇f(x̃t+1),a〉+
1

2
c2a‖Φa‖22.

(We have assumed that ca is the coefficient of a in the
current representation of x̃t+1.) The quantities ‖Φa‖22
can be computed efficiently and stored as soon as each
atom a enters the current basis At, so the main cost in
evaluating this criterion is in forming the inner product
〈∇f(x̃t+1),a〉. Having chosen a candidate atom that
optimizes the degradation in f , we can reoptimize over
the remaining elements (Step 6 in Algorithm 2), possibly
using the same gradient-projection approach as in Step 8
of Algorithm 1), and test to see whether the updated
value of f still falls below the threshold Ft+1. Note that
Step 6 in Algorithm 2 is optional; we could alternately
define by ĉt+1 by removing the coefficient corresponding
to the discarded atom from ct+1. Atom removal is
repeated in Algorithm 2 as long as the successively
updated objective stays below the threshold Ft+1.

Our second implementation of the truncation step
allows for a wholesale redefinition of the current basis,
seeking a new, smaller basis and a new set of coeffi-
cients such that the objecive value is not degraded too
much. The approach is specified in Algorithm 3. It is
motivated by the observation that atoms added at early
iterates contain spurious components, which may not be
cancelled out by atoms added at later iterations. This
phenomenon is apparent in matrix completion, where
the number of atoms (rank-one matrices) generated by
the procedure above is often considerably larger than
the rank of the target matrix. For this application, we
could implement Algorithm 3 by forming a singular
value decomposition of the matrix represented by the
latest iterate x̃t+1, and defining a new basis Ât+1 to
be the rank-one matrices that correspond to the largest
singular values. These singular values would then form
the new coefficient vector ĉt+1, and the new iterate
xt+1 would be defined in terms of just these singular

Algorithm 2 : TRUNCATE(Ãt+1, c̃t+1, τ, Ft+1)

1: Input: Current basis Ãt+1, coefficient vector c̃t+1,
iterate x̃t+1 = Ãt+1c̃t+1; bound τ ; threshold Ft+1;

2: continue ← 1;
3: while continue= 1 do
4: ât+1 ← arg mina∈Ãt+1

f(x̃t+1 − caa)

5: Ât+1 ← Ãt+1\{ât+1};
6: Find ĉt+1 ≥ 0 with ‖ĉt+1‖1 ≤ τ such that

f(Ât+1ĉt+1) ≤ f(x̃t+1 − (c̃ãt+1
)t+1ât+1);

7: if f(Ât+1ĉt+1) ≤ Ft+1 then
8: Ãt+1 ← Ât+1;
9: x̃t+1 ← Ât+1ĉt+1;

10: c̃t+1 ← ĉt+1;
11: else
12: continue ← 0;
13: end if
14: end while
15: At+1 ← Ãt+1; xt+1 ← x̃t+1; ct+1 ← c̃t+1;
16: Output: Possibly reduced basis At+1, coefficient

vector ct+1 ≥ 0, and iterate xt+1.

values and singular vectors. The computational work
required for such a step would be comparable with
one iteration of the popular singular value thresholding
(SVT) approach [37] for matrix completion, which also
requires calculation of the leading singular values and
singular vectors.

Algorithm 3 TRUNCATE(Ãt+1, c̃t+1, τ, Ft+1)

1: Input: Current basis Ãt+1, coefficient vector c̃t+1,
iterate x̃t+1 = Ãt+1c̃t+1; bound τ ; threshold Ft+1;

2: Find alternative basis Ât+1 and coefficients
ĉt+1 ≥ 0 such that #columns(Ât+1) <
#columns(Ãt+1), ‖ĉt+1‖1 ≤ τ ;

3: if f(Ât+1ĉt+1) ≤ Ft+1 then
4: At+1 ← Ât+1; xt+1 ← Ât+1ĉt+1; ct+1 ← ĉt+1;
5: else
6: At+1 ← Ãt+1; xt+1 ← x̃t+1; ct+1 ← c̃t+1;
7: end if
8: Output: Possibly reduced basis At+1, coefficient

vector ct+1 ≥ 0, and iterate xt+1.

We conclude this section by discussing practical stop-
ping criteria for Algorithm 1. As we show in Section III,
CoGEnT is guaranteed to converge to an optimum, and
the objective is guaranteed to decrease at each iteration.
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We therefore use the following termination criteria:

f(xt+1) ≤ tol, or
f(xt−1)− f(xt)

f(xt−1)
≤ tol,

where tol is a small user-defined parameter.

III. CONVERGENCE RESULTS

Convergence properties for CoGEnT are stated here,
with proofs appearing in the appendix. Sublinear conver-
gence of CoGEnT (Theorem III.1) follows from a mostly
familiar argument.

Theorem III.1. Consider the convex optimization prob-
lem (8), and let x∗ be a solution of (8). Let η ∈ (0, 1/2].
Then the sequence of function values {f(xt)} generated
by CoGEnT converges to f∗ = f(x∗) with

f(xT )− f∗ ≤ C̄

T + 1
, for all T ≥ 1, (10)

where

C̄1 := ηD + 2(1− η)LR2τ2,

C̄ :=
2C̄2

1

(1− η)(C̄1 − LR2τ2)
> 0,

L := ‖ΦTΦ‖,
D := f(x0)− f(x∗),

R := max
a∈A
‖a‖.

When the true optimum x? lies in the interior of the
set ‖x‖ ≤ τ , and when Φ has full row rank, we can
obtain linear convergence using ideas that are similar in
spirit to those used in [44] for the standard CG method.
We omit the formal statement and full proof of this
result, since in most applications of interest, the solution
will lie on the boundary of the atomic-norm ball.

Similar convergence properties hold when the atom
added in the forward step of Algorithm 1 is computed
approximately1. In place of the arg min in Step 4 of
Algorithm 1, we have the following requirement on
at+1 ∈ A:

〈∇f(xt), (τat+1−xt)〉 ≤ (1−ω) min
a∈A
〈∇f(xt), τa−xt〉

(11)
where ω ∈ (0, 1/4) is a user-defined parameter.
Note that (11) implies that 〈∇f(xt), τat+1〉 ≤ (1 −
ω) mina∈A〈∇f(xt), τa〉 + ω〈∇f(xt),xt〉 so that this
condition essentially requires us to find a solution of the
Frank-Wolfe subproblem with relative objective accuracy
ω. If a lower bound for the minimum is available from

1Approximately solving this step can give substantial gains in
practicality of the algorithm, making the method useful in a wider
variety of applications, as we see in later sections

duality, this condition can be checked in practice. This
criterion is similar in spirit to the inexact Newton method
for nonlinear equations [45, pp. 277-279], which requires
the approximate solution of the linearized model to
achieve only a fraction of the decrease promised by exact
solution of the model.

For the relaxed definition (11) of at+1, we obtain the
following result.

Theorem III.2. Assume that the conditions of Theo-
rem III.1 hold, but that the atom at+1 selected in Step
4 in Algorithm 1 satisfies the condition (11). Assume
further than η ∈ (0, 1/3) and ω ∈ (0, 1/4). Then we
have

f(xT )− f∗ ≤ C̃

T + 1
for all T ≥ 1, (12)

where

C̃1 := (η + ω(1− η))D + 2(1− η)LR2τ2,

C̃ :=
2C̃2

1

(1− η)[(1− ω)C̃1 − LR2τ2]
,

with L,R, τ,D defined as in Theorem III.1

IV. EXPERIMENTS: STANDARD APPLICATIONS IN
SPARSE RECOVERY

CoGEnT can be used to solve a variety of problems
from signal processing and machine learning. We de-
scribe some experiences with such problems.

A. Sparse Signal Recovery

We tested our method on the following compressed
sensing formulation:

x̂ = arg min
x∈Rp

‖y −Φx‖22 s.t. ‖x‖1 ≤ τ. (13)

The atoms in this case are the signed canonical basis
vectors, and the atom selection (Step 4 in Algorithm 1)
reduces to the following:

î = arg max
i
|[∇f(xt)]i|,

at+1 = −sign ([∇f(xt)]̂i) eî.

We consider a sparse signal x of length p = 20000,
with 5% of coefficients randomly assigned values from
N (0, 1). Setting n = 5000, we construct the n × p
matrix Φ to have i.i.d. Gaussian entries, and corrupt the
measurements with Gaussian noise (AWGN) of standard
deviation σ = 0.01. In the formulation (13), we set
τ = ‖x?‖1, where x? is the chosen optimal signal.

To check the performance of CoGEnT against the
conditional gradient method, we run both methods for a
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Fig. 1: Comparison between CoGEnT and standard con-
ditional gradient (CG).

maximum of 5000 iterations, with a stopping tolerance
of 10−8. Figure 1 shows a graph of the logarithm of the
function value vs iteration count (left) and logarithm of
the function value vs wall clock time (right). On a per-
iteration basis, CoGEnT performs more operations than
standard CG. However, the backward steps yield faster
reduction in the objective function value, resulting in
better convergence, even when measured in terms of run
time.

Figure 2 shows a comparison of solution quality
obtained by CoGEnT , CG, CoSaMP [32], and Sub-
space Pursuit [33]. As a performance metric, we used
both the mean square error and the Hamming Distance
between the true and predicted vectors. We performed
10 independent trials, setting Φ in each trial to be a
1000×5000 matrix, with reference solution x? chosen to
have s = 200 nonzeros. Observations y were corrupted
with AWGN with standard deviation σ in the range [0, 2].
In CoGEnT and CG, we chose τ := ‖x?‖1. For CoSaMP
and the Subspace Pursuit methods, we set s = 200, the
known sparsity level of the optimal signal x?. Figure 2
shows the results.
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Fig. 2: Comparison of solution quality obtained by
different methods. Left: MSE for recovered solution
as a function of observation noise parameter σ. Right:
Hamming error in recovered solution as a function of σ.

B. Overlapping Group Lasso
In group-sparse variants of (13) we seek vectors x

such that Φx ≈ y for given Φ and y, such that the
support of x consists of a small number of predefined
groups of the coefficients. We denote each group by
G ⊂ {1, 2, . . . , p} and denote the full collection of
groups by G. CG and CoGEnT do not require replication
of variables, as is done in prox-linear algorithms [5], [7].
The atom selection step (Step 4 in Algorithm 1) amounts
to the following operation:

Ĝ = arg max
G∈G
‖[∇(f(xt))]G‖,

[at+1]Ĝ = −[∇f(xt))]Ĝ/‖[∇f(xt))]Ĝ‖
[at+1]i = 0 for i /∈ Ĝ.

We compare the performance of CoGEnT with an
accelerated prox-linear (PL) approach [22] that uses
variable replication. We considered M group sparse
signals with bM/10c groups chosen to be active in the
reference solution, where each group has size 50. The
groups are ordered in linear fashion with the last 30
indices of each group overlapping with the first 30 of the
next group. We then took n = dp/2e measurements with
a Gaussian sensing matrix Φ, with AWGN of standard
deviation σ = 0.1 added to the observations. Table I
shows runtimes for the two approaches.

M True Replicated time time
Dimension Dimension CoGEnT PL

100 2030 5000 15. 22.
1000 20030 50000 211. 462.
1200 24030 60000 359. 778.
1500 30030 75000 575. 1377.
2000 40030 100000 852. 2977.

TABLE I: Recovery times (in seconds) for CoGEnT and
prox-linear methods applied to a synthetic overlapping
group-sparse problem.

C. Matrix Completion
In low-rank matrix completion, the atoms are rank-one

matrices and the observations are individual elements of
the matrix. If u, v are the first left and right singular
vectors of −∇ft, the solution of Step 4 in Algorithm 1
is at+1 = uvT . The cost of finding only the top singular
vectors in the gradient matrix is usually much lower than
performing the full SVD.

V. EXPERIMENTS: NOVEL APPLICATIONS

We now report on the application of CoGEnT to
recovery problems in several novel areas of application.
In some cases, CoGEnT and CG are the only practical
approaches for solving these problems.
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A. Tensor Completion
Recovery of low-rank tensor approximations arises

in applications ranging from multidimensional signal
processing to latent-factor models in machine learning
[18]. We consider the recovery of symmetric orthogonal
tensors from incomplete measurements using CoGEnT .
We seek a tensor T of the form T =

∑r
i=1 ci[⊗ui],

where ⊗u indicates an t-fold tensor product of a vector
u ∈ Rp. We obtain partial measurements of this tensor of
the form y =M (T ), whereM (·) is a masking operator
that reveals a certain subset of the entries of the tensor.
We formulate this problem in an atomic norm setup,
wherein the objective function that captures the data
fidelity term is f(T ) := 1

2‖y −M (T ) ‖2. The atomic
set has the form

A = {⊗u : u ∈ Rp, ‖u‖2 = 1}.

In applying CoGEnT to this problem, the greedy step
requires calculation of the symmetric rank-one tensor
that best approximates the gradient of the loss func-
tion. This calculation can be performed efficiently using
power iterations [18]. We implement a backward step
based on basis reoptimization and thresholding (Algo-
rithm 3), where the new basis is obtained from a tensor
decomposition, computed via power iterations.

We look to recover toy 10 × 10 × 10 tensors, with
50% of the entries observed using CoGEnT (without
noise). Figure 4 shows accuracy of recovery for tensors
of various ranks. While the recovered tensor does not
always match the rank of the original tensor, it does
indeed have low rank and small component-wise error.
We declare that recovery is “exact” if each entry of the
recovered tensor is within 10−3 relative error w.r.t. the
original tensor. We used a (relative) stopping tolerance
of 10−6, running the method for a maximum of 100
iterations.

Fig. 3 shows the phase transition plot for performing
tensor recovery for random 20× 20× 20 tensors, using
different fractions of sampled entries.
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Fig. 3: Recovery vs frac-
tion of observations.

Rank MSE
2 5.406× 10−5

3 3.4789× 10−4

4 4.999× 10−5

5 5.4929× 10−4

Fig. 4: Accuracy of ten-
sors recovered, from 50%
of exact observations.

B. Moment Problems in Signal Processing

Consider a continuous time signal

φ(t) =

k∑
j=1

cj exp(i2πfjt),

for frequencies fj ∈ [0, 1], j = 1, 2, . . . , k and coeffi-
cients cj > 0, j = 1, 2, . . . , k. In many applications of
interest, φ(t) is sampled at times S := {ti}ni=1 giving an
observation vector x := [φ(t1), φ(t2), . . . , φ(tn)] ∈ Cn.
The observed information is therefore

x =

k∑
j=1

cja(fj),

where

a(fj) =
[
ei2πfjt1 , ei2πfjt2 , . . . , ei2πfjtn

]T
.

Finding the unknown coefficients cj and frequencies
fj from x is a challenging problem in general. A
natural convex relaxation, analyzed in [12], is obtained
by setting Φ = I in (8) and defining the atoms to be
a(f) for f ∈ [0, 1], a set of infinite cardinality.

The main technical issue in applying CoGEnT to this
problem is the greedy atom selecion step (Step 4 of
Algorithm 1), which requires us to find the maximum
modulus of a trigonometric polynomial on the unit
circle. This operation can be formulated as a semidefinite
program [46], but since SDPs do not scale well to high
dimensions [12], this approach has limited appeal. In
our implementation of CoGEnT , we form a discrete
grid of frequency values. We start with an initial grid
of equally spaced frequencies, then refine it between
iterations by adding new frequencies midway between
each pair of selected frequencies. By controlling the
discretization in this way, we are essentially controlling
the inexactness of the forward step. Indeed, the accuracy
requires in (11) can provide guidance for the adaptive
discretization process. Step 4 simply selects an atom
a(f) corresponding to the frequency f in the current
grid that forms the most negative inner product with the
gradient of the loss function.

Our implementation of the backward step for this
problem has two parts. Besides performing Algorithm 2
to remove multiple uninteresting frequencies, we include
a heuristic for merging nearby frequencies, replacing
multiple adjacent spikes by a single spike, when it does
not degrade the fit to observations too much to do so.

Fig. 5 compares the performance of CoGEnT with that
of standard CG on a signal with ten randomly chosen
frequencies in [0, 1]. We take samples at 300 timepoints
of a signal of length 1000, corrupted with AWGN with
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standard deviation .01. The left figure in Figure 5 shows
the signal recovered by CoGEnT , indicating that all but
the smallest of the ten spikes were recovered accurately.
The critical role played by the backward step can be
seen by contrasting these results with those reported for
CG in the right figure of Fig. 5, where many spurious
frequencies appear.
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Fig. 5: CoGEnT and CG for off-grid compressed sensing.
Blue spikes and circles represent the reference solution,
and red circles are those estimated by the algorithms.

We compared CoGEnT to the SDP formulation as
explained in [12]. Although the SDP solves the problem
exactly, it does not scale well to large dimensions, as we
show in the timing comparisons of Figure 6.

The formulation above can be generalized to include
signals that are a conic combination of a few arbitrary
functions of the form φ(t, αi).
• Bessel and Airy functions form natural signal en-

sembles that arise as solutions to differential equa-
tions in physics. As an example, letting Jr(t) de-
noting Bessel functions of the first kind, we have

φ(t;α1, α2, α3) = Jα1

(
t

α2
− α3

)
,

where α1, α2, α3 ∈ R+. Here, each atom is defined
by a specific choice of the triple (α1, α2, α3).
(Again, the atomic set A has infinite cardinality.)

• Triangle and sawtooth waves. Consider for instance
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Fig. 6: Speed comparison with SDP. The SDP formula-
tion does not scale well.
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Fig. 7: Recovering sawtooth components by sampling.
(Best seen in color)

the sawtooth functions:

φ(t;α1, α2) =
t

α1
−
⌊
t

α1

⌋
− α2,

where α1, α2 ∈ R+. Each atom is defined by a spe-
cific choice of (α1, α2). Figure 7 shows successful
recovery of a superposition of sawtooth functions
from a limited number of samples.

• Ricker wavelets arise in seismology applications,
with the atoms characterized by σ > 0:

φ(t;σ) =
2√

3σπ
1
4

(
1− t2

σ2

)
exp

(
− t2

2σ2

)
.

• Gaussians, characterized by parameters µ and σ:

φ(t;µ, σ) =
1√
2πσ

exp

(
− (t− µ)2

2σ2

)
.

Estimating Gaussian mixtures from sampled data is
a much-studied problem in machine learning.

The key ingredient in solving these problems within
the atomic norm framework is efficient (approximate)
solution of the atom selection step. In some cases, this
can be done in closed form, whereas for all the signals
mentioned above, approximate solutions can be obtained
via adaptive discretization.

C. OSCAR

The regularizer for the Octagonal Shrinkage and Clus-
tering Algorithm for Regression (OSCAR) method is
defined for x ∈ Rp as follows:

‖x‖1 + c

p∑
j=1

j∑
k=1

max {|xj |, |xk|}

The atomic-norm formulation is obtained by defining
the atoms to be the vectors with at most two non zero
entries, each being ±1. We considered the example of
[17, Section 4, Example 5], corrupting the measurements
with AWGN of standard deviation 0.05. CoGEnT was
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Fig. 8: Recovery of a vector with correlated variables
obtained by applying CoGEnT to OSCAR

used to recover the reference vector β, varying the bound
τ and choosing the value that performed best. Figure 8
shows that CoGEnT succeeds in recovering the solution.

VI. RECONSTRUCTION AND DECONVOLUTION

The deconvolution problem involves recovering a sig-
nal of the form x = x1 + x2 from observations y via
a sensing matrix Φ, where x1 and x2 can be expressed
compactly with respect to different atomic sets A1 and
A2. We mentioned several instances of such problems
in Section I. Adopting the optimization-driven approach
outlined in Section I, we arrive at the following convex
optimization formulation:

minimize
x1,x2

1

2
‖y −Φ(x1 + x2)‖2

subject to ‖x1‖A1
≤ τ1 and ‖x2‖A2

≤ τ2.

Algorithm 1 can be extended to this situation, as we
describe informally now. Each iteration starts by choos-
ing an atom from A1 that nearly minimizes its inner
product with the gradient of the objective function with
respect to x1; this is the forward step with respect to A1.
One then performs a backward step for A1. Next follows
a similar forward step with respect to A2, followed by
a backward step for A2. We then proceed to the next
iteration, unless convergence is flagged. Note that the
backward steps are taken only if they do not deteriorate
the objective function beyond a specified threshold. The
entire procedure is repeated until a termination condition
is satisfied.

In our first example, we consider the standard recovery
of sparse + low rank matrices. We consider a matrix of
size 50× 50, which is a sum of a random rank 4 matrix
and a sparse matrix with 100 entries. The sets A1 and A2

are defined in the usual way for these types of matrices.
Figure 9 shows that CoGEnT recovers the components.

We consider now a novel application: graph decon-
volution. To state this problem formally, consider two
simple, undirected weighted graphs G1 = (V,W1) and

G2 = (V,W2) where V represents a (common) vertex set
and W1,W2 are the weighted adjacency matrices, with
superposition W = W1 +W2. Problems of this form are
of interest in covariance estimation: W1 and W2 may
correspond to covariance matrices of random vectors X1

and X2, and from samples of X = X1 + X2, one may
wish to recover the covariances W1 and W2.

Fig. 9: Recovery of a sparse + low rank matrix. The left
column shows true components, and the right column
shows recovered components. The top row shows the
sparse part and the bottom row shows the low-rank part.
Error in each recovered component is at most 10−7.

We consider a graph of |V | = 50 nodes in which G1
and G2 are each restricted to a specific family of graphs
T1 and T2, respectively, with the following properties.

• T1 is the class of all tree-structured graphs on 50
nodes. Note that the only information we exploit
here is the fact that G1 is tree structured. Neither the
edges of the tree nor the edge weights are known.

• T2 is the class of two-dimensional 5 × 10 grid
graphs on 50 nodes. The nodes of the graph are
known up to a cyclic permutation. Once again,
neither the edges of the graph nor the corresponding
weights are known. The only information available
is that one of the 50 cyclic permutations of the
nodes yields the desired grid-structured graph.

For set T1, we define the atomic set A1 to be the set
of all matrices with Frobenius norm 1, whose nonzero
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structure is the adjacency matrix of a tree.2 For the set T2

we define the atomic set A2 as follows. Let P ⊆ Rn×n
denote the set of all permutation matrices corresponding
to the cyclic permutations (that is, permutations in the
cyclic group of order n). Let G(p, q) (with pq = n)
denote the set of all weighted adjacency matrices (of
unit Frobenius norm) of p × q grid graphs with a fixed
canonical labeling of the nodes. The atomic set A2

is the set of weighted adjacency matrices for cyclic
permutations of all these adjacency matrices.

Given these definitions, and assuming that we observe
the full matrices, we state this deconvolution problem as:

minimize
X1,X2

1

2
‖W −X1 −X2‖2

subject to ‖X1‖A1
≤ τ1 and ‖X2‖A2

≤ τ2.

We need to compute the dual atomic norms to implement
the forward steps in CoGEnT . The variational descrip-
tions of the dual atomic norms are given by:

‖Y ‖∗Ai
= max
Z∈Ai

[trace (ZY )]

For A1, the dual norm essentially amounts to computa-
tion of a maximum weight spanning tree, while for A2,
the dual norm can be computed in a straightforward way
by sweeping through the n possible permutations of the
grid graph to solve:

‖Y ‖∗A2
= max
P∈P,‖G(p,q)‖F≤1

trace
(
P

′
G(p, q)PY

)
.

We implemented the deconvolution variant of Co-
GEnT with backward steps as described in Algorithm 2.
Results are shown in Figure 10. CoGEnT achieves exact
recovery; that is, the edges as well as the edge weights
of the constituent graphs are correctly recovered.

APPENDIX

Theorem III.2 is (except for a minor difference in
the upper bounds on η) a true generalization of The-
orem III.1, in that we recover the statement of Theo-
rem III.1 by setting ω = 0 in Theorem III.2. Likewise,
the proof of Theorem III.1 can be obtained by setting
ω = 0 in Theorem III.2, so we prove only the latter
result here.

A. Proof of Theorem III.2
Denote ft := f(xt), f̃t := f(x̃t), and fFWt :=

f(xt−1 + γt(τat−xt−1)). We have from the algorithm
description that

ft+1 ≤ ηft + (1− η)fFWt+1 .

2We learnt of the construction of tree-structured norms from James
Saunderson, and express our gratitude for this insight.

0.13539 1.8233

(a) True signal is a
superposition of a
weighted tree and
a weighted grid
graph.

0.17698 0.21905

(b) Tree component,
recovered by
CoGEnT .

0.13539 1.8233

(c) Grid graph com-
ponent, recovered by
CoGEnT .

Fig. 10: Recovering constituent graph components from
a superposition of weighted graphs. Edge weights are
color-coded, with darker colors representing higher
weights. CoGEnT correctly deconvolves the graph into
its constituent components. (Best seen in color)

For γ ∈ [0, 1], we define

xt(γ) := (1− γ)xt + γτat+1.

Because Step 6 of Algorithm 1 chooses the value of γ
optimally, we have fFWt+1 = f(xt(γt+1)) ≤ f(xt(γ)),
for all γ ∈ [0, 1], and so

ft+1

≤ ηft + (1− η)fFWt+1

≤ ηft + (1− η)f(xt(γ))

≤ ηft+
(1− η)

[
ft +∇f(xt)

T (xt(γ)− xt)
]

+

(1− η)

[
L

2
‖xt(γ)− xt‖2

]
(by definition of L)

= ft+

(1− η)
[
∇f(xt)

T ((1− γ)xt + γτat+1 − xt)
]

+

(1− η)

[
L

2
‖(1− γ)xt + γτat+1 − xt‖2

]
= ft + (1− η)

[
γ∇f(xt)

T (τat+1 − xt)
]

+

(1− η)

[
Lγ2

2
‖τat+1 − xt‖2

]
≤ ft + (1− η)

[
γ(1− ω)∇f(xt)

T (x? − xt)
]

+

(1− η)
[
2γ2LR2τ2

]
(see below)

≤ ft + (1− η)
[
γ(1− ω)(f? − ft) + 2γ2LR2τ2

]
.

(14)

The last inequality follows from convexity of the objec-
tive function. The second-last inequality uses two results.
First, note that the solution x∗ can be expressed as
follows:

x∗ =
∑
a∈A

c∗aa, for c∗ ≥ 0 with
∑

a∈A c
∗
a ≤ τ .

11



We therefore have

〈∇f(xt),x
∗ − xt〉

=

〈
∇f(xt),

(∑
a∈A

c∗aa

)
− xt

〉

≥

(∑
a∈A

c∗a

)
min
a∈A
〈∇f(xt),a〉 − 〈∇f(xt),xt〉

≥ min
a∈A
〈∇f(xt), τa− xt〉

≥ 1

1− ω
〈∇f(xt), τat+1 − xt〉,

by the definition of at+1 in (11) and noting that
mina∈A〈∇f(xt)a〉 ≤ 0. Second, we use the definition
of R together with ‖xt‖A ≤ τ and at+1 ∈ A to deduce

‖τat+1 − xt‖ ≤ τ (‖at+1‖+ ‖xt/τ‖) ≤ 2τR,

which we can use to bound the squared-norm term. By
subtracting f∗ from both sides of (14), and defining

δt := f(xt)− f∗, (15)

we obtain that

δt+1 ≤ [1− γ(1− η)(1− ω)] δt + 2(1− η)LR2γ2τ2,
(16)

for all γ ∈ [0, 1]. This inequality implies immediately
that {δt}t=0,1,2,... is a decreasing sequence, since γ = 0
is always a valid choice in (16).

Note that δ0 = f0 − f? = D. For the first iteration
t = 0, set γ = 1 in (16) to obtain a further bound on δ1:

δ1 ≤ [η + ω(1− η)]D + 2(1− η)LR2τ2 = C̃1.

For subsequent iterations t ≥ 1, we consider the follow-
ing choice of γ:

γ̃t :=
δt

2C̃1

.

By monotonicity of {δt} and the bound above on δ1, we
have γ̃t ≤ 1/2 for all t ≥ 1. By substituting the choice
γ = γ̃t into (16), we obtain

δt+1 ≤ δt − δ2t
(1− η)(1− ω)C̃1 − (1− η)LR2τ2

2C̃2
1

= δt −
δ2t
C̃
. (17)

The denominator of C̃ is positive because η ∈ (0, 1/3]
and ω ∈ (0, 1/4] together imply that

(1−ω)C̃1−LR2τ2 > 2(1−ω)(1−η)LR2τ2−LR2τ2 ≥ 0.

Note too that

C̃ =
2C̃2

1

(1− η)((1− ω)C̃1 − LR2τ2)
> 2C̃1,

so that δ1 ≤ C̃/2. An argument from [44, Lemma 2.1]
yields the result. Since δ1 ≤ C̃/2, the bound (12) holds
for t = 1. Since {δt} is a decreasing sequence, we
have δt ≤ C̃/2 for all t ≥ 1. For the inductive step,
assume that (12) holds for some t ≥ 1. Since the right-
hand side of (17) is an increasing function of δt for all
δt ∈ (0, C̃/2), this quantity can be upper-bounded by
substituting the upper bound C̃/(t+ 1) for δt, to obtain

δt+1 ≤ δt −
δ2t
C̃
≤ C̃

(t+ 1)
− C̃

(t+ 1)2

=
C̃t

(t+ 1)2
=

C̃t(t+ 2)

(t+ 1)2(t+ 2)
≤ C̃

t+ 2
,

establishing the inductive step and completing the proof.
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