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Abstract— This paper proposes a new algorithm for
linear system identification from noisy measurements. The
proposed algorithm balances a data fidelity term with a
norm induced by the set of single pole filters. We pose
a convex optimization problem that approximately solves
the atomic norm minimization problem and identifies the
unknown system from noisy linear measurements. This
problem can be solved efficiently with standard, free
software. We provide rigorous statistical guarantees that
explicitly bound the estimation error (in the H2-norm) in
terms of the stability radius, the Hankel singular values of
the true system and the number of measurements. These
results in turn yield complexity bounds and asymptotic
consistency. We provide numerical experiments demon-
strating the efficacy of our method for estimating linear
systems from a variety of linear measurements.

Keywords System identification. Atomic norms. Han-
kel operators. Optimization.

I. INTRODUCTION

Identifying dynamical systems from noisy observation
of their input-output behavior is of fundamental impor-
tance in systems and control theory. Often times models
derived from physical first principles are not available to
the control engineer, and computing a surrogate model
from data is essential to the design of a control system.
System identification from data is thus ubiquitous in
problem domains ranging from process engineering, dy-
namic modeling of mechanical and aerospace systems,
and systems biology. Though there are a myriad of
approaches and excellent texts on the subject (see, for
example [10]), there is still no universally agreed upon
approach for this problem. One reason is that quantifying
the interplay between system parameters, measurement
noise, and model mismatch tends to be challenging.

This paper draws novel connections between con-
temporary high-dimensional statistics, operator theory,
and linear systems theory to prove consistent estimators
of linear systems from small measurement sets. In
particular, building on recent studies of atomic norms
in estimation theory [3], [1], we propose a penalty
function which encourages estimated models to have
small McMillan degree.

System identification has enjoyed renewed interest
due to the realization that many data analysis approaches

from statistics and machine learning are applicable to
this domain. As an example, modeling noisy impulse
response observations can be studied in a kernelized
Gaussian process framework, and the related system
identification problem can be analyzed from a Bayesian
perspective [17], [18]. Regularization approaches have
also been recently considered in the context of indentifi-
cation of FIR models [4], as well as Laguerre expansions
[22]. A related family of system identification techniques
use finite sample Hankel matrices to estimate dynamical
system models, using either singular value decomposi-
tions (e.g, [21], [12]) or semidefinite programming [6],
[9], [20], [7]. In all of these techniques, no statistical
guarantees were given about the quality of estimation
with finite noisy data, and it was difficult to determine
how sensitive these methods were to the hidden system
parameters or measurement noise. Moreover, since these
problems were dealing with finite, truncated Hankel
matrices, it is never certain if the size of the Hankel
matrix is sufficient to reveal the true McMillan de-
gree. Moreover, the techniques based on semidefinite
programming are challenging to scale to very large
problems, as their complexity grows superlinearly with
the number of measurements.

In contrast, the atomic norm regularizer proposed
in this paper is not only equivalent to the sum of
the Hankel singular values (the Hankel nuclear norm),
but is also well approximated by a finite dimensional,
`1 minimization problem. We show that solving least-
squares problems regularized by our atomic norm is
consistent, and scales gracefully with the stability radius,
the McMillan degree of the system to be identified,
and the number of measurements. Our numerical experi-
ments validate these theoretical underpinnings, and show
that our method has great promise to provide concrete
estimates on the hard limits of estimating linear systems.

A. Notation
We adopt standard notation; D and S will denote

respectively the open unit ball and the unit circle in the
complex plane C . H2 and H∞ will denote the Hardy
spaces of functions analytic outside D, with the norms

‖f‖H2 = 1
2π

∫ 2π

0

|f(eiθ)|2dθ and ‖f‖H∞ = sup
z∈S
|f(z)|



respectively. `2([a, b]) will denote the set of square
summable sequences on the integers in [a, b].

II. ATOMIC DECOMPOSITIONS OF TRANSFER
FUNCTIONS

We restrict our attention to SISO systems in this paper,
as this will simplify the presentation. It is possible to
extend our techniques to MIMO systems, we will briefly
discuss this later. Suppose we wish to estimate a SISO,
LTI system with transfer function G?(z) from a finite
collection of measurements y = Φ(G?). The set of all
transfer functions is an infinite dimensional space, so
reconstructing G? from this data is ill-posed. In order to
make it well posed, a common regularization approach
constructs a penalty function pen(·) that encourages
“low-complexity” models and solves the optimization
problem

minimizeG ‖Φ(G)− y‖22 + µpen(G) . (1)

This formulation uses the parameter µ to balance be-
tween model complexity and fidelity to the data. The
least-squares cost can be modified to other convex loss
functions if knowledge about measurement noise is
available (as in [20], [13]), though in general it is less
clear how to design a good penalty function.

In many applications, we know that the true model
can be decomposed as a linear combination of very
simple building blocks. For instance, sparse vectors can
be written as short linear combinations of vectors from
some discrete dictionary and low-rank matrices can be
written as a sum of a few rank-one factors. In [3],
Chandraskearan et al. proposed a universal heuristic for
constructing regularizers based on such prior informa-
tion. If we assumed that

G? =

r∑
i=1

ciai , for some ai ∈ A, ci ∈ C ,

where A is a set of “atoms” normalized to have unit
norm and r is relatively small, then the appropriate
penalty function is the gauge function (or the Minkowski
functional) induced by the atomic set A:

‖G‖A : = inf {t : G ∈ t conv(A)}

= inf

{∑
a∈A
|ca| : G =

∑
a∈A

caa

}
.

(2)

In [3], it is shown that minimizing the atomic norm
subject to compressed measurements yields the tightest
known bounds for recovering many models from linear
measurements. In [1], the atomic norm regularizer was
studied in the context of denoising problems and was

found to produce consistent estimates at nearly optimal
estimation error rates for many classes of atoms.

To apply these atomic norm techniques to system
identification, we must first determine the appropriate
set of atoms. For discrete time LTI systems with small
McMillan degree, we can always decompose any finite
dimensional, strictly proper system G(z) as:

G(z) =

s∑
i=1

ci
z − ai

.

via a partial fraction expansion. Hence, it follows that
our set of atoms should be single-pole transfer functions.
We propose the following atomic set for linear systems

A =

{
ϕw(z) =

1− |w|2

z − w
: w ∈ D

}
.

The numerator is normalized so that the Hankel norm
of each atom is 1. See the discussion in Section III for
precisely why this normalization is desirable.

The atomic norm penalty function associated with
these atoms is

‖G(z)‖A = inf

{∑
w∈D
|cw| : G(z) =

∑
w∈D

cw(1− |w|2)

z − w

}
,

(3)
where the summation implies that only a countable
number of terms have nonzero coefficients cw. This
expression finds the decomposition of G(z) into a linear
combination of single pole systems such that the `1
norm, weighted by the norms of the single poles, is as
small as possible.

With this penalty function in hand, we now turn to
analyzing its utility. In Section III, we first show that
for most systems of interest ‖G‖A is a well-defined,
bounded quantity. Moreover, we will show that the
atomic norm is equivalent to the nuclear norm of the
Hankel operator associated with G. Hence, the models
that are preferred by our penalty function will have low-
rank Hankel operators, and thus low McMillan degrees.

In Section IV, we turn to computation, demonstrat-
ing practical algorithms for approximating atomic norm
regularization problems for several classes of measure-
ments. We will show that with finite data, our atomic
norm minimization problem is well-approximated by
a finite-dimensional `1 norm regularization problem.
In particular, using specialized algorithms adapted to
the solution of an `1-norm regularized least-squares
problem, we can solve atomic norm regularization prob-
lems in time competitive with respect to techniques
that regularize with the nuclear norm and SVD-based
subspace identification methods.
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Finally, we analyze the statistical performance of
atomic norm minimization in Section V. We show that
our algorithm is asymptotically consistent over several
measurement ensembles of interest. We focus on sam-
pling the transfer function on the unit circle and present
H2 error bounds in terms of the stability radius, Hankel
singular values, H∞ norm, and McMillan degree of the
system to be estimated.

III. THE HANKEL NUCLEAR NORM AND ATOMIC
NORM MINIMIZATION

A. Preliminaries: the Hankel operator

Recall that the Hankel operator, ΓG, of the transfer
function G is defined as the mapping from the past to
the future under the transfer function G. Given a signal
u supported on (−∞,−1], the output under G is given
by g ∗ u where “∗” denotes convolution and g is the
impulse response of G:

G(z) =

∞∑
k=1

gkz
−k .

ΓG is then simply the projection of g ∗ u onto [0,∞).
An introduction to Hankel operators in control theory
can be found in [23, Chapter 7].

The Hankel norm of G is the operator norm of
ΓG considered as an operator mapping `2(−∞,−1] to
`2[0,∞). The Hankel nuclear norm of G is the nuclear
norm (aka the trace norm or Schatten 1-norm) of ΓG.
To be precise, an operator T is in the trace class S1

if the trace of (T ∗T )1/2 is finite. This implies that
T is a compact operator and admits a singular value
decomposition

T (f) =

∞∑
i=1

σi〈Vi, f〉Ui .

The sequence σi are called the Hankel singular values
of T . Moreover, the Schatten 1-norm of T is given by

‖T‖1 = trace
(

(T ∗T )1/2
)

=

∞∑
i=1

σi .

B. The atomic and Hankel nuclear norms are equivalent

The rank of the Hankel operator is equal to the
McMillan degree of the linear system defined by G.
Rank minimization is notoriously computationally chal-
lenging (see [19] for a discussion), and direct penal-
ization of the rank of the Hankel operator is likely
intractable. A common alternative to minimizing rank is
minimizing the sum of singular values of the associated
operator. In our context, this would consist of minimiz-
ing the Schatten 1-norm of the Hankel operator. For

rational transfer functions, we can compute this Hankel
nuclear norm via a balanced realization [23]. On the
other hand, while the maximal Hankel singular value
can be written variationally as an LMI, we are not aware
of any such semidefinite programming formulations for
the Hankel nuclear norm.

The following theorem provides a path towards mini-
mizing the Hankel nuclear norm, via minimization of the
atomic norm ‖G(z)‖A as a proxy. Indeed, from the view
of Banach space theory, the atomic norm is equivalent
to the Hankel nuclear norm.

Theorem 3.1: Let G ∈ H2. Then ΓG is trace class
if and only if there exists a sequence {λk} ∈ `1 and a
sequence {wk} with wk ∈ D such that

g(z) =

∞∑
i=1

λk
1− |wk|2

z − wk
. (4)

Moreover, we have the following chain of inequalities

π
8 ‖G‖A ≤ ‖ΓG‖1 ≤ ‖G‖A (5)

where ‖G‖A is given by (2).
Proof Outline Theorem 3.1 follows by carefully com-
bining several different results from operator theory.
Peller first showed that transfer functions with trace class
Hankel operators formed a Besov space [15]. Peller’s
argument can be found in his book [16]. The atomic
decomposition of such operators is due to Coifman and
Rochberg [5]. The norm bounds (5) were proven by
Bonsall and Walsh [2]. There they show that the π

8 is
the best possible lower bound. They also show that if
‖Γg‖1 ≤ C‖g‖A for all g, then C must be at least 1

2 ,
so the chain of inequalities is nearly optimal. A concise
presentation of the full argument can be found in [14].
A modern perspective using the theory of reproducing
kernels can be found in [24].

Theorem 3.1 asserts that a transfer function has a finite
atomic norm if and only if the sum of its Hankel
singular values is finite. In particular, this means that
every rational transfer function has a finite atomic norm.
More importantly, the atomic norm is equivalent to the
Hankel nuclear norm. Thus if we can approximately
solve atomic norm-minimization, we can approximately
solve Hankel nuclear norm minimization and vice-versa.
We now turn to such computational considerations.

IV. ALGORITHMS FOR ATOMIC NORM MINIMIZATION

From here on, let us assume that the G? that we
seek to estimate has all of its poles of magnitude at
most ρ ( we will call ρ the stability radius, and treat
it as a known parameter). Let Dρ denote the set of all

3



complex numbers with norm at most ρ. Note that if G?
has stability radius ρ then

‖G‖A := inf

∑
w∈Dρ

|cw| : G(z) =
∑
w∈Dρ

cw(1− |w|2)

z − w

 .

That is, we can restrict our set of atoms to only be those
single pole systems with stability radius equal to ρ. For
the remainder of this manuscript, we assume that A only
consists of such single pole systems.

In what follows, we focus our attention on linear
measurement maps. Let Lk : H 7→ C be a linear
functional that serves as a measurement operator for the
system G(z), so that noisy measurements of the form
yk = Lk(G) + ωk, k = 1, . . . , n are recorded. Many
maps of interest can be phrased as linear functionals of
the transfer function,

1) Samples of the frequency response Lk(G) :=
G(eiθk) for k = 1, . . . , n. From a control theo-
retic perspective, this measurement operator cor-
responds to measuring the gain and phase of the
linear system at different frequencies.

2) Samples of the impulse response, Lk(G) := gik
for k = 1, . . . , n and ik ∈ [1,∞).

3) Convolutions of the impulse response with a pseu-
dorandom signal uk: Lk(G) :=

∑∞
j=1 gjuk−j .

In all of these cases, we consider the problem

minimizeG 1
2

n∑
i=1

|Li(G)− yi|2 + µ‖G‖A . (6)

This problem is equivalent to the constrained, semi-
infinite programming problem

minimizex,G 1
2

∑n
k=1 |xk − yk|2 + µ

∑
w∈Dρ |cw|

subject to xk = Lk(G) for k = 1, . . . , n

G =
∑
w∈Dρ

cw(1−|w|2)
z−w

Eliminating the equality constraint gives yet another
equivalent formulation

minimizex,c 1
2

∑n
k=1 |xk − yk|

2 + µ
∑
w∈Dρ |cw|

subject to xk =
∑
w∈Dρ cwLk

(
1−|w|2
z−w

)
.

(7)

Note that in this final formulation, our decision variable
is x, a finite dimensional vector, and cw, the coefficients
of the atomic decomposition. The infinite dimensional
variable G has been eliminated. Let us define a norm
on Rn based on the formulation (7)

‖x‖L(A) = inf

∑
w∈Dρ

|cw| : xi =
∑
w∈Dρ

cwLi
(

1− |w|2

z − w

) .

Then we see that problem (6) is equivalent to the
denoising problem

minimizex 1
2‖x− y‖

2
2 + µ‖x‖L(A) . (8)

Note that the first term is simply the squared Euclidean
distance between y and x in Rn. The second term is an
atomic norm on Rn induced by the linear map of the set
of transfer functions via the measurement operator L. In
order to tractably solve (6), we thus only need focus on
computational schemes for computing or approximating
‖x‖L(A). The following proposition asserts that we can
approximate this finite dimensional atomic norm via a
sufficiently fine discretization of the unit disk.

Proposition 4.1: Let D(ε)
ρ be a finite subset of the unit

disc such that for any w ∈ Dρ there exists a v ∈ D(ε)
ρ

satisfying |w − v| ≤ ε. Define

‖x‖L(Aε) = inf


∑

w∈D(ε)
ρ

|cw| : xi =
∑

w∈D(ε)
ρ

cwLi
(

1− |w|2

z − w

) .

Then there exists a constant Cε ∈ [0, 1] such that

Cε‖x‖L(Aε) ≤ ‖x‖L(A) ≤ ‖x‖L(Aε) .
The set D(ε)

ρ is called an ε-net for the set Dρ. We show in
the extended version of this paper that when Lk(G) =
G(eiθk), Cε is at least (1− 16ρε

π(1−ρ) ). Other measurement
ensembles can be treated similarly.

When we replace ‖x‖L(A) with its discretized coun-
terpart ‖x‖L(A) in (8),

minimizex 1
2‖x− y‖

2
2 + µ‖x‖L(Aε)

is equivalent to

minimizec 12‖Mc− y‖22 + µ
∑

w∈D(ε)
ρ

|cw| (9)

where
Mij = Li

(
1−|wj |2
z−wj

)
and j indexes the set D(ε)

ρ . That is M is an n × |D(ε)
ρ |

matrix. Problem (9) is a weighted `1 regularization
problem with real or complex data depending on specific
problem. We call (9) Discretized Atomic Soft Threshold-
ing (DAST), as coined in [1].

The DAST problem can be solved very efficiently
with general purpose packages such as YALMIP [11]
or CVX [8]. DAST yields an approximate solution to
problem (6), and, as we will see, yields a statistically
consistent estimate provided the parameter ε is adjusted
to meet the desired numerical accuracy.

V. STATISTICAL BOUNDS

Let Lk : H 7→ C be a linear functional that serves as a
measurement operator for the system G(z). In this sec-
tion, let us suppose that we obtain noisy measurements
of the form

yk = Lk (G(z)) + ωk k = 1, . . . , n

4



where ωk is a noise sequence consisting of independent,
identically distributed random variables. We will special-
ize our results to the case where L returns samples from
the frequency response at uniformly spaced frequencies:
zk = e

2πik
m . Extension to other measurement ensembles

will be explored in an extended version of the paper.
Our goal in this section is to prove that solving the

DAST optimization problem yields a good approxima-
tion to the transfer function we are probing. The follow-
ing theorem provides a precise statistical guarantee on
the performance of our algorithm. We omit the proof in
this paper due to space constraints.

Theorem 5.1: Let G? be a strictly proper transfer
function with bounded Hankel nuclear norm. Suppose
the noise sequence ωk is i.i.d. Gaussian with mean zero
and variance σ2. Choose δ ∈ (0, 1) and set ε = π(1−ρ)δ

16ρ .

Let D(ε)
ρ be as in Proposition 4.1 and let ĉ be the optimal

solution of (9) with

µ = 2σ

√
n log

(
11ρ2

δ(1− ρ)

)
.

Set Ĝ(z) =
∑
w∈D(ε)

ρ
ĉw

1−|w|2
z−w . Then if the set of

vectors {L(ϕa) ∈ Rn : a ∈ D(ε)
ρ } spans Rn, we

have

‖Ĝ(z)−G?(z)‖2H2
≤

186
1 + ρ

1− ρ

(√
σ2 log

(
11ρ2

(1− ρ)ε

)
‖ΓG?‖21
n(1− δ)2 +

4‖ΓG?‖21
πn(1− δ)2

)
with probability 1− e−o(n).

Corollary 5.2: Under the conditions stated in Theo-
rem 5.1, there is a quantity C depending on ρ and σ
such that for sufficiently large n

‖Ĝ(z)−G?(z)‖2H2
≤ C‖ΓG?‖1n−

1
2

with probability exceeding 1− e−o(n).
Let us make a few remarks on the main result. First of
all, the right hand side is a parameter of the number of
samples, the Hankel nuclear norm of the true system,
and the stability radius of the true system. Also, if the
McMillan degree of G?(z) is d, then we can upper
bound the Hankel nuclear norm by the product of the
McMillan degree and the Hankel norm of G?: ‖ΓG?‖1 ≤
d‖ΓG?‖. Second, note that as n tends to infinity, the right
hand side tends to zero. In particular, this means that our
discretized algorithm is consistent, and we can quantify
the worst case convergence rate.

VI. NUMERICAL EXPERIMENTS

In this section we validate the proposed framework
via some preliminary numerical experiments conducted
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2
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Fig. 1: The locations marked with a circle
represent the locations of the poles (in the
complex plane) of a second order discrete time
LTI system. The locations marked with a cross
correspond to poles recovered by DAST.

in MATLAB. In many of the experiments where the
solution of convex optimization problems was required,
the software package CVX [8] was used. Throughout
our experiments, the discretization of the unit circle was
held to approximately 2000 points.

In the first experiment we consider a stable system G
with two poles. We make m = 80 noisy observations
of the frequency response by evaluating the transfer
functions G(zj) at regularly spaced frequencies zj =
eiθj on the complex unit circle. The noise is additive
i.i.d. zero-mean Gaussian with a variance of σ2 = 10−4.
We reconstruct Ĝ(z) by DAST as proposed in section
IV. Our algorithm recovers a system of degree 6 which
achieves an H2 performance error of .0043 and H∞
error of .0079. The locations of the true and recovered
poles are depicted graphically in Fig. 1.

In Fig. 2, we compare our algorithm to a widely used
method known as subspace identification [10, Chapter
10]. A second order system, starting from an initial
condition of x[0] = 0 is excited by a random input u[t]
corresponding to an i.i.d. sequence of zero-mean, unit-
variance Gaussian random variables for m time steps.
We record the output y[t] of the system for m time
steps. From this input-output relationship, we use DAST
and subspace identification to attempt to reconstruct the
unknown system. We plot the estimation error in the
H2 norm as m is increased from 10 time units to 120
time units. As is evident, the performance of DAST is
superior to that of subspace identification when m is
small, i.e. of the order of 10 to 50 measurements.
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Fig. 2: H2 estimation error for DAST and
subspace identification methods.

Another aspect that we emphasize is that in these
experiments, subspace identification was assisted with
the knowledge of the true system order. If the wrong
model order was used, the performance of subspace
identification worsened noticeably. By contrast, DAST
does not need knowledge of the true system order.

VII. CONCLUSION

By using the atomic norm framework of [3], we
were able to posit a reasonable regularizer for linear
systems, understand the computational demands of such
a regularizer, and analyze its statistical performance.
Since it is closely connected to the Hankel nuclear norm
but is computationally more practical, we believe that
our atomic norm will be useful in a variety of practical
implementations and also in theoretical analysis.

While we focused on the single-input single-output
(SISO) case in this paper, we expect that these tech-
niques would extend to the multi-input multi-output
(MIMO) case. The translation to multi-input single-
ouput systems is straight forward, one must simply
choose the following atomic set:

A =

{
(1− |w|2)b∗

z − w
: w ∈ D, b ∈ Sp−1

}
.

Such a model can be fit (after discretizing the disk), by
solving a block `1 minimization model. After fitting a
model for each output, a MIMO model could be acquired
by applying model reduction to parallel MISO fits.
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