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Abstract

We propose a new algorithm for causal inference of time-series data. The
proposed test builds on ideas and techniques grounded in linear systems theory,
specifically the Schur-Takagi extension problem. The test requires the solution of
a pair of convex optimization problems, one corresponding to the causal direc-
tion and the other corresponding to the anti-causal direction. Crucially, in each
direction the test seeks for the existence of a stable dynamic system with smallest
system norm that explains the input-output data. The optimization problem, relies
only on the input and output time series data, and requires a single parameter to
account for the noise-level. We provide rigorous guarantees to characterize the
performance of the test. We validate our approach with numerical experiments
on both synthetic and real data, and compare the performance of our method with
competing methods.

1 Introduction
Given two time-series u = {ut}, y = {yt}, the causal-inference problem concerns
determining whether u causes y, or the vice-versa. In this paper, we focus on this
question from the viewpoint of linear dynamics, i.e. whether a relationship between
u and y could have arisen as a consequence of u being an input to some unknown
linear-time invariant system G or vice-versa.

While causal inference is a classical problem [7], it has recently gained interest
in the machine learning community [16, 8, 20, 13, 17] due to applications in neuro-
science, climate models and economics. For instance the connectome problem, i.e. the
problem of constructing the inter-connections between neurons in brain tissue based
on recordings (such as local field potentials via electrodes or fluoroscopy [1]) involves
causal inference as a key primitive.

In this paper, we develop a method for causal inference for time-series grounded
in linear systems theory. In this setup, the notion of stability is associated to a system
rather than a pair of time series, (a system is said to be causal if future inputs cannot
influence past outputs). Furthermore, the question of causality itself is intricately linked
to the question of dynamic stability. Stability is a point of emphasis in our approach:
while a majority of processes observed in the real world are dynamically stable, most

1



treatments of causal inference do not explicitly constrain the inference test to seek a
stable explanation.

In addition to proposing a stability-aware test, we also seek rigorous guarantees for
the proposed approach. Our method provably recovers the correct causality direction
when the ground truth system consists of linear dynamics. Moreover, our method
is provably robust to the presence of noise. The test itself requires tuning a single
parameter (the noise level) and the results are robust to the choice of this parameter
within a reasonable range. We also briefly discuss other non-ideal behaviour such
as the presence of data corruption and distortion using the idea of integral quadratic
constraints. Finally our method requires the solution of convex optimization problems
(a semidefinite program) [19] for which numerically sound approaches are well-known.

While the linearity assumption may seem restrictive, and many real-world systems
are in fact nonlinear; over small time horizons nonlinear dynamics are often well ap-
proximated by linear ones [14]. Our approach is especially well-suited for such cir-
cumstances - our test works directly in the time domain (as opposed to the “z-domain”)
and one can use segments of the time domain data to perform causal inference on these
short segments.

The key insight of this paper is a new connection between causal inference and the
Schur-Takagi extension problem and its solution due to [3] (see [21, 18] for a more
applied perspective). This connection transparently yields a causal inference test that
reduces to the solution of two semidefinite programming problems (one that repre-
sents the causal direction and the other the anti-causal direction). As a consequence of
the theorem, in the causal direction the solution of the optimization problem remains
bounded by the system norm. The main contribution of this paper is in showing that
in the anti-causal direction the problem is either infeasible or the optimization problem
grows unbounded. We also show that the test is robust to the presence of noise, and
present sample complexity bounds for causal inference. We validate the theory with
numerical examples on synthetic as well as real-world data.

The paper is organized as follows. In Section 2 we set up the causal inference
problem in the context of linear systems. We also introduce the extension theorem due
to [3], and describe how it leads to a test for causal inference. In Section 3 we describe
our main results concerning the validity of the proposed causal inference test along
with an analysis of the sample complexity in the absence and presence of noise. We
discuss properties of our test, such as data rescaling, connection to signal to noise ratio,
and the computational implications. We also show how are method can be adapted to
handle other forms of distortion using intergral quadratic constraints. In Section 4 we
present the results of some numerical experiments on both synthetic and real world
data. We also compare the performance of our method to other approaches.

1.1 Related Work
While an extensive body of work is devoted to the problem of causal inference, the sit-
uation remains somewhat unsatisfactory, even in the restricted setup of linear dynamics
governing the time-series. For instance, the seminal Granger-causality approach and
methods that build upon it such as time-reversal based approaches [8, 20] and infor-
mation transfer based approaches [15] are principled approaches to the problem but
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have two drawbacks: (a) it is sensitive to the time-lag provided as input to the test as a
parameter, and (b) do not directly incorporate dynamic stability into their framework.
In contrast, our method directly incorporates stability. Also, we make no assumption
on the noise distribution itself, but rather on the noise being bounded in magnitude.

In other related work, we mention the recently proposed Spectral Independence
Criterion (SIC) [16], which while working in a linear systems setup requires a special
separable structure, thus potentially limiting the scope of applicability. Other proposals
include using spectral approaches [10, 6] for inferring the undirected network structure
(in this undirected setup, causal inference is not the objective). These approaches rely
on estimating the frequency response based on periodograms (doing so stably and ac-
curately is challenging and data intensive), do not provide sample complexity bounds,
and do not directly work in the time domain.

1.2 Causality and Stability
A fundamental class of models that is widely used in engineering and science to de-
scribe physical systems is that of finite-dimensional linear time invariant systems [4, 5].
The linearity assumption is widely made in applications and standard models in statis-
tics such as ARMA models are special cases of linear time invariant systems. We
present briefly the basics of linear time invariant causal operators (see [4] for a com-
prehensive background). In linear systems theory, a system (which maps inputs to
outputs) is often viewed as an operator (we denote the system by G). The inputs and
outputs belong to the family of extended sequences `2,e(Z), namely, sequences that
are square summable over any finite time interval. We let PT (ut) = ut1{t≤T} be the
truncation operator that projects the sequence u onto the components t ≤ T .

Definition 1. The operatorG is causal if ∀T ∈ Z we have PT y = PTGPTu, ∀ u, y ∈
`2,e(Z).

Intuitively, this notion enforces the fact that the current output is not a function
of future input. We let G : `2,e(Z) → `2,e(Z) be a linear operator given by: yt =∑
τ∈Z

gtτuτ . The map G , [gtτ ] is linear time-invariant (LTI) iff it is Toeplitz, i.e., G is

constant along the diagonals and so yt ,
∑
τ∈Z

gt−τuτ . Furthermore, G is an LTI causal

operator iff it is a-lower triangular Toeplitz operator [5].
Problem Statement: We assume that we are given two signals u, y over a finite

interval of time [0, T ]. One of two hypotheses is true: either y is generated (possibly
noisily) as an output of an LTI causal system when input u is applied or that u is
generated as an output of an LTI causal system when input y is applied. Our task is to
identify the correct hypothesis.

The task suggests a solution based on leveraging the structure of LTI causal maps
by estimating causal maps u→ y and y → u and pick the direction which has smallest
estimation error. Unfortunately, this is not sufficient because without enforcing stability
the question of identifying causality is ill-posed. We motivate this point by means of
the following process:

yt = yt−1/2 + ut − 2ut−1, t ∈ Z
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This relationship can be equivalently re-written as:

ut+1 = 2ut + (yt+1 − yt/2), t ∈ Z (1)

Expressed in operator form, both would yield “lower-triangular” representations as
described above. However there is a key distinction: the first yields a dynamically
stable description wheres the second is unstable. Which of these directions is then
true? It is precisely for this reason that stability is inextricably linked with causality
in the linear systems viewpoint. Since most physical phenomena of interest are stable,
it is natural to ascribe causality to the stable explanation, i.e. u → y, since this is the
direction in the above example for which the input-output behavior is stable.

Definition 2. Given signals ut, yt, we say that ut causes yt if there is a stable causal
system G such that yt = G(ut).

Identifiability: In some situations the systemG is stably-causally invertible, namely,
both G and G−1 are causal and stable. Our problem statement in this context is am-
biguous since there are stable explanations u→ y and y → u. In this context we would
need prior knowledge (see for e.g. [16]) to disambiguate between different causal ex-
planations. This could include information such as predominant spectral content or
other such information. We will later see how one could incorporate such knowledge
in the form of quadratic constraints.

Notation: In this paper we will refer to time-series u = {u1, . . . , uN} and y =
{y1, . . . , yN}. We reserve G and H to denote linear systems. Linear systems can be
presented in several equivalent ways. For instance, G can be thought of as an operator,
or an semi-infinite Toeplitz matrix. We will use the notation G(·) to refer to the linear
system as an operator operating on input sequences u. We will useG(z) to denote its z-
transform representation. We will use GN to denote the truncation of the semi-infinite
Toeplitz matrix to itsN×N principal sub-matrix. A linear system can also be presented
as a recursion of the form (2) below (typically called a state-space representation). We
refer the reader to [4] for these basic concepts. Given a square matrix M , we will refer
to ρ(M) to be its spectral radius, i.e. the maximum (absolute) eigenvalue of M . For a
symmetric matrices, we will use � to refer to the standard semidefinite ordering. For a
matrix M , we use ‖M‖ to refer to its spectral norm (i.e. its largest singular value), and
‖M‖F to its Frobenius norm (i.e. the Euclidean norm over matrices).

2 Problem Setup and Preliminaries
Consider a finite dimensional, unknown, single-input single-output linear dynamical
system in “state-space” form:

xt+1 = Axt +But

yt = Cxt +Dut + wt
(2)

In the above, the signal ut ∈ R is the input, yt ∈ R is the output, wt ∈ R is noise, and
xt ∈ Rs is the state of the linear system at time t. It is well-known that systems of the
above form generalize models such as ARMA which are well-studied in the causality
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literature. The above system also has a transfer function representation of the form via
the z-transform [4]: G(z) = C(zI − A)−1B + D. In this paper we will assume that
D 6= 0. (Indeed the case D = 0 is much easier, as we will argue later). An alternative
representation of the above is to express G(z) as: G(z) =

∑∞
i=0 giz

i, where the gi
are referred to as the impulse response coefficients. The gi correspond to the outputs
observed when an input of δ0 = {1, 0, . . . , } is applied to G.

Every linear dynamical system can be expressed in the above form. For instance,
ARMA models, which underpin Granger causality, can be represented as follows. Con-
sider the ARMA model: yt =

∑p
i=1 aiyt−i +

∑p
i=0 biut−i. The above model has the

z-domain representation: G(z) =
∑p

i=0 biz
i

1−
∑p

i=1 aiz
i , which in turn can be represented in

state-space form [5].

A =


−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
. . .

−ap 0 0 . . . 0

 , B =


b1 − a1b0
b2 − a2b0

...
bn − anb0

 , C =
[

1 0 0 . . . 0
]
, D = b0.

While the above system is in a “canonical” form, one can change coordinates to
obtain different realization of A,B,C,D for the same system. Indeed, by suitable
change of coordinates, it is always possible to transform the system so that A is in
Jordan form, and generically, in diagonal form [5, p. 141].

When D 6= 0, the inverse system G−1 is also well-defined, and has the realization:

zt+1 = Ainvzt +Binvyt

ut = Cinvzt +Dinvyt,
(3)

where Ainv = A−BD−1C,Binv = −BD−1, Cinv = D−1C,Dinv = D−1.
Since the above system remains unchanged under non-singular coordinate trans-

formation, one can always transform the system so as to put Ainv in a convenient
canonical form. Throughout this paper, we will assume that Ainv is in fact diagonal.
Note that this is a slightly restrictive assumption (in general Ainv can be put in Jor-
dan form), though diagonalizability generically holds true. This assumption is made
only for convenience to make the subsequent analysis more transparent, and in fact the
results hold true even in the more general case.

The system described by (2) is stable (i.e. bounded energy inputs lead to bounded
energy outputs) if and only if ρ(A) < 1. A related notion, called the H∞ norm [5]
captures the worst case ratio of output energy to input energy (and is indeed the spectral
norm analogue for dynamical systems). We denote the norm of a linear system G
with ‖G‖H∞ . Note that ‖G‖H∞ is finite when G is stable and unbounded when G is
unstable.

Given time series u := {u0, . . . , uN} and y := {y0, . . . , yN}, we define the corre-
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sponding lower triangular Toeplitz matrices as:

UN =


u0 0 . . . 0
u1 u0 . . . 0
...

...
. . .

...
uN uN−1 . . . u0

 , YN =


y0 0 . . . 0
y1 y0 . . . 0
...

...
. . .

...
yN yN−1 . . . y0

 , GN =


g0 0 . . . 0
g1 g0 . . . 0
...

...
. . .

...
gN gN−1 . . . g0

 .
(4)

In the above, g = {g0, . . . , gN} correspond to the first N coefficients of the impulse
response of the system G which satisfy y = G(u), and consequently YN = GNUN .
Note that the set of lower-triangular Toeplitz matrices form an algebra (i.e. are closed
under additional and matrix multiplication). Lastly, when u0 6= 0 (and hence U is
invertible), then GN = YNU

−1
N .

A basic result in operator theory relating to Schur-Takagi type extension problems
[3] that has been extensively used in the systems and control literature for the problem
of model validation [18] is the following:

Theorem 1 (Schur-Takagi-AAK Theorem [21]). Given a sequence l = {l0, l1, . . . , lN},
there is a unique systemH(z) =

∑∞
i=0 hiz

i with coefficients h0 = l0, h1 = l1, . . . , hN =
lN with minimalH∞ norm. Furthermore the minimal value is given by α = σmax (L),
where L is the lower-triangular Toeplitz matrix with Lij = li−j .

Theorem 1 resolves an extension problem in operator theory, i.e. given finite in-
formation about an operator G (i.e. the first N impulse response coefficients), to find
an extension compatible with the information and indeed, to find the one with minimal
norm.

The theorem immediately suggests the following approach to causal inference.
Given time series u, y, we form the Toeplitz matrices UN , YN . The system G that
explains these observations must have truncated impulse response coefficients deter-
mined by GN := YNU

−1
N . By the Schur-Takagi-AAK theorem, if it is indeed the case

that y = G(u) for a stable, causal system G with norm ‖G‖H∞ , then σmax(GN ) ≤
‖G‖H∞ . The main technical contribution in this paper is to show that, when in fact
there is no stable system G, σmax(GN ) diverges. Thus, if the ground is u → y,
σmax(GN ) remains bounded, whereas σmax(G−1

N ) diverges (by assumption G does
not have a stable inverse). As we will show later, the behaviour is robust to the pres-
ence of noise and other distortions.

2.1 Causal Inference Test
Consider the Toeplitz matrices (4) constructed from the sequences u and y respectively.
By reformulating σmax(YNU

−1
N ) as an optimization problem, Theorem 1 thus suggests

the following pair of optimization problems in support of a causality test:

minimize
γ

γ minimize
γ

γ

subject to Y TN YN � γU
′

NUN subject to UTNUN � γY
′

NYN

(5)
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We denote the optimal value of the above to be γUY (N) and γY U (N) respectively.

We then test whether γUY (N) >
< γY U (N). This test is quite robust (to scaling) in the

ideal case. This is because if there exists a stable causal linear system which explains
input-output pair u, y, the value γUY (N) does not exceed ‖G‖H∞ by Theorem 1.
When a causal stable inverse does not exist, while the value γUY (N) remains finite,
γY U (N) on the other hand will diverge to infinity with N as we will formally show
later.

Modeling Uncertainty: Unfortunately, most cases are far from ideal; for instance
u(t) and y(t) measurements maybe noisy or nonlinear data distortions may be present.
These distortions can include modulation effects, saturation/non-linear effects, incor-
rect time-stamps as well as other dynamic effects. We can readily handle noise by
posing the problem as a semi-definite program. This follows by accounting for noise
by recasting singular values in terms of positive definite inequality and invoking the
well-known Schur complement trick (see Appendix):

argmin
γ,∆

γ

subject to
[

I ∆

∆
′

γU
′
NUN − Y

′
NYN − Y

′
N∆−∆

′
YN

]
� 0 ∆ Toeplitz, Lower-triangular |∆ij | ≤ η.

(6)

(The quantity above quantity is γUY (N) and γY U (N) is analogously defined.) In
general we define a confidence measure with regard to the proposed test since we can
be more confident in our conclusion if the two values γNUY , γ

N
Y U are sufficiently far

apart.

Definition 3. The proposed causal inference test is α-confident in predicting the causal
direction u→ y if log(γY U

γUY
) ≥ α > 0.

As we collect more data, we want the confidence level α to increase. We will show
that precisely this behavior is manifested. The test succeeds in predicting causality in
the correct direction with growing confidence when the problem is identifiable. Indeed,
one can define a notion of sample-complexity; which is the level of confidence achieved
from N samples of data.

We note that the uncertainty matrix ∆ (constrained to be lower-triangular) can in-
corporate different sources of uncertainty:
1. Effect of measurement noise: When the measurements are of the form y =
G(x) + w, where w is unknown (but bounded) measurement noise, its effect can be
captured by the uncertainty variable ∆. Indeed, one can verify that YN = ȲN + WN ,
where ȲN is the nominal output in the absence of noise and WN is the lower-triangular
Toeplitz matrix composed of the noise components. When the noise is bounded, its
effect can be captured by the constraint |∆ij | ≤ η.
2. Effect of input noise: When input noise is present, it is manifested as y = G(x+w)
where w is the unknown noise signal. Again YN = ȲN + GNWN . Once again,
GNWN is a lower triangular Toeplitz matrix, and when the effect of input noise is
bounded, the constraint |∆ij | ≤ η captures the uncertainty.
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3. Effect of initial conditions: When unknown initial conditions are present, their
effect can be viewed as additional dynamics evolving under the effect of an impulse to
G at time 0. Again ∆ captures the required effect in manner analogous to the previous
point.

While the above formulation accounts for noise, it does not account for distortions
and causal ambiguities. Handling these issues can be important. For instance, consider
Eq. 1 and suppose that the time-stamp for y(t) were incorrect and in reality we had
measured a time-series z(t) that is a delayed version of y(t), namely, z(t) = y(t−k). In
this situation the causal explanation may fail in both directions. In general there could
be other types of distortions such as saturation effects, signal modulation (frequency
shift) etc. The question arises as to how to handle these types of effects. In general
if we had prior information we could account for them within the SDP framework by
employing integral-quadratic-constraints to model these effects.

Data distortion: When the observed data ut, yt has undergone a distortion with
known properties we may view it as an underlying signal pair (v(t), z(t)) such that
u(t), y(t) are noisy/distorted versions of (v(t), z(t)). While, the pair (v(t), z(t)) is
ideal, (i.e. we can infer the correct direction if we had access to these measure-
ments), only certain properties of this distortion are available. We can model the
relationship between v(t) 7→ (t) and z(t) 7→ y(t) by means of integral quadratic
constraints (IQC) [11]. Indeed [11] provides a library of various types of scenarios
including uncertain or time-varying multiplicative gains, uncertain delays, non-linear
distortions etc. We briefly describe them here for our purposes. These constraints are
quadratic forms over the signal space and take the form: σ(u, v) =

∑N
t=0 u(t)Ptu

′(t)−∑N
t=0 v(t)Qtv

′(t) ≥ 0 where Pt, Qt are known positive scalars (or PSD matrices in
case we have multi-variate time-series) that are shaped to incorporate prior knowledge
of the distorting effects. For instance, to incorporate bounded time delay we first let
Pt = Qt. We then choose the multiplier Pt such that it has a real-rational bounded
Fourier transform [11]. In this way we can introduce a collection of such constraints
to incorporate both prior information such as frequency content as well as other distor-
tions. We could also incorporate additive noise, w, in measuring u, with in this setup
using two IQCs (σ(u, v−w) > 0 and ‖w‖22 ≤ η. These lead to the following problem:

γNUY = argmin
γ

γ

subject to Z
′

NZN � γV
′

NVN , σ1(u, v − w) ≥ 0, σ2(y, z − n), ‖w‖22 ≤ η, ‖n‖22 ≤ η
Using Schur complementation we can again reduce it to a semi-definite program.

3 Theoretical Guarantees
We now present our main theoretical guarantees. The proofs are available in the sup-
plementary material. We first begin with the noiseless case:

Theorem 2. Let u, y ∈ RN be generated so that y = G(u) for a stable linear system
G of the form (2). Let γUY (N) and γY U (N) be obtained via the solution of (5), (??)
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respectively. Then the following hold:

a) If D = 0, we have that γUY (N) ≤ ‖G‖2H∞
, γY U (N) = +∞ (i.e. problem is

infeasible), and thus unbounded confidence.

b) Suppose D 6= 0, and suppose the inverse system G−1 defined in (3) is unstable
with ρ := ρ(Ainv) > 1. Then there is a constant c > 0 such that γUY (N) ≤
‖G‖2H∞

for all N , γY U (N) ≥ cρ
2N

N . Consequently the proposed test achieves a
sample complexity for α-confidence with α ∼ O(N).

Remarks
In contrast with most causal inference approaches e.g. [7, 16] our result provides
quantitative, non-asymptotic bounds required to ascertain the confidence level for our
causality test. When working with very limited data, our method is extremely appeal-
ing, since it implies a low sample complexity. To achieve a confidence level α, only
O(α) samples are required (ignoring logarithmic factors). In terms of computational
complexity, the noiseless case requires the solution of a generalized eigenvalue prob-
lem (GEVP), a canonical problem in numerical linear algebra for which efficient and
scalable approaches are well-studied. We next study the case where measurement noise
is present:

Theorem 3. Let u, y ∈ RN be generated so that y = G(u) + w for a stable linear
system G of the form (2) where w is some measurement noise. Let η be chosen such
that |wi| ≤ η for all i = 0, . . . , N . Let γUY (N) and γY U (N) be obtained via the
solution of (9), (10) respectively. Let D 6= 0, and suppose the inverse system G−1

defined in (3) is unstable with ρ := ρ(Ainv) > 1. Assume that σmin(GNUN )
σmax(WN ) > 2 + δ

for some δ > 0 and σmin(GNUN ) ≥ C. Then there are constants c1 > 0, c2 > 0

such that γUY (N) ≤ ‖G‖2H∞
for all N , γY U (N) ≥

(
c0

ρN√
N
− c1ηN

)2

, and hence

the proposed test succeeds with O(N) confidence (ignoring logarithmic factors).

3.1 Discussion and Implementation Details
1. Sample Complexity: The above theorem establishes non-asymptotic bounds for
the confidence of the causal inference test. Moreover, our result does not make distri-
butional assumptions, such as Gaussianity, stationarity, etc.
2. Computation: The test requires the solution of convex optimization problems
(i.e. semidefinite programs). These are somewhat expensive to solve using off-the-
shelf solvers. However there is special structure in these problems which make them
amenable to much more efficient computation. Due to space constraints we do not dis-
cuss this aspect here.
3. Signal to Noise Ratio: The assumption σmin(GNUN )

σmax(WN ) > 2 + δ may be viewed as a
requirement on the signal-to-noise ratio, i.e. we require that the signal encoded in the
Toeplitz matrix GU be sufficiently larger than the noise level. We also have a require-
ment on the size of GNUN itself, this is to prevent the situation where for large N the
spectral norm of GNUN to vanish. A parameter that needs to be picked for the test is
η, and it needs to be picked so that it acts as an upper bound on the noise. In numerical
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experiments our test is seen to be extremely robust to this parameter.
4. Data rescaling: Suppose under the ground-truth that u → y, one were to scale the
output y by a factor β > 1 (so that inherently the underlying system G is scaled by β.
Then the H∞ norm also gets scaled by β. The value of γUY then gets scaled up also
by α. However the value of γY U is nevertheless divergent. However, to capture this
phenomenon from finite data (i.e. to achieve a fixed level of α-confidence), additional
data is now required. In Theorem 3, this is reflected in the fact that γUY (N) increases
as the squared of the system norm, thereby reducing α by a factor of β2. This point is
intimately related to the notion of “stability margin” in linear systems theory. Indeed,
stable systems with higher norm are considered closer to instability, and more data is
required to infer causality consequently.

Nevertheless, we could incorporate scaling for finite data for wide-sense stationary
signals u(t), y(t) with good mixing properties. One way of doing so involves forming
periodograms, Φu(exp(−jω)),Φy(exp(−jω)) of u(t) and y(t) respectively and esti-
mating the gain at zero frequency, i.e., β̂2 = Φu(exp(−j0))

Φu(exp(−j0)) . For the direction u→ y we

discount the measured γNUY by this value and set γ̂NUY = γNUY /β̂
2 and in the reverse

direction we amplify it to γ̂NY U = β̂2γNUY . A scale invariant test would then compare
these modified values. For wide-sense stationary processes with sufficiently high mix-
ing rate this ratio can be estimated somewhat accurately (even though the underlying
system relating them could be unstable).

4 Comparison to Related Approaches and Numerical
Experiments

We first begin with some synthetic numerical examples.

Example 1. We begin with a simple system consisting of a delay, i.e., yt = ut−1,
where ut ∈ R50 is chosen to be a random input distributed i.i.d. normally with zero
mean and unit variance. Solving the optimization problems (5) we get the γUY (50) =
1, γY U (50) = +∞.

Continuing with this example, suppose that yt = ut−1 + wt, where wt is a noise
process distributed i.i.d. normally with zero mean and variance 0.25. We solve the
optimization problems (9), (10) with η = 0.5 to obtain γUY (50) = 0.7322 (i.e. in-
feasible) whereas γY U (50) = +∞, thereby obtaining the correct causality direction.
We note that the test is stable with respect to the choice of η as well as the number
of samples as can be verified by varying η and the number of samples. On the same
synthetic data, Granger causality also has a p-value of 0 in the causal direction and
.0525 in the anti-causal direction when a time-lag of 1 unit is specified. On the same
random instance, SIC yields a value of 0.9432 in the causal direction and a value of
.9612 in the anti-causal direction, thus mis-predicting the causality direction. (Note
that the ideal values are both 1 when the periodograms are computed exactly, but due
to effect of finite data these values are away from 1).

Example 2. Our next synthetic example involves the following system: G(z) = 1−az
z−a ,

where a ∈ (0, 1). The input is a i.i.d. random normally distributed signal with zero-
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mean and unit variance. In Fig. 1, we plot how the causality confidence parameter α
increases with the number of samples for a = 0.9. Note that for N = 30 samples, α =
556.57. The Granger-causality test with time lag set to 1 has a p-value of 0.039 in the
causal direction and 0.55 in the anti-causal direction (neither is considered statistically
significant). The SIC values in the causal and anti-causal direction respectively are
0.7646 and 1.0233 (thereby mis-predicting the causal direction). Fig. 1 also shows
how the confidence increases in the presence of signal corrupted by a Gaussian noise
with mean zero and variance .03 (and the parameter η set to .1).

4.1 Experiments with Real Data

Figure 1: The figure shows the growth of
the confidence parameter α with the num-
ber of samples in (a) the absence of noise
and (b) the presence of noise.

1. Robotic Arm: We use data from
a system identification dataset from the
database known as “Daisy” [2]. The
specific dataset chosen corresponds to a
robotic arm with known input in the form
of a voltage signal to a motor and mea-
sured output using a sensor [2]. We use
this data to validate the proposed causal
inference test. Based on N = 100
samples, we obtain γUY (100) = 4.88,
γY U (50) = 12.17, thereby yielding a
confidence of α = 2.49. Granger-
causality with a unit time-lag obtains a
p-value of 0.0023 in the causal direction
and 0.135 in the anti-causal direction.
The SIC in the causal direction is 0.691
whereas in the anti-causal direction it is
0.037 thereby mis-predicting the direction.

2. Milk and Cheese Prices: We consider 25 years of monthly milk and block ched-
dar cheese prices available at http://future.aae.wisc.edu/tab/prices.
html. The ground truth is considered to be that price of milk drives the price of cheese
(and indeed other dairy products such as butter). Based on N = 50 samples, we ob-
tain γUY (50) = .003, γY U (50) = 77.3, resulting in a causal prediction of MilkPrice
→ CheesePrice (consistent with the ground-truth) with confidence α = 25935.1. For
Granger causality, the p-value in the causal direction was found to be .0352 and in
the anti-causal direction to be 3.5 × 10−7, hence Granger causality mis-predicts the
direction (here time-lag was set to 1 unit; similar trends were observed for longer time-
lags). The SIC has a value of 0.389 in the causal direction and .250 in the anti-causal
direction.

3. Connectome Data: We consider data obtained by performing measurements
of neural activity in a population of 100 neurons. The data is available at https://
www.kaggle.com/c/connectomics/data. (We consider data from the “small”
dataset. The activity of each neuron is measured by fluorescence [12] and this is rep-
resented as a time series. The neural connectivity of this population is known a pri-
ori. We take two neurons (neurons 1 and 11) between which there is known to be a
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directional connectivity, and consider the time series generate by the fluorescence ac-
tivity. Based on N = 60 samples of these time-series, we obtain γUY (60) = 35.59,
γY U (60) = +∞ (infeasible). Granger-causality with a unit time-lag obtains a p-value
of 0.0057 in the causal direction and 0.36 in the anti-causal direction. The SIC in
the causal direction is 0.068 whereas in the anti-causal direction it is 0.479 thereby
mis-predicting the direction.
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5 Proofs
Lemma 1. Let M,N be square matrices and let N be invertible. Then the following statements
are equivalent:

1. σmax(MN−1) ≤ γ

2. M
′
M � γ2N

′
N .

Proof. The proof directly follows from the fact that σmax(MN−1) ≤ γ is equivalent toN−1
′
M

′
MN−1 �

γ2I .

Lemma 2. Let H be a system of the form (2) with ρ := ρ(A) > 1. Then there is a constant c,
and N0 such that ‖HN‖ ≥ c√

N
ρN for all N ≥ N0.

Proof. We assume that (2) is transformed so that A is in diagonal form. We then have

H(z) = C(zI −A)−1B +D =

r∑
i=1

ci
z − aii

+D.

Without loss of generality assume that a11 has maximum modulus, i.e. |a11| ≥ |aii| for all
i = 1, . . . , r. Since ρ(A) > 1 note that |a11| > 1. The impulse response coefficients of this
system are then precisely:

h0 = D hk =

r∑
i=1

cia
k
ii.

Since σmax(HN )2‖x‖2 ≥ x
′
HNx for all x, we trivially have σmax(HN )2 ≥ 1

N
‖HN‖2F

by picking x = 1√
N
1, the vector of all ones.

Note that

|hk|2 =

∣∣∣∣∣
r∑
i=1

cia
k
ii

∣∣∣∣∣
2

= |a11|2k
∣∣∣∣∣c1 +

r∑
i=2

ci

(
aii
a11

)k∣∣∣∣∣
2

≥ |a11|2k
∣∣∣∣∣c1 −

r∑
i=2

∣∣∣∣ci( aiia11

)∣∣∣∣k
∣∣∣∣∣
2

Hence, there exists an N0 such that for all N ≥ N0 we have:

|hN |2 ≥
c1
2
|a11|2N =

c1
2
ρ2N .

Noting that ‖HN‖2F =
∑
ij |HNij |

2 ≥ |hN |2, we have the required result.

Proof of Theorem 2. a) Note that when D = 0 we have u0 6= 0, but y0 = 0. Hence
YN , which is a lower-triangular Toeplitz matrix has zeroes along the diagonal, and is
therefore singular. Since u0 6= 0, UN is invertible, on the other hand and by Lemma
1, Y

′
NYN � γU

′
NUN is equivalent to σmax(YNU

−1
N ) ≤ √γ. However, in the absence

of noise, YNU−1
N = GN , hence we are seeking a γ such that σmax(GN ) ≤ √γ. By
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Theorem 1, an upper bound on
√
γ is simply ‖G‖H∞ . Hence γUY (N) ≤ ‖G‖2H∞ for

all N .
On the other hand, YN is singular, hence Y

′
NYN drops rank whereas U

′
NUN is full rank.

Hence the inequality U
′
NUN � γY

′
NYN is infeasible, and γY U (N) = +∞.

b) By the same argument as part (a) we see that γUY (N) ≤ ‖G‖2H∞ . When D 6= 0,
y0 = Du0 6= 0. Since YN is thus a lower-triangular matrix with non-zero diago-
nal, YN is non-singular. By Lemma 1, we have U

′
NUN � γY

′
NYN is equivalent to

σmax(UNY
−1
N ) ≤ √γ. However, UNY −1

N = G−1
N . Observing that G−1

N is a Toeplitz
matrix whose entries are the impulse response coefficients of G−1 (which exists because
D 6= 0 by (3)), together with Lemma 2 we have that γY U (N) ≥ c ρ

2N

N
.

We now proceed to the analysis of the noisy case, i.e. the case where a noise process w =
{w0, . . . , wN} corrupts the observations u. Consider the case where the noise is non-zero but
bounded, i.e. |wj | ≤ η. Over a time horizon of k it is convenient to write the dynamical system
as:

YN = GNUN +WN ,

where YN , UN ,WN , GN are all lower-triangular Toeplitz matrices, and u0 6= 0. Note that
U,W,G, Ȳ that the diagonal elements u0 6= 0, g0 6= 0 (since D 6= 0), and w0 6= 0. As a
consequence of the above matrices being lower triangular with nonzero diagonals, these matrices
are easily seen to be invertible.

Lemma 3. Let UN ,WN , GN ,∆, YN be lower triangular invertible Toeplitz matrices as de-
scribed above. Then we have:

‖(UN −∆)Y −1
N ‖ ≥ ‖G

−1
N ‖σmin

(
I −WNY

−1
N

)
− ‖∆Y −1

N ‖.

Proof. Note that since YN = GNUN +WN , we have by a simple rearrangement of terms:

G−1
N (I −WNY

−1
N ) = UNY

−1
N ,

and hence,
(UN −∆)Y −1

N = G−1
N (I −WNY

−1
N )−∆Y −1

N .

We this have:

‖(UN −∆)Y −1
N ‖ ≥ ‖G

−1
N (I −WNY

−1
N )‖ − ‖∆Y −1

N ‖

≥ ‖G−1
N ‖σmin(I −WNY

−1
N )− ‖∆Y −1

N ‖.

(In the above, we have used the triangle inequality in the first step, and the fact that σmax(AB) ≥
σmax(A)σmin(B)).

Proof of Theorem 3. Letw be the spcific noise realization, andWN be the corresponding Toeplitz
matrix. By assumption η ≥ maxi wi. Hence ∆ = WN is feasible with respect to (9). For this
value of ∆ we then have (YN −∆)U−1

N = GN , and hence σmax((YN −∆)U−1
N ) ≤ ‖G‖H∞ .

Hence, the pair ∆ = WN , γ = ‖G‖2H∞ is feasible with respect (9). Hence γUY (N) ≤
‖G‖2H∞ .

We now establish that γY U (N) grows exponentially. By Lemma 3 we have

‖(UN −∆)Y −1
N ‖ ≥ ‖G

−1
N ‖σmin

(
I −WNY

−1
N

)
− ‖∆Y −1

N ‖.
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Note that by assumption G−1 is unstable, and hence ρ(Ainv) > 1. By Lemma 2 we therefore
have

‖G−1
N ‖ ≥ c

ρN√
N
. (7)

We further have

σmin

(
I −WNY

−1
N

)
≥ 1− σmax

(
WN (GNUN +WN )−1)

≥ 1− σmax(WN )

σmin(GNUN +WN )

≥ 1− σmax(WN )

σmin(GNUN )− σmax(WN )

= 1− 1
σmin(GNUN )
σmax(WN )

− 1

where the second and third inequality follow from Weyl’s inequalities concerning singular values
[9, p. 171]. By assumption,

σmin(GNUN )

σmax(WN )
> 2 + δ,

so that
1− 1

σmin(GNUN )
σmin(WN )

− 1
> 0.

As a consequence of (7), we have

‖G−1
N ‖σmin

(
I −WNY

−1
N

)
> c0

ρN√
N
, (8)

for some constant c0.
Now, to bound the last term we have:

‖∆Y −1
N ‖ ≤

‖∆‖
σmin(GU +W )

≤ ‖∆‖
σmin(GU)− σmax(W )

≤ 2‖∆‖
σmin(GU)

(
since

σmin(GU)

σmax(W )
≥ 2 + δ

)
≤
√

2Nη

C
.

Putting together this inequality with (8) and Lemma 3 we have the required result.
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6 Appendix
6.1 Semidefinite Program for the Noisy Case
When uncertainty is present, we account for its presence by altering the optimization problems
(5), to the following:

minimize
γ,∆

γ

subject to (YN −∆)
′
(YN −∆) � γU

′
NUN

∆ Toeplitz, Lower-triangular

|∆ij | ≤ η.

(9)

minimize
γ,∆

γ

subject to (UN −∆)
′
(UN −∆) � γY

′
NYN

∆ Toeplitz, Lower-triangular

|∆ij | ≤ η.

(10)

where η is a parameter that controls the noise-level. As above, we will denote the optimal
solutions to be γUY (N) and γY U (N).

Note that by taking Schur complements, problem (9) can be transformed to a semidefinite
programming problem as follows (similarly for (10)):

minimize
γ,∆

γ

subject to [
I ∆

∆
′

γU
′
NUN − Y

′
NYN − Y

′
N∆−∆

′
YN

]
� 0

∆ Toeplitz, Lower-triangular

|∆ij | ≤ η.

(11)
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