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Motivation

! Many decision-making problems are large-scale and complex.
! Complexity, cost, physical constraints ⇒ Decentralization.
! Fully distributed control is notoriously hard.
! A common underlying theme: flow of information.
! What are the right language and tools to think about flow of

information?

Contributions
A framework to reason about information flow in terms of
partially ordered sets (posets).

An architecture for decentralized control, based on Möbius
inversion, with provable optimality properties.
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Motivation
! Many interesting examples can be unified in this framework.

! Example: Nested Systems [Voulgaris00].

P1

P2

K2

K1

1

2

! Emphasis: Flow of information. Can abstract away this flow of
information to picture on right.

! Natural for problems of causal or hierarchical nature.
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Outline

! Basic Machinery: Posets and Incidence Algebras.
! Decentralized control problems and posets.
! H2 case: state-space solution
! Zeta function, Möbius inversion
! Controller architecture
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Partially ordered sets (posets)

Definition
A poset P = (P,") is a set P along with a binary relation " which
satisfies for all a, b, c ∈ P:

1. a " a (reflexivity)

2. a " b and b " a implies a = b (antisymmetry)

3. a " b and b " c implies a " c (transitivity).

! Will deal with finite posets (i.e. |P| is finite).

! Will relate posets to decentralized control.
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Incidence Algebras

Definition
The set of functions f : P × P → Q with the property that f (x , y) = 0
whenever y ! x is called the incidence algebra I.

! Concept developed and studied in [Rota64] as a unifying
concept in combinatorics.

! For finite posets, elements of the incidence algebra can be
thought of as matrices with a particular sparsity pattern.
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Example

b

a

c

a b c
a
b
c




∗ 0 0
∗ ∗ 0
∗ 0 ∗
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Example

! Closure under addition and scalar multiplication.

! What happens when you multiply two such matrices?



∗ 0 0
∗ ∗ 0
∗ 0 ∗








∗ 0 0
∗ ∗ 0
∗ 0 ∗



 =




∗ 0 0
∗ ∗ 0
∗ 0 ∗





! Not a coincidence!
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Incidence Algebras

! Closure properties are true in general for all posets.

Lemma
Let P be a poset and I be its incidence algebra. Let A, B ∈ I
then:

1. c · A ∈ I
2. A + B ∈ I
3. AB ∈ I.

Thus the incidence algebra is an associative algebra.

! A simple corollary: Since I is in every incidence algebra, if
A ∈ I and invertible, A−1 ∈ I.

! Properties useful in Youla domain.
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Control problem

w
u

z
y

P11 P12

P21 P22

K

! A given matrix P.
! Design K .
! Interconnect P and K

f (P, K ) = P11 + P12K (I − P22K )−1P21.

Find “best” K .
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Modeling decentralized control problems using posets

! All the action happens at P22 = G. Focus here.
! G (called the plant) interacts with the controller.
! Plant divided into subsystems:

Subsystem
Outputs




G11 0 0
G21 G22 0
G31 0 G33




1

1

1

2 3

2

2 3

3
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Modeling decentralized control problems using posets

Subsystem
Outputs




G11 0 0
G21 G22 0
G31 0 G33




1

1

1

2 3

2

2 3

3

! Denote this by 1 " 2 and 1 " 3.
! Subsystems 2 and 3 are in cone of influence of 1
! This relationship is a causality relation between

subsystems.
! We call systems with G ∈ I poset-causal systems.
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Controller Structure

! Given a poset causal plant G ∈ I.
! Decentralization constraint: mirror the information structure

of the plant.
! In other words we want poset-causal K ∈ I.
! Similar causality interpretation.
! Intuitively, i " j means subsystem j is more information

rich.
! The poset arranges the subsystems according to the

amount of information richness.
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Examples of poset systems

! Independent subsystems

! Nested systems

! Closures of directed acyclic
graphs

. . .1 2 n

...

1

2

n

12

3

4

5 6
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Optimal Control Problem

Given a system P with plant G, find a stabilizing controller K ∈ I.

minimizeK ||f (P, K )||
subject to K stabilizes P

K ∈ I.

P

K

! Here f (P, K ) = P11 + P12K (I −GK )−1P21 is the closed loop
transfer function.

! Problem is nonconvex.

! Standard approach: reparametrize the problem by getting rid of
the nonconvex part of the objective.
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Convex reparametrization

! "Youla domain” technique: define R = K (I −GK )−1.

minimize ||P̂11 + P̂12RP̂21||
subject to R stable

R ∈ I.

! Algebraic structure of I allows reparametrization.

! Recover via K = (I + GR)−1R.

! Extensions:

1. Can extend to different constraints: Galois connections.
2. Time-delayed systems.
3. Spatio-temporal systems.
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Posets and Quadratic Invariance

! Quadratic invariance: K ∈ S ⇒ KGK ∈ S.
! Algebraic property guarantees quadratic invariance.
! Question: Does Quadratic Invariance imply existence of

poset structure?
! In certain settings, yes.
! Key: Quadratic invariance can be interpreted as a

transitivity property.
! Posets have lot more structure. Can we extract more out of

it?
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Drawbacks

! Control problems convex in Youla parameter.
! Main difficulty: Infinite dimensional problem.
! Approximation techniques, but drawbacks.
! Desire state-space techniques. Advantages:

1. Computationally efficient
2. Degree bounds
3. Provide insight into structure of optimal controller.
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State-Space Setup

! Have state feedback system:

x [t + 1] = Ax [t ] + Bu[t ] + w [t ]
y [t ] = x [t ]
z[t ] = Cx [t ] + Du[t ]

! Poset causal: A, B ∈ I.
! Find K ∗ which is stabilizing, optimal.

MinK‖P11 + P12K (I − P22K )−1P21‖2

K ∈ I
K stabilizing.

! Key property we exploit: separability of the H2 norm.
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H2 Optimal Control

! Recall Frobenius norm:

‖H‖2
F = Trace(HT H).

! H2 norm is its extension to operators.
! Solution to optimal centralized problem standard.
! Based on algebraic Riccati equations:

X = CT C + AT XA− AT XB(DT D + BT XB)−1BT XA

K = (DT D + BT XB)−1BT XA.
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Decentralized Control Problem

! System poset causal: A, B ∈ I(P).
! Solve:

minimizeK‖P11 + P12K (I − P22K )−1P21‖2

K ∈ I
K stabilizing.

! Due to state-feedback: P21 = (zI − A)−1.
! Define Q := K (I −GK )−1P21.
! Problem reduces to:

minimizeQ‖P11 + P12Q‖2

Q ∈ I
Q stabilizing.
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H2 Decomposition Property
! Let G = [G1, . . . Gk ].

‖G‖2 =
k∑

i=1

‖Gi‖2.

! This separability property is the key feature we exploit.

Example

1

2 3

min

∥∥∥∥∥∥
P11 + P12




Q11 0 0
Q21 Q22 0
Q31 0 Q33





∥∥∥∥∥∥

2

s.t. Q stabilizing.

min.

∥∥∥∥∥∥
P11(1) + P12




Q11

Q21

Q31





∥∥∥∥∥∥

2

+ ‖P11(2) + P12(2)Q22‖2

+ ‖P11(3) + P12(3)Q33‖2

s.t. Q stabilizing.
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H2 State Space Solution

This decomposition idea extends to all posets.

Theorem (S.-Parrilo)
Problem can be reduced to decoupled problems:

minimize ‖P11(j) + P12(↑j)Q↑j‖2

subject to Q↑j stabilizing
for all j ∈ P.

! Optimal Q can be obtained by solving a set of decoupled
centralized sub-problems.

! Each sub-problem requires solution of a Riccati equation.
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H2 State Space Solution

! Can recover K from optimal Q.
! Q and K are in bijection, K = QP−1

21 (I + P22QP−1
21 )−1.

! Further analysis gives:
1. Explicit state-space formulae.
2. Controller degree bounds.
3. Insight into structure of optimal controller.
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General Controller Architecture

! What is the “right” architecture?
! Ingredients:

1. Lower sets and upper sets
2. Local variables (partial state predictions)
3. Zeta function and Möbius function.

! Simple separation principle
! Optimality of architecture for H2.

28 / 45



General Controller Architecture

! What is the “right” architecture?
! Ingredients:

1. Lower sets and upper sets
2. Local variables (partial state predictions)
3. Zeta function and Möbius function.

! Simple separation principle
! Optimality of architecture for H2.

28 / 45



Lower sets and upper sets

! Each “node” in P is a subsystem with state xi and input ui .
! Lower set: ↓p = {q | q " p}.
! Corresponds to “downstream” known information.

1

2 3

4

1

2 3

4

↑ 2 ↓ 2

! Upper set: ↑p = {q | p " q}.
! Corresponds to “upstream” unknown information.
! ui has access to xj for j ∈ ↓i (downstream).
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Local Variables

! Overall state x and input u are
global variables.

! Subsystems carry local copies.
i

j

k

x̂k

xj

xi xl

known

unknown

unrelatedl
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Local Variables

! Local variable
Xi : ↑i → R.

! Can think of it as a
vector in R|P|

1

2 3

4





∗
x2

∗
x4(2)









∗
∗
∗
x4









∗
∗
x3

x4(3)



 X =





x1 ∗ ∗ ∗
x2(1) x2 ∗ ∗
x3(1) ∗ x3 ∗
x4(1) x4(2) x4(3) x4




X2 = X3 =

X4 =

X1 =





x1

x2(1)
x3(1)
x4(1)





! Two local variables of interest:
1. X : Xij = xi(j) is the (partial) prediction of state xi at

subsystem j .
2. U: Uij = ui(j) is the (partial) prediction of input ui at

subsystem j .
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Local Products
! Local gain: G(i) : ↑i × ↑i → R. Think of it as zero-padded

matrix:

1

2

4

3 G(2) =





0 0 0 0
0 G22 0 G24

0 0 0 0
0 G42 0 G44





! Define G = {G(1), . . . , G(s)}.
! Local Product: G ◦ X defined columnwise via:

(G ◦ X )i = G(i)Xi .

! If Y = G ◦ X , then local variables (Xi , Yi) decoupled.
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Zeta and Möbius
For any poset P, two distinguished elements of its incidence
algebra:

! The Zeta matrix is

ζP(x , y) =

{
1, if y " x
0, otherwise

! Its inverse is the Möbius matrix of the poset:

µP = ζ−1
P .

E.g., for the poset below, we have:
b

a

c

ζP =




1 0 0
1 1 0
1 0 1



 , µP =




1 0 0
−1 1 0
−1 0 1
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Möbius inversion

Given f : P → R, we can define

(ζf )(x) =
∑

y
ζ(x , y)f (y), (µf )(x) =

∑

y
µ(x , y)f (y).

These operations are obviously inverses of each other.
For our example:

ζ(a1, a2, a3) = (a1, a1+a2, a1+a3), µ(b1, b2, b3) = (b1, b2−b1, b3−b1).

Möbius inversion formula

g(y) =
∑

x$y

h(x) ⇔ h(y) =
∑

x$y

µ(x , y)g(x)
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Möbius inversion: examples

! If P is a chain: then ζ is “integration”, µ := ζ−1 is
“differentiation”.

! If P is the subset lattice, then µ is inclusion-exclusion
! If P is the divisibility integer lattice, then µ is the

number-theoretic Möbius function.
! Many others: vector spaces, faces of polytopes,

graphs/circuits, ...
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Möbius inversion for control

! µ and ζ operators on X .
! µ(X ) innovations.
! ζ combines downstream information.
! Key insight: Möbius inversion respects the poset structure.
! No additional communication required to compute it.
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Möbius operator

1

2 3

4

µ(X) =





x1 ∗ ∗ ∗
x2(1) x2 − x2(1) ∗ ∗
x3(1) ∗ x3 − x3(1) ∗
x4(1) x4(2)− x4(1) x4(3)− x4(1) x4 + x4(1)− x4(2)− x4(3)





1

2 3

4

µ

x4

x4(1)

x4(2) x4(3)
x4(1)x4(2)

x4(3) x4(1)

x4(2) +x4 x4(3) x4(1)

−
−

− −

x4(1)
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Controller Architecture

! Let the system dynamics be x [t + 1] = Ax [t ] + Bu[t ], where
A, B ∈ I(P)

! Define controller state variables Xij for j " i , where Xii = xi .
! Propose a control law:

U = ζ(G ◦ µ(X )).

where G = {G(1), . . . , G(s)}.
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Controller Architecture: U = ζ(G ◦ µ(X ))
! “Local innovations” computed by µ(X ) (differentiation)
! Compute “local corrections”
! Aggregate them via ζ(·) (integration)

1

2 3

4





u1

u2(1)
u3(1)
u4(1)



 = G(1)





x1

x2(1)
x3(1)
x4(1)









∗
u2

∗
u4(2)



 = G(1)





x1

x2(1)
x3(1)
x4(1)



 + G(2)





∗
x2 − x2(1)

∗
x4(2)− x4(1)
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Closed-loop

Can compactly write closed-loop dynamics as matrix equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])) + Zd [t ].

! Each column corresponds to a different subsystem
! Equations have structure of I, only need entries with j " i
! Diagonal is the plant, off-diagonal is the controller
! Zd downstream influence
! Since ζ and µ are local, so is the closed-loop
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Separation Principle

! Closed-loop equations:

X [t + 1] = AX [t ] + Bζ(G ◦ µ(X [t ])) + Zd [t ].

! Apply µ, and use the fact that µ and ζ are inverses:

µ(X )[t + 1] = Aµ(X )[t ] + B(G ◦ µ(X )[t ])
= (A + BG) ◦ µ(X ).

where (A + BG)(i) = A(↑i , ↑i) + B(↑i , ↑i)G(i).

! “Innovation” dynamics at subsystems decoupled!

! Stabilization easy: simply pick G(i) to stabilize A(↑i , ↑i), B(↑i , ↑i).
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Optimality

Theorem (S.-Parrilo)
H2-optimal controllers have the described architecture.

! Gains G(i) obtained by solving decoupled Riccati
equations.

! States in the controller are precisely predictions Xij for
j ≺ i .

! Controller order is number of intervals in the poset.
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Interesting Directions

Möbius-inversion controller

U = ζ(G ◦ µ(X )).

Simple and natural structure, for any locally finite poset.

! Can exploit further restrictions (e.g., distributive lattices)

! For product posets, well-understood composition rules for µ

! Generalization of related concepts (Youla parameterization,
“purified outputs”, etc)?

! Extensions to output feedback, different plant/controller posets
(Galois connections), . . .

a

b

1

23

Input Poset Output Poset
P Q
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Related Work
! Classical work: Witsenhausen, Radner, Ho-Chu.
! Mullans-Elliot (1973), linear systems on partially ordered time

sets
! Voulgaris (2000), showed that a wide class of distributed control

problems became convex through a Youla-type
reparametrization.

! Rotkowitz-Lall (2002) introduced quadratic invariance (QI) an
important unifying concept for convexity in decentralized control.

! Poset framework introduced in S.-Parrilo (2008). Special case of
QI, with richer and better understood algebraic structure.

! Swigart-Lall (2010) gave a state-space solution for the
two-controller case, via a spectral factorization approach.

! S.-Parrilo (2010), provided a full solution for all posets, with
controller degree bounds. Separability a key idea, which is
missing in past work. Introduced simple Möbius-based
architecture (in slightly different form).
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Conclusions

! Posets/Incidence algebras: interesting objects in their own
right!

! Provide general/useful framework for flow of information.
1. Conceptually nice.
2. Computationally tractable.

! Presented H2-optimal state-space solutions.
! Simple controller structure based on Möbius inversion.
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