A Partial Order Approach to Decentralized Control

Parikshit Shah

Joint work with Pablo A. Parrilo

LIDS, EE/CS, MIT

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints \Rightarrow Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.

Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints \Rightarrow Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.

Motivation

- Many interesting examples can be unified in this framework.
- Example: Nested Systems [Voulgaris00].

- Emphasis: Flow of information. Can abstract away this flow of information to picture on right.
- Natural for problems of causal or hierarchical nature.

Outline

- Basic Machinery: Posets and Incidence Algebras.
- Decentralized control problems and posets.
- H₂ case: state-space solution
- Zeta function, Möbius inversion
- Controller architecture

Partially ordered sets (posets)

Definition

A poset $\mathcal{P} = (P, \preceq)$ is a set *P* along with a binary relation \preceq which satisfies for all *a*, *b*, *c* \in *P*:

- 1. $a \leq a$ (reflexivity)
- 2. $a \leq b$ and $b \leq a$ implies a = b (antisymmetry)
- 3. $a \leq b$ and $b \leq c$ implies $a \leq c$ (transitivity).
- Will deal with finite posets (i.e. |P| is finite).
- Will relate posets to decentralized control.

Incidence Algebras

Definition

The set of functions $f : P \times P \to \mathbb{Q}$ with the property that f(x, y) = 0 whenever $y \not\preceq x$ is called the incidence algebra \mathcal{I} .

- Concept developed and studied in [Rota64] as a unifying concept in combinatorics.
- For finite posets, elements of the incidence algebra can be thought of as matrices with a particular sparsity pattern.

Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

$$\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$$

Not a coincidence!

Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

$$\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix} = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{bmatrix}$$

Not a coincidence!

Incidence Algebras

Closure properties are true in general for all posets.

Lemma

Let $\mathcal P$ be a poset and $\mathcal I$ be its incidence algebra. Let $A,B\in \mathcal I$ then:

- 1. $\boldsymbol{c} \cdot \boldsymbol{A} \in \mathcal{I}$
- **2**. $A + B \in \mathcal{I}$
- 3. $AB \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since *I* is in every incidence algebra, if A ∈ *I* and invertible, A⁻¹ ∈ *I*.
- Properties useful in Youla domain.

Incidence Algebras

Closure properties are true in general for all posets.

Lemma

Let $\mathcal P$ be a poset and $\mathcal I$ be its incidence algebra. Let $A,B\in \mathcal I$ then:

- 1. $\boldsymbol{c} \cdot \boldsymbol{A} \in \mathcal{I}$
- **2**. $A + B \in \mathcal{I}$
- 3. $AB \in \mathcal{I}$.

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since *I* is in every incidence algebra, if *A* ∈ *I* and invertible, *A*⁻¹ ∈ *I*.
- Properties useful in Youla domain.

$$z \leftarrow P_{11} P_{12} \leftarrow w$$
$$y \leftarrow P_{21} P_{22} \leftarrow u$$
$$\downarrow K \leftarrow K$$

- ► A given matrix *P*.
- ▶ Design K.
- Interconnect P and K

$$z \leftarrow P_{11} P_{12} \leftarrow w$$
$$y \leftarrow P_{21} P_{22} \leftarrow u$$
$$\downarrow K \leftarrow K$$

イロン イ団 とくほ とくほ とう

æ

10/45

- ► A given matrix *P*.
- Design K.
- Interconnect P and K

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

▶ Find "best" K.

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

▶ Find "best" K.

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P,K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

Find "best" K.

- All the action happens at $P_{22} = G$. Focus here.
- ► *G* (called the plant) interacts with the controller.
- Plant divided into subsystems:

Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:

Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:

- Denote this by $1 \leq 2$ and $1 \leq 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.

- Denote this by $1 \leq 2$ and $1 \leq 3$.
- Subsystems 2 and 3 are in cone of influence of 1
- This relationship is a causality relation between subsystems.
- We call systems with $G \in \mathcal{I}$ poset-causal systems.

Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, i ≤ j means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, i ≤ j means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.

Examples of poset systems

Independent subsystems

Nested systems

 Closures of directed acyclic graphs

Optimal Control Problem

Given a system *P* with plant *G*, find a stabilizing controller $K \in \mathcal{I}$.

 $\begin{array}{ll} \text{minimize}_{\mathcal{K}} & ||f(\mathcal{P},\mathcal{K})|| \\ \text{subject to} & \mathcal{K} \text{ stabilizes } \mathcal{P} \\ & \mathcal{K} \in \mathcal{I}. \end{array}$

- Here $f(P, K) = P_{11} + P_{12}K(I GK)^{-1}P_{21}$ is the closed loop transfer function.
- Problem is nonconvex.
- Standard approach: reparametrize the problem by getting rid of the nonconvex part of the objective.

Convex reparametrization

▶ "Youla domain" technique: define $R = K(I - GK)^{-1}$.

 $\begin{array}{ll} \text{minimize} & ||\hat{P}_{11} + \hat{P}_{12}R\hat{P}_{21}|| \\ \text{subject to} & R \text{ stable} \\ & R \in \mathcal{I}. \end{array}$

- Algebraic structure of *I* allows reparametrization.
- Recover via $K = (I + GR)^{-1}R$.
- Extensions:
 - 1. Can extend to different constraints: Galois connections.
 - 2. Time-delayed systems.
 - 3. Spatio-temporal systems.

Posets and Quadratic Invariance

- Quadratic invariance: $K \in S \Rightarrow KGK \in S$.
- Algebraic property guarantees quadratic invariance.
- Question: Does Quadratic Invariance imply existence of poset structure?
- In certain settings, yes.
- Key: Quadratic invariance can be interpreted as a transitivity property.
- Posets have lot more structure. Can we extract more out of it?

Drawbacks

- Control problems convex in Youla parameter.
- ► Main difficulty: Infinite dimensional problem.
- Approximation techniques, but drawbacks.
- Desire state-space techniques. Advantages:
 - 1. Computationally efficient
 - 2. Degree bounds
 - 3. Provide insight into structure of optimal controller.

State-Space Setup

Have state feedback system:

$$x[t+1] = Ax[t] + Bu[t] + w[t]$$
$$y[t] = x[t]$$
$$z[t] = Cx[t] + Du[t]$$

- ▶ Poset causal: $A, B \in \mathcal{I}$.
- Find K^* which is stabilizing, optimal.

$$egin{aligned} \mathsf{Min}_{\mathcal{K}} \| \mathcal{P}_{11} + \mathcal{P}_{12} \mathcal{K} (\mathcal{I} - \mathcal{P}_{22} \mathcal{K})^{-1} \mathcal{P}_{21} \|^2 \ \mathcal{K} \in \mathcal{I} \ \mathcal{K} ext{ stabilizing.} \end{aligned}$$

• Key property we exploit: separability of the \mathcal{H}_2 norm.

\mathcal{H}_2 Optimal Control

Recall Frobenius norm:

$$\|H\|_F^2 = \operatorname{Trace}(H^T H).$$

• \mathcal{H}_2 norm is its extension to operators.

- Solution to optimal centralized problem standard.
- Based on algebraic Riccati equations:

$$X = C^{T}C + A^{T}XA - A^{T}XB(D^{T}D + B^{T}XB)^{-1}B^{T}XA$$
$$K = (D^{T}D + B^{T}XB)^{-1}B^{T}XA.$$

Decentralized Control Problem

System poset causal: $A, B \in \mathcal{I}(\mathcal{P})$.

Solve:

$$egin{aligned} \mathsf{minimize}_{\mathcal{K}} \| \mathcal{P}_{11} + \mathcal{P}_{12}\mathcal{K}(I - \mathcal{P}_{22}\mathcal{K})^{-1}\mathcal{P}_{21} \|^2 \ & \mathcal{K} \in \mathcal{I} \ & \mathcal{K} ext{ stabilizing.} \end{aligned}$$

- Due to state-feedback: $P_{21} = (zI A)^{-1}$.
- Define $Q := K(I GK)^{-1}P_{21}$.
- Problem reduces to:

minimize
$$_{Q} \| P_{11} + P_{12}Q \|^2$$

 $Q \in \mathcal{I}$
 Q stabilizing.

$H_2 \text{ Decomposition Property}$ ► Let $G = [G_1, \dots, G_k]$. $\|G\|^2 = \sum_{i=1}^k \|G_i\|^2.$

This separability property is the key feature we exploit.
 Example

$$\begin{array}{ll} \min & \left\| P_{11} + P_{12} \left[\begin{array}{c} Q_{11} & 0 & 0 \\ Q_{21} & Q_{22} & 0 \\ Q_{31} & 0 & Q_{33} \end{array} \right] \right\|^2 \\ \text{s.t.} & Q \text{ stabilizing.} \\ \min & \left\| P_{11}(1) + P_{12} \left[\begin{array}{c} Q_{11} \\ Q_{21} \\ Q_{31} \end{array} \right] \right\|^2 + \left\| P_{11}(2) + P_{12}(2)Q_{22} \right\|^2 \\ & + \left\| P_{11}(3) + P_{12}(3)Q_{33} \right\|^2 \\ \text{s.t.} & Q \text{ stabilizing.} \end{array}$$

\mathcal{H}_2 State Space Solution

This decomposition idea extends to all posets.

```
Theorem (S.-Parrilo)
```

Problem can be reduced to decoupled problems:

 $\begin{array}{ll} \textit{minimize} & \|P_{11}(j) + P_{12}(\uparrow j)Q^{\uparrow j}\|^2\\ \textit{subject to} & Q^{\uparrow j} \textit{ stabilizing}\\ \textit{for all } j \in P. \end{array}$

- Optimal Q can be obtained by solving a set of decoupled centralized sub-problems.
- Each sub-problem requires solution of a Riccati equation.

\mathcal{H}_2 State Space Solution

- Can recover K from optimal Q.
- Q and K are in bijection, $K = QP_{21}^{-1}(I + P_{22}QP_{21}^{-1})^{-1}$.
- Further analysis gives:
 - 1. Explicit state-space formulae.
 - 2. Controller degree bounds.
 - 3. Insight into structure of optimal controller.

General Controller Architecture

What is the "right" architecture?

Ingredients:

- 1. Lower sets and upper sets
- 2. Local variables (partial state predictions)
- 3. Zeta function and Möbius function.
- Simple separation principle
- Optimality of architecture for \mathcal{H}_2 .

General Controller Architecture

- What is the "right" architecture?
- Ingredients:
 - 1. Lower sets and upper sets
 - 2. Local variables (partial state predictions)
 - 3. Zeta function and Möbius function.
- Simple separation principle
- Optimality of architecture for \mathcal{H}_2 .

Lower sets and upper sets

- Each "node" in \mathcal{P} is a subsystem with state x_i and input u_i .
- Lower set: $\downarrow p = \{q \mid q \leq p\}.$
- Corresponds to "downstream" known information.

- Upper set: $\uparrow p = \{q \mid p \leq q\}.$
- Corresponds to "upstream" unknown information.
- ▶ u_i has access to x_j for $j \in \bigcup i$ (downstream).

Lower sets and upper sets

- Each "node" in \mathcal{P} is a subsystem with state x_i and input u_i .
- Lower set: $\downarrow p = \{q \mid q \leq p\}.$
- Corresponds to "downstream" known information.

- Upper set: $\uparrow p = \{q \mid p \leq q\}.$
- Corresponds to "upstream" unknown information.
- ▶ u_i has access to x_j for $j \in \downarrow i$ (downstream).

Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.

Local Variables

- Two local variables of interest:
 - X: X_{ij} = x_i(j) is the (partial) prediction of state x_i at subsystem j.
 - 2. *U*: $U_{ij} = u_i(j)$ is the (partial) prediction of input u_i at subsystem *j*.

Local Variables

- Two local variables of interest:
 - 1. X: X_{ij} = x_i(j) is the (partial) prediction of state x_i at subsystem j.
 - U: U_{ij} = u_i(j) is the (partial) prediction of input u_i at subsystem j.

Local Products

Local gain: G(i): ↑i × ↑i → ℝ. Think of it as zero-padded matrix:

- Define **G** = { $G(1), \ldots, G(s)$ }.
- Local Product: G

 X defined columnwise via:

$$(\mathbf{G} \circ X)_i = G(i)X_i.$$

▶ If $Y = \mathbf{G} \circ X$, then local variables (X_i, Y_i) decoupled.

Zeta and Möbius

For any poset \mathcal{P} , two distinguished elements of its incidence algebra:

The Zeta matrix is

$$\zeta_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } y \leq x \\ 0, & \text{otherwise} \end{cases}$$

Its inverse is the Möbius matrix of the poset:

$$\mu_{\mathcal{P}} = \zeta_{\mathcal{P}}^{-1}.$$

E.g., for the poset below, we have:

b c
$$\zeta_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mu_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Zeta and Möbius

For any poset \mathcal{P} , two distinguished elements of its incidence algebra:

The Zeta matrix is

$$\zeta_{\mathcal{P}}(x,y) = \begin{cases} 1, & \text{if } y \leq x \\ 0, & \text{otherwise} \end{cases}$$

Its inverse is the Möbius matrix of the poset:

$$\mu_{\mathcal{P}} = \zeta_{\mathcal{P}}^{-1}.$$

E.g., for the poset below, we have:

b
c
a

$$\zeta_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \mu_{\mathcal{P}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Möbius inversion

Given $f : P \to \mathbb{R}$, we can define $(\zeta f)(x) = \sum_{y} \zeta(x, y) f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x, y) f(y).$

These operations are obviously inverses of each other.

For our example:

 $\zeta(a_1, a_2, a_3) = (a_1, a_1 + a_2, a_1 + a_3), \qquad \mu(b_1, b_2, b_3) = (b_1, b_2 - b_1, b_3 - b_1).$

Möbius inversion formula

$$g(y) = \sum_{x \leq y} h(x) \qquad \Leftrightarrow \qquad h(y) = \sum_{x \leq y} \mu(x, y) g(x)$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 34/45

Möbius inversion

Given $f : P \to \mathbb{R}$, we can define $(\zeta f)(x) = \sum_{y} \zeta(x, y) f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x, y) f(y).$

These operations are obviously inverses of each other. For our example:

$$\zeta(a_1, a_2, a_3) = (a_1, a_1 + a_2, a_1 + a_3), \qquad \mu(b_1, b_2, b_3) = (b_1, b_2 - b_1, b_3 - b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \leq y} h(x) \qquad \Leftrightarrow \qquad h(y) = \sum_{x \leq y} \mu(x, y) g(x)$$

Möbius inversion

Given $f : P \to \mathbb{R}$, we can define $(\zeta f)(x) = \sum_{y} \zeta(x, y) f(y), \qquad (\mu f)(x) = \sum_{y} \mu(x, y) f(y).$

These operations are obviously inverses of each other. For our example:

$$\zeta(a_1, a_2, a_3) = (a_1, a_1 + a_2, a_1 + a_3), \qquad \mu(b_1, b_2, b_3) = (b_1, b_2 - b_1, b_3 - b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \leq y} h(x) \qquad \Leftrightarrow \qquad h(y) = \sum_{x \leq y} \mu(x, y) g(x)$$

Möbius inversion: examples

- If *P* is a chain: then ζ is "integration", μ := ζ⁻¹ is "differentiation".
- If \mathcal{P} is the subset lattice, then μ is inclusion-exclusion
- ► If *P* is the divisibility integer lattice, then µ is the number-theoretic Möbius function.
- Many others: vector spaces, faces of polytopes, graphs/circuits, ...

Möbius inversion for control

- μ and ζ operators on X.
- $\mu(X)$ innovations.
- ζ combines downstream information.
- Key insight: Möbius inversion respects the poset structure.
- No additional communication required to compute it.

Möbius operator

Controller Architecture

- Let the system dynamics be x[t+1] = Ax[t] + Bu[t], where $A, B \in \mathcal{I}(\mathcal{P})$
- ▶ Define controller state variables X_{ij} for $j \leq i$, where $X_{ii} = x_i$.
- Propose a control law:

$$U = \zeta(\mathbf{G} \circ \mu(X)).$$

where $\mathbf{G} = \{G(1), ..., G(s)\}.$

Controller Architecture: $U = \zeta(\mathbf{G} \circ \mu(\mathbf{X}))$

- "Local innovations" computed by $\mu(X)$ (differentiation)
- Compute "local corrections"
- Aggregate them via ζ(·) (integration)

Closed-loop

Can compactly write closed-loop dynamics as matrix equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])) + Z_d[t].$$

- Each column corresponds to a different subsystem
- Equations have structure of \mathcal{I} , only need entries with $j \leq i$
- Diagonal is the plant, off-diagonal is the controller
- Z_d downstream influence
- Since ζ and μ are local, so is the closed-loop

Separation Principle

Closed-loop equations:

$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])) + Z_d[t].$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{BG}) \circ \mu(X).$$

where $(\mathbf{A} + \mathbf{BG})(i) = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick G(i) to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Separation Principle

Closed-loop equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])) + Z_d[t].$$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{BG}) \circ \mu(X).$$

where $(\mathbf{A} + \mathbf{BG})(i) = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$.

"Innovation" dynamics at subsystems decoupled!

Stabilization easy: simply pick G(i) to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Separation Principle

Closed-loop equations:

$$X[t+1] = AX[t] + B\zeta(\mathbf{G} \circ \mu(X[t])) + Z_d[t].$$

• Apply μ , and use the fact that μ and ζ are inverses:

$$\mu(X)[t+1] = A\mu(X)[t] + B(\mathbf{G} \circ \mu(X)[t])$$
$$= (\mathbf{A} + \mathbf{B}\mathbf{G}) \circ \mu(X).$$

where $(\mathbf{A} + \mathbf{BG})(i) = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)$.

- "Innovation" dynamics at subsystems decoupled!
- Stabilization easy: simply pick G(i) to stabilize $A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i)$.

Optimality

Theorem (S.-Parrilo)

 \mathcal{H}_2 -optimal controllers have the described architecture.

- Gains G(i) obtained by solving decoupled Riccati equations.
- States in the controller are precisely predictions X_{ij} for j ≺ i.
- Controller order is number of intervals in the poset.

Interesting Directions

Möbius-inversion controller

$$U = \zeta(\mathbf{G} \circ \mu(X)).$$

Simple and natural structure, for any locally finite poset.

- Can exploit further restrictions (e.g., distributive lattices)
- For product posets, well-understood composition rules for μ
- Generalization of related concepts (Youla parameterization, "purified outputs", etc)?
- Extensions to output feedback, different plant/controller posets (Galois connections), ...

Related Work

- Classical work: Witsenhausen, Radner, Ho-Chu.
- Mullans-Elliot (1973), linear systems on partially ordered time sets
- Voulgaris (2000), showed that a wide class of distributed control problems became convex through a Youla-type reparametrization.
- Rotkowitz-Lall (2002) introduced quadratic invariance (QI) an important unifying concept for convexity in decentralized control.
- Poset framework introduced in S.-Parrilo (2008). Special case of QI, with richer and better understood algebraic structure.
- Swigart-Lall (2010) gave a state-space solution for the two-controller case, via a spectral factorization approach.
- S.-Parrilo (2010), provided a full solution for all posets, with controller degree bounds. Separability a key idea, which is missing in past work. Introduced simple Möbius-based architecture (in slightly different form).

Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 - 1. Conceptually nice.
 - 2. Computationally tractable.
- Presented \mathcal{H}_2 -optimal state-space solutions.
- Simple controller structure based on Möbius inversion.

Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 - 1. Conceptually nice.
 - 2. Computationally tractable.
- ▶ Presented *H*₂-optimal state-space solutions.
- Simple controller structure based on Möbius inversion.

Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 - 1. Conceptually nice.
 - 2. Computationally tractable.
- Presented H₂-optimal state-space solutions.
- Simple controller structure based on Möbius inversion.