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Abstract

In many applications in signal and image processing, communications, system identification,
and elsewhere, one aims to recover a signal that has a simple representation in a given
basis or frame. Key devices for obtaining such representations are objects called atoms, and
functions called atomic norms. These concepts unify the idea of simple representations across
several known applications, and motivate extensions to new problem classes of interest. In
important special cases, fast and efficient algorithms are available to solve the reconstruction
problems, but an approach that works well for general atomic-norm paradigm has not been
forthcoming to date. In this paper, we combine a greedy selection scheme based on the
conditional gradient approach with backward steps that reduce the size of the basis. Our
scheme achieves the same convergence rate as the forward greedy scheme alone, provided
that backward steps are taken only when they do not increase the objective too much.

1 INTRODUCTION

The problem of selecting simple models from data in a tractable way (via convex optimization, for example)
is widespread in applications in communications, machine learning, image processing, genetics, and other
fields. The notion of “simplicity” varies across applications. In signal and image processing, we often
wish the vector of coefficients for the selected basis to be sparse. In matrix-completion problems arising in
recommendation systems, we seek low-rank matrices.

A common conceptual framework for the notion of simplicity of representations has been proposed in [1].
Here the object x1 to be recovered is assumed to be a conic combination of a modest number of atoms a,
which form the basic building blocks of signals of interest and which are drawn from an atomic set A. We
seek a subset At and scalar coefficients ca for a ∈ At, such that

x = Atc :=
∑
a∈At

caa, with ca ≥ 0 for all a ∈ At. (1)

(Here At denotes a linear operator from R|At| to the space occupied by x.) We write x ∈ co(At, τ) for some
given τ ≥ 0, if there is a representation of the form (1) such that

∑
a∈At

ca ≤ τ .

Given a vector x ∈ Rp and an atomic set, the atomic norm is defined in [1] as follows:

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A

}
. (2)

1We use boldface letters x,y etc. to denote variables in the problem.
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By carefully choosing the atomic set, one can model signals that arise in a wide variety of applications [1].
We consider in this paper problems of the form

min
x

f(x) :=
1

2
‖y −Φx‖22 subject to ‖x‖A ≤ τ. (3)

Efficient algorithms have been devised for special cases of the problem (3) such as `1-constrained least
squares [2–4] and nuclear-norm-constrained least squares [5–7]. For the general form (3), [8] proposed a
greedy method based on the conditional gradient algorithm, often known as “Frank-Wolfe” [9]. Conditional
gradient (CG) has enjoyed renwewed popularity in big data applications, due to its simplicity and global
convergence properties [8, 10–12]. This approach typically adds one atom to the basis at each iteration. A
drawback is that they tend to take too many iterations, thus have too many atoms in the basis at termination.
Our algorithm modifies this basic procedure by allowing atoms to be purged from the current basis, and
allowing the current basis to be modified and possibly reduced in size. We refer to these modifications
collectively as “backward steps,” and call our algorithm Enhanced Conditional Gradient (ECG). As our
experiments demonstrate, ECG tends to have sparser and better solutions than CG, without sacrificing
theoretical performance guarantees.

By modifying the analysis of conditional gradient [8] for backward steps, we show sublinear convergence at
a 1/T rate for our approach. When a strict Slater-type condition holds, a linear rate of convergence can be
proved by adapting the arguments in [12]. We can show that the algorithm is fairly robust, and even when
it is only possible to select approximate optimal atoms, the algorithm displays good practical performance.

2 ALGORITHM

Algorithm 1 CoGEnT: Conditional Gradient with Enhancement and Truncation

1: Input: Characterization of A, bound τ , acceptance threshold 0 < η < 1;
2: Initialize x0 = τa0, a0 ∈ A, t← 0, At ← {a0};
3: repeat
4: at+1 ← arg mina∈A〈∇f(xt),a〉; {FORWARD STEP}
5: Ãt+1 ← At ∪ {at+1};
6: γt+1 ← arg minγ∈[0,1] f(xt + γ(τat − xt));

7: Choose c̃t+1 to be any nonnegative coefficient vector such that f(Ãt+1c̃
t+1) ≤ f(xt + γt+1(τat−xt)),

and set x̃t+1 = Ãt+1c̃
t+1;

8: Define acceptability threshold Ft+1 := ηf(xt) + (1− η)f(x̃t+1);

9: Find possibly reduced basis At+1 such that |At+1| ≤ |Ãt+1|, coefficients ct+1 ≥ 0 with ‖ct+1‖1 ≤ τ ,
and modified iterate xt+1 = At+1c

t+1 satisfying f(xt+1) ≤ Ft+1;
{BACKWARD STEP}

10: until convergence

Algorithm 1 describes our approach. It tracks closely the Forward-Backward approch of [13], the main
difference being that the “backward step” may be more elaborate than the simple removal of one basis
element, as considered there. Furthermore, the “forward step” also can be seen as a more enhanced version
of the standard conditional gradient method. Each forward step selects a new atom greedily and uses it
to improve the objective. We choose the new coefficients ct+1 and iterate xt+1 to do as least as well as
an optimal step from the current iterate xt toward the new (scaled) atom τat+1. One choice that clearly
satisfies this assumption would be to optimize over the new expanded basis, as follows:

ct+1 := arg min
c
f(At+1c) subject to c ≥ 0, ‖c‖1 ≤ τ. (4)

We can solve this subproblem by means of a gradient projection procedure. (Projection onto the scaled
simplex is an efficient operation, requiring O(nt log nt) operations, where nt = |At|.) If we start from the
modified coefficients obtained in the calculation of γt+1, we can stop this procedure after any number of
iterations and still satisfy the condition in step 7.

The backward step (step 9) aims to reduce the basis without sacrificing too much of the improvement in f

gained from the latest forward step. This step can be skipped, which is equivalent to setting At+1 ← Ãt+1
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and ct+1 ← c̃t+1. Possibly the simplest nontrivial implementation of this step is to remove a single element of
the basis Ãt, chosen so as to have the least effect on the objective (as in [13]). When f has the least-squares
form defined in (3), we have

f(x̃t+1 − caa) = f(x̃t+1)− ca〈∇f(x̃t+1),a〉+
1

2
c2a‖Φa‖22. (5)

The quantities ‖Φa‖22 can be computed efficiently and stored as soon as each atom a enters the current basis
At, and the quantity ∇f(x̃t+1) may be needed for the next forward step, so the cost of evaluating these
quantities is not excessive. Removal of an atom can be followed by reoptimization over the coefficients for
the reduced basis (by again using gradient projection over the simplex) to improve the objective value. By
extending the single-atom-removal procedure, we can remove more than one atom in a single backward step.

In some applications (for example, matrix completion) we cannot attain the final goal of a compact repre-
sentation of the solution by adding and removing atoms from the basis. Atoms added at the start contain
spurious components, which are cancelled out by atoms added at later iterations. We can thus consider a
more general backward step that allows wholesale reorganization of the basis Ãt+1 to obtain a new, smaller
basis At+1 with fewer elements. In the case of atoms that are rank-one matrices, we could take the iterate
x̃t+1 generated by the latest forward step, form a singular value decomposition, and form the new basis
At+1 and corresponding xt+1 from the rank-one matrices that correspond to the largest singular values.
This approach would be competitive with the popular singular value thresholding (SVT) approach of [14].
One iteration of SVT requires calculation of the leading part of the singular value decomposition, which is
about the same cost as our proposed backward step.

3 EXPERIMENTS

We report results on latent group lasso applications where we purge atoms in our backward steps using
the quadratic expansion method (5), and matrix completion where we use the SVT-based backward step
mentioned above.

3.1 Latent Group Lasso

Latent group Lasso [15] recovers signals whose support can be expressed as a union of groups. That the
penalty can be expressed as an atomic norm is shown in [15, 16]. In [17], the authors use the concept to
group parent-child pairs in DWT coefficients, and perform image recovery. CG and ECG approach can be
viewed as a “greedy” analogue of the latent group lasso approach. CG and ECG do not require replication
of variables (as was done in [17]), and hence avoids inflating othe problem dimension.Solving the greedy step
(4) in this case amounts to the following operation

Ĝ = arg max
G∈G
‖ − [∇(f(xt))]G‖, [at+1]Ĝ = −[∇f(xt))]Ĝ/‖[∇f(xt))]Ĝ‖, [at+1]i = 0 for i /∈ Ĝ.

We consider some standard one-dimensional signals [18], and aim to recover the parent child DWT coeffi-
cients modeled into groups. In each case, we considered a length 1024 signal, and obtained 300 Gaussian
measurements corrupted with AWGN σ = 0.01. Each signal was scaled to lie between 0 and 1, and we
restricted ourselves to 200 iterations of the algorithm. MSE results for the signals are shown in Table 1.
Note that in all cases, the CG method selects 200 atoms, the same as the number of iterations for which we
run our method, while ECG selects far fewer atoms to represent the signal (see final column) while producing
closer fits to the ground truth.

To compare time taken and problem sizes, we considered M group sparse signals with bM10 c groups active,
and each group of size 50. The last 30 indices of each group overlap with the first 30 of the next group. We
then took n = dp2e noisy (σ = 0.1) Gaussian measurements, with p being the ambient dimension. Table 2
compares the Latent Group Lasso (LGL) using replication with our method in terms of time taken. Note
that certain methods to solve the replicated problem (for e.g: [2]) admit an efficient method to compute
variables without explicitly replicating them, precluding the need to store a matrix of size Rn×p̃, p̃ being
the replicated dimension. However, they do entail storing a sparse matrix of size Rp×p̃. In the (limited)
simulations we performed, we noticed that the change in runtime was not significant when we used one
procedure over the other. All times reported are in seconds.
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Signal MSE CoGEnT MSE CG #Atoms Selected
Piece Polynomial 1.38 × 10−4 2.767× 10−4 44

Blocks 2.126 × 10−4 7.593× 10−4 52
HeaviSine 0.0004 0.0005 64

Piecewise Regular 0.0028 0.0083 62

Table 1: Recovery of some 1d test signals in the presence of AWGN (σ = 0.01). After 200 iterations, ECG
recovers more accurate and sparser solutions.

M True Dimension Replicated Dimension time CoGEnT time LGL
100 2030 5000 14.9 22.2
1000 20030 50000 210.9 461.6
1200 24030 60000 358.64 778.2
1500 30030 75000 574.9 1376.6
2000 40030 100000 852.02 2977

Table 2: Recovery times compared to Latent Group Lasso with Replication

3.2 Matrix Completion

We generated a 100× 120 random matrix with rank r = 3, and observed only 30% of its entries at random.
We choose the parameter τ to be the one that gave best results. A debiasing step is applied at the end,
where the coefficients are chosen by solving a least-squares problem over the final basis with nonnegative
coefficients but the bound involving τ removed. We see in Figure 1 that CoGEnT recovers the original matrix
well; the three singular values are almost exact. CG gives a solution with five nonzero singular values.

(a) Original Ma-
trix of rank 3

(b) Matrix re-
covered from
CoGEnT

(c) Matrix recov-
ered from condi-
tional gradient
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(d) Singular values of recovered matrices
and ground truth

Figure 1: Matrix completion using CoGEnT and CG. Note that CoGEnT recovers the true matrix almost
exactly and correctly identifies the rank.

4 Conclusions

We have described a method for atomic-norm-constrained minimization that enhances the conditional gra-
dient method by allowing periodic reduction and refinement of the basis. Effectiveness of this approach in
producing more compact and more accurate solutions on two problem classes has been demonstrated. We
have also tested the approach on off-grid compressed sensing, standard l-1 recovery, group learning over
graphs, and several other applications. Our experience with these applications will be reported in future
publications.
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