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ABSTRACT
In this paper, we describe an exploration system that was imple-
mented by the search-advertising team of a prominent web-portal
to address the cold ads problem. �e cold ads problem refers to
the situation where, when new ads are injected into the system
by advertisers, the system is unable to assign an accurate quality
to the ad (in our case, the click probability). As a consequence,
the advertiser may su�er from low impression volumes for these
cold ads, and the overall system may perform sub-optimally if the
click probabilities for new ads are not learnt rapidly. We designed
a new exploration system that was adapted to search advertising
and the serving constraints of the system. In this paper, we de�ne
the problem, discuss the design details of the exploration system,
new evaluation criteria, and present the performance metrics that
were observed by us.

1 INTRODUCTION
A basic problem faced by any content delivery system is the cold-
start problem: when new (“cold”) content is injected into the system
that competes with other “warmer” content, how does the system
learn about the quality of the new content and deliver it appropri-
ately and reliably? In addition to improved modeling techniques,
a critical component is a mechanism for exploration. A typical
exploration system randomly boosts cold content over existing
competing content in order to learn about it. While conceptually
simple, the mechanism must be designed carefully to manage the
exploration-exploitation tradeo� in key metrics such as user engage-
ment and revenue, while balancing various other implementation
challenges.

�e work reported in this paper was conducted with a view to
improving the performance of the system on cold ads. We detail
our e�orts to implement and evaluate a new exploration system for
the search advertisting system. While the basic exploration scheme
that we have implemented is based on well-known ideas (ϵ-greedy,
upper-con�dence bound (UCB) based approach), we introduced
novel aspects to the design that may of broader interest. Among
these are:

• Methods for factoring bid information in the sampling
mechanism that guards against revenue loss and provides
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advertisers a lever to increase the exploration rate for their
cold ads,

• New practical methods of evaluation - such as a novel way
of tracking the performance of good versus bad ads found
via exploration. Since our exploration system is tightly
coupled with the production click model, and the design
and evaluation are crucially in�uenced by the same; we
describe this interaction in later sections.

Exploration has a rich history in the machine learning literature
[2–5, 9]. Exploration approaches have been studied in various
contexts such as news article recommendation, native advertising,
search advertising [9, 10], reinforcement learning and its application
to computer games [8]. Furthermore, exploration has also been
used to radically improve the traditional A/B-testing paradigm such
as the work on Multi-World Testing [1]. In contrast to previous
existing works in the applied literature, which focus on designing
exploration to achieve fast online learning with low regret, in this
work we describe a practical approach that is speci�cally tailored
to search ads and is thus tailored to the ad auction – both in terms
of the exploration implementation as well as the evaluation.

�is paper is organized as follows: In Section 2 we discuss the
relevant background concerning the search advertising system. In
Section 3 we describe and discuss the details of our exploration
system. In Section 4 we discuss the evaluation criteria and the
metrics.

2 BACKGROUND
Search advertising, the method of placing relevant online advertise-
ments on web pages that show results from search engine queries,
has become an important part of the online user experience. Search
advertising is an extremely a�ractive proposition for advertisers
because the search query provides a powerful relevance signal that
can be used for targeting only the most appropriate ads. Conceptu-
ally, a typical search advertising system consists of the following
components:

• Campaign management system: this is an inventory of ad-
vertisements (or creatives), along with their title, descrip-
tion, and search keywords based on which they become
eligible for display when the search query is similar to the
keyword. Each advertiser creative also has associated with
it a bid. Importantly, new advertisments are introduced
by the adverisers in the campagin management system
periodically.

• Matching: �e matching system is reponsible for under-
standing the query and retrieving all the relevant ads (from
the campaign management system) that match the query
context.



• Click-model: �e click-model reports an estimate of the
probability of a click for ada, in the context of a queryq by a
useru, denoted bypq,a,u . Each element of the triple (q,a,u)
can be further expanded into more detailed features; for
example the query can be broken down into the tokens
and the characters, the advertisement is associated to a
particular doman, campaign, ad-group and has title and
description features, and lastly the user information may
contain the user-cookie, location, time, gender, IP address
type, etc. which are used as training inputs to the model.

• Auction: �e auction determines the �nal selection of cre-
atives to be displayed, their relative page positions, and
the price-per-click for each. Since search revenue is click-
driven (i.e. an ad is only monetized if upon display it is
clicked by the user), both the bid as well as the click proba-
bility is used in a rank-score for selection/ranking of �nal
ads. �e most commonly used rank-score is the product of
the bid and the estimated click-probability.

A basic challenge that is faced in the context of search adver-
tising is the cold-ad problem. A cold ad refers to a creative that
is introduced by an advertiser which has relatively few or no his-
torical impressions (we call the la�er “frozen” ads). �e cold ad
problem is actually a two-fold problem:

(1) When the ad is cold and has insubstantial historical impres-
sions, many of the ad-speci�c features are unknown and
thus inaccurately learnt. �us, the predicted CTR (i.e the
click-through-rate) of the ad, i.e. pq,a,u is not accurate and
can a�ect the performance of this creative in adverse ways.
�is in turn can cause the overall system to behave sub-
optially, either showing poor quality new ads or showing
stale ones repeatedly instead of new, be�er quality ads.

(2) When a new ad is introduced by an advertiser, the intent
is for it to gain impression volume. However, due to the
predicted CTR being inaccurate, some new ads may be
underpredicted and fail to gain impression volume.

2.1 Impression Volume and Colds Ads
From the advertiser’s perspective, the most serious consequence is
a lack of impression volume of the cold ad. In a typical scenario, an
advertiser introduces a new creative as part of an existing campaign,
or a new campaign altogether. However, the creative in question
fails to get impression volume for one or more of the following
reasons:

• Ad-�ality Filtering (AQF): In order to maintain a certain
minimum quality of content displayed online, ads deemed
low-quality (in the context of a query) are o�en �ltered
out and made ineligible for the auction. �us, regardless
of the bid on such a creative, it may be �ltered if its quality
score is too low. �e primary quality score currently used
within the system is the predicted click probability pq,a,u .
�us, if for a cold ad pq,a,u is below a threshold tAQF , the
cold ad will be blocked from gaining impression volume
(for that query and user combination).

• Reserve Price: Regardless of the presence of other com-
peting ads, every advertisement must clear a particular
reserve price in the auction in order to obtain impressions,

i.e. the product of its bid and predicted CTR must be above
a certain threshold (we denote it by treserve. If the cre-
ative falls below this monetization threshold, the creative
is deemed to be not worth (in monetary terms) the adverse
user experience created by the introduction of the ad on
the search page.

• Auction: A creative can be blocked from gaining impres-
sion volume because it competes in a deep-market query
with many other ads with a higher rank-score. For in-
stance, if no more than �ve ads are eligible for display on
the search page, and there are at least �ve other ads with
a higher score (i.e. the product of bid and predicted CTR),
the new creative will not gain impression volume.

A crucial observation is that the above blockers to impression
volume are all sensitive to the predicted CTR, pq,a,u . AQF directly
depends on the predicted CTR, and the CTR is the only system-
related factor in the reserve price as well as the auction (since
the bids are controlled by the advertisers). �us, if the CTR is
predicted inaccurately on cold ads, impression volume is directly
impacted. Furthermore, a substantial volume of creatives returned
by matching are cold, and thus the overall performance of the
system depends crucially on predicting on cold ads accurately. Fig.
1 shows a histogram of impression volume by its coldness level, and
indicates that a signi�cant fraction of ads returned are cold/frozen
(a frozen ad is one that has no impression history whereas a cold
ad is one with small impression history).

2.2 Click Model and Cold Ads
�e current production click-model is a supervised feature-based
model:

p (click|q,a,u) = pq,a,u := F ( fj (q,a,u))

where
{
fj (q,a,u)

}
j=1, ...,N is the jth feature extracted for query q,

ad a and user u, and F is chosen from a parameteric function class
(such as logistic regression or gradient boosted decision trees) and
the parameters are selected by empirical loss minimization from
historical data [6]. �e most important features of the model (i.e.
the ones that largely determine the predicted click-probability) are
the so called click-feedback features, also known as the EC/COEC
features [6, 7].

• EC features: �ese capture position-normalized impres-
sions for the corresponding feature. �e EC feature for a
creative, denotedCRTEC is especially important for explo-
ration since it counts the number of times (suitably nor-
malized) the ad has been shown historically, i.e. a measure
of how cold the ad is.

• COEC features: �ese capture click information. �e CRT-
COEC is de�ned to be the number of historical clicks
achieved by the creative id in question normalized by the
EC, and is a proxy for the position-normalized historical
CTR for that ad.

During training, the feature weights are learnt for each feature
of the form described above. Accurate click prediction depends
crucially on the correct learning of feature weights. �e feature
weights for features that have occured very few times in training are
quite unreliable. For instance, a creative that has only 5 impressions



Figure 1: We show a histogram of the number of historical
impressions of ads that are returned by the ad-matching sys-
temon a particular day of tra�c. Note that the x-axis has the
number of historical impressions corresponding to ads, and
these are normalized for position e�ects, and also rescaled
so as not to reveal sensitive proprietary data. �e y-axis cor-
respond to the frequencywithwhich ads falling into the cor-
responding historical count bucket appear on that day. Ads
to the le� of the red line are considered cold ads. We see
that a substantial number of ads returned are cold (i.e. the
histogram is skewed to the le�), thereby emphasizing the
scope of the problem.

with a single click will learn a CRTCOEC weight such that the
predicted CTR would be close to 0.2. However, if the click were
accidental, and the true CTR was much closer to .02, the learnt
weight would be substantially incorrect. An even more extreme case
is when the CRT in question has never been seen before (in which
case the feature takes on a default value and the weight corresponds
to the historical weight for all frozen CRTs). In this situation, if the
CTR for the frozen ad is underpredicted, not only will the CRT not
gain impression volume (adverse for advertiser), but as consequence
the EC and COEC values will continue to remain incorrect and
click model will never have an opportunity to learn the true CTR.
Fig. 2 shows the click-prediction accuracy of ads as a function of
the number of historical impressions of the creative. �e �gure
clearly shows that predictions for cold ads are more inaccurate as
compared to warm ads. Exploration is a crucial component for the
long-term health of a search advertisting system. Unless cold ads
are impressed, the system cannot learn its features, and there is
a danger that it would keep showing stale ads. �is may be bad
not only for advertisers seeking volume for new, cold ads, but also
suboptimal in terms of revenue and user experience for the overall
system.

2.3 Exploration-Exploitation Tradeo�
Intimately tied to the cold ads problem is the well-known exploration-
exploitation tradeo� [10]. In this context the tradeo� is clear: any

Figure 2: We show how the click-model’s accuracy behaves
as a function of the historical impressions recieved by cor-
responding creative. On the x-axis is the logarithm of the
number of historical impressions (normalized for position
e�ects, and rescaled), and the y-axis is a notion of error
called the relative bias of the ad. We see that for cold ads,
the error is substantially worse than for warm ads.

given query yields multiple ads competing in the auction with dif-
ferent rank-scores. �e warm ads have a lower variance in the
predicted CTR (and hence a lower variance in the rank-score). �e
cold ads, have a higher variance. Exploitation would correspond
to picking the safe option, i.e. warm ads with highest rank-scores.
Exploration would correspond to picking the cold ads with none
or few historical impressions, thereby discovering potentially new
high-quality ads at the risk of also showing low-quality ads and
thereby losing revenue. Understanding this tradeo� has a rich
literature in machine-learning [2–5, 9].

Problems of this �avor are o�en studied as multi-armed bandit
problems [3]. In this se�ing, the decision-maker is presented with
the opportunity to select (or “pull”) one (or more generally k) arms
from a selection of n arms of a slot machine. Each arm (in our
context, an arm is an ad) has a random reward with a �xed but
unknown distribution. �e objective of the decision-maker is to,
over multiple rounds, maximize her expected reward. Once an arm
is pulled (i.e. ad is shown), a reward from the distribution of the arm
is realized, and the decision-maker may learn from this information.
A pertinent modi�cation of the multi-armed bandit problem is the
contextual bandit problem. In this se�ing, each arm also presents a
context or a feature vector. In our se�ing, the feature vector would
correspond to the click-modeling features (i.e. information about
the query, ad, and user).

Popular methods for exploration-exploitation involve sequen-
tially acting and learning statistics of the unknown arm distribu-
tions. For each arm, a prior distribution is assumed. At each stage,
an action is performed (selection of arm i), a reward is obtained,
and the posterior distribution (or some su�cient statistics) corre-
sponding to the pulled arm i is updated. Most commonly, the prior
is assumed to be normal and the main statistics that are tracked are
the mean of the arm (i.e. p̂i as well as the variance of the arms σ̂ 2

i ).
Some well-known approaches for the same [3, 4] are the following:



• �ompson sampling: in this approach, the rewards are
sampled from the posterior distribution and the arm with
the maximum sampled reward is picked.

• UCB: in this approach the decision rule is to pick the arm
with the highest expected reward plus a standard deviation
(i.e. the upper con�dence bound).

• ϵ-greedy: In this approach, exploration is only performed
on a fraction ϵ of the rounds, either completely randomly,
or as per one of the two above strategies.

We adopted UCB over the �ompson sampling based approach
as we favor a deterministic exploration approach as opposed to a
randomized one (sampling from posterior), both for computational
reasons as well as ease of post-hoc analysis. In order to be conser-
vative, we combined UCB with an ϵ-greedy approach where only
fraction of query sessions were made available for exploration (the
other session were pure exploitation).

3 A PRACTICAL IMPLEMENTATION
In our implementation we adopt the UCB based exploration strategy
with an ϵ-greedy exploration. �e precise algorithm is described in
Algorithm 1.

Algorithm 1 Exploration Algorithm for Search Ads
1: Input: query q, user u, ads a1, . . . am their corresponding click

probabilities p1, . . . ,pm , their bids b1, . . . ,bm , and their histori-
cal (position-normalized) impression counts n1, . . . ,nm , black-
list of ads B.

2: Parameters: ϵ , the greed parameter; eligibility thresholds
pth,nth for the probability and coldness; rmax the maximum
number of arms that can be pulled in a single round of explo-
ration; the boosting parameters α ,β .

3: ϵ-Greedy: Sample from Bernoulli distribution X ∼ B (ϵ ). If
X = 0, send F =

{
(ai ,pi ) |i = 1, . . . ,m} to auction and return.

4: Let E = ∅
5: Eligibility: For each i , if pi < pth and ni < nth and ai < B, add

E = E ∪ {i}.
6: Bid-proportional sampling: From E sample

q = min( |E |,rmax) ads randomly with replacement with
probability θ j =

bj∑|E |
k=1 bk

. Let the selected ads have indices

T =
{
i1, . . . ,iq

}
.

7: Boosting: For each j ∈ T , p̄j := pj
(
1 + α√

β+nj

)
.

8: Form �nal set: De�ne
F :=

⋃
j ∈T

{
(aj ,p̄j )

}
∪

⋃
k ∈T \[m]

{
(ak ,pk )

}
9: Output: Return F to the auction.

We discuss a few implementation-related points worthy of men-
tion:

• ϵ-greedy: We pick an ϵ-greedy strategy, wherein only an
ϵ = .05 fraction of query sessions are (randomly) chosen for
exploration. �e principal reason is to be conservative, and
perform exploration in a low-risk, revenue neutral man-
ner. Furthermore, the impression volume is large enough

that with ϵ = .05, an e�ective amount of exploration is
achieved.

• Eligibility: When a query session is activated for explo-
ration, a number of ads are returned by matching for con-
sideration. Not all of these ads are made eligible for ex-
ploration. Ads that have su�cient historical impression
volume (i.e. warm ads) have a reliable predicted CTR, and
there is no need to explore these ads. We choose the thresh-
old nth, by plo�ing the accuracy as a function of historical
impressions. �e value is chosen to be nth = 500. We
also do not explore cold ads whose predicted CTR is un-
der a certain threshold. �e value is chosen to be the one
corresponding to the AQF module (pth = .02), i.e. all ads
below which are �ltered by the AQF module. Lastly, we
also maintain a blacklist B of ads that are explicity prohib-
ited from exploration. �is blacklist corresponds to known
undesirable ads that cause a poor user experience.

• Boosting: �e main mechanism that facilitates explo-
ration is boosting of the predicted click probability. �e
formula for boosting is inspired by the UCB algorithm. In-
tuititvely, the variance of the predicted click probability is
assumed to behave as α p (1−p )

n , where n is the number of
samples. Assuming 1 − p ≈ 1, the upper con�dence bound
assumes the above form. In the formula, α is a parameter
to be tuned, it was picked to ensure that more than 80% of
explored ads would clear the AQF threshold. �e quantity
β is also a tuning parameter and is in place to ensure that
when the number of impressions is zero, the boost factor
remains bounded. Boosting-based exploration of the above
form has been studied in the literature [9].

Note that only some of the cold ads are boosted. �e
warm ads are never boosted and this amounts to the as-
sumption that the uncertainty in the estimate is essentially
zero. Note also that the above approach of boosting is con-
textual because it uses the predicted click probability pj in
the boost function, which in turn depends on the feature
vector f (q,aj ,u).

• Auction: We note that a signi�cant di�erence between
exploration in search advertising as opposed to the conven-
tional multi-armed bandit problems (e.g. recommending
news articles, see [9]) is the presence of the auction. In
our context, pulling an arm is tantamount to boosting the
predicted CTR for the corresponding ad. Post-boosting,
the ad will still compete in an auction, and will translate
into an impression only when its rank-score (product of
bid and predicted CTR) is high enough to win in the auc-
tion. �us, unlike the traditional se�ing, “pulling an arm”
(boosting), is not guaranteed to produce an impression and
thus does not necessarily provide information from which
the click model can learn. As we will see later, measuring
whether the click model actually learns is an important
success criterion for the exploration design.

• Bid-proportional sampling: A large number of ads may
be returned by matching for a given query session. Recall
that from a bandit viewpoint, the ads returned are the
arms. Since only a small number of ads may be displayed



Figure 3: �is plot is a histogram for the persistence of the
ads returned in a 9 day experiment. Each bar shows the num-
ber of cold ads (in bucket) that were returned by matching
at least once on the corresponding (x-axis) number of days.
�e plot demonstrates that a large fraction of cold ads are
not persistent, i.e. they appear only once in a nine-day time-
window, and do not appear again. Such non-persistent ads
cannot be learnt, and are ignored from the subsequent learn-
ing rate analysis.

on a page, boosting too many ads may displace all of the
legitimate high-quality ads the exploration and thereby
hurt revenue/user-experience. �e maximum number of
arms that may be pulled rmax is �xed up-front. We set
rmax = 2.

In certain situations, the number of ads that are eligbile
for exploration may be smaller than rmax, in which case
we decide to explore all the eligible ads. However, in most
situations, the number of eligible ads returned is larger,
and we therefore must decide which ads to explore (i.e.
boost). While randomly choosing (with equal probability)
is a natural approach, we found sampling proportional to
the bid to be quite e�ective. �is approach has multiple
advantages. �e �rst advantage is that by boosting high
bid ads, we increase the likelihood that the boosted ads win
a page slot in the auction. �e second advantage is that
biasing the sampling toward the high bid ads keeps the
price-per-click (PPC) of the auction high, thereby guarding
against a revenue loss. �ird, this provides a lever for
advertisers with cold ads in the system to increase their
volume: they can get higher impression share by simply
increasing their bids.

• Logging/Learning: An important part of the platform is
the data-logging, a detailed record of every impression
and click is kept in a data feed. Due to serving latency
constraints, only the impressed ads are logged. Impor-
tantly, these impressions become part of both the click
feedback EC/COEC features (which are updated) and also
the training data for the next iteration of model update (this
is essentially how learning is achieved from exploration).

Ads that competed in auctions for pageviews, but were
not impressed are not logged. Understanding the perfor-
mance of exploration critically relies on these competing
ads. Hence we enable a special logging mechanism in the
adserver for the exploration bucket that logged all ads that
were returned by the matching module to the click model.
Information of this nature enabled us to gain insights such
as Fig. 1 which were helpful in designing and tuning the
exploration parameters.

• Persistence: An interesting observation related to our ex-
periments was that while there was found to be a high
volume of cold ads, a number of these were not persistent,
i.e. these ads were not consistently returned by matching
(see Fig. 3) for competing in the auction (over multiple
instances of the same query). �is type of behaviour can
occur due to budget constraints imposed by the advertisers
on their campaigns, or the inherent randomness in the
matching algorithms themselves. Learning click probabil-
ities for ads that are not persistent is much harder, and
limits the e�cacy of exploration. It is desirable to focus
exploration only on persistent ads. We found that bid-
proportional sampling helped bias the exploration toward
persistent ads.

4 EVALUATION
We implemented the design of the exploration scheme described
in the preceding section and ran a bucket experiment. �e test
bucket was instrumented with a special form of logging; for each
query session not only were the impressions logged, but also all
the ads that were returned by matching but not impressed (along
with relevant information such as their click probabilities, boost
factors, bids, and other relevant information). �e experiment was
successfully concluded a�er a few weeks of experimentation.

�e evaluation process involved understanding three di�erent
kinds of metrics. �e �rst correspond to understanding the e�ect
of exploration on the click model features (thereby in�uencing the
accuracy of the model on cold ads); we refer to this as the learning
rate. �e second involved understanding the impact on the usual
business metrics. Finally, we also investigated whether or not the
ads explored were “good” versus “bad” — we concretely de�ne these
notions subsequently. We discuss these evaluations in detail in the
sections below.

4.1 Learning Rate Metrics
A widely used metric that characterizes learning achieved by ex-
ploration is the notion of regret [3]. In the regret framework, the
problem of learning click probabilities may be viewed as an online
learning problem where some loss function (e.g. revenue or clicks)
must be optimized in an online manner. �e performance of any
given online algorithm may be compared with the performance of
a hypothetical decision maker with perfect hindsight information.
�e di�erence between the optimum achieved between the two
is called the regret (which can be analytically characterized), and
quality of an algorithm is characterized by how low its regret is.

A basic drawback of regret as a solution-concept is that it is
quintessentially counterfactual in nature. Since the hypothetical
decision-maker can never be realized, the regret cannot be explicitly



measured in a bucket experiment, and it is di�cult to justify from a
business standpoint. Hence we seek an alternate solution concept
that is more closely tied to the product viewpoint.

To arrive at our notion of “learning” we recognize that the click-
model uses logistic regression on a set of features. To predict accu-
rately, the weights must be correctly identi�ed. �e most important
feature that determines the accuracy of the prediction is the CRTEC,
i.e. the number of times a particular creative has been seen his-
torically (i.e. on the training data), see Fig. 2. Hence, to predict
accurately for a given cold ad, exploration must achieve enough
impressions so that its click probability is accurately learnt.

Figure 4: �is plot shows the learning rate achieved for a
pool of cold, persistent ads over an 11 day experiment. It
shows that boosted ads become warm at a faster rate, hence
resulting in faster learning.

More concretely let C be a set of cold ads (represented as creative
ids), �xed on day 0 of the experiment. Let c ∈ C be a �xed creative,
and let nc (t ) be the number of impressions of c on day t of the
experiment. Let N0 denote the coldness threshold, i.e. the threshold
above which ads are considered warm. �e fraction of creatives that
remain cold at day t is then de�ned as f (t ) :=

∑
c∈C 1(nc (t )<N0 )

|C |
,

where 1(·) denotes the indicator function. We will use f (t ) as the
learning rate metric to track. A faster decay of f (t ) indicates that
more ads have become warm (hence the click prediction should be
more accurate). In Fig. 4 for a �xed set of creatives, we show the
learning rate plot with and without exploration.

4.2 Business Metrics
�e standard business metrics of interest are mentioned below. We
explain the role of each metric, along with the bucket metric for
tra�c on tablet devices (performance on desktop was found to be
directionally similar). All results presented below are obtained from
bucket experiments conducted over multiple weeks with su�cient
data so that the results are traditionally regarded as statistically
signi�cant (p-value below 0.001).

• Revenue-Per-Mille (RPM): �is is the revenue generated
per thousand impressions. We found that the RPM was
+1% as compared to the control bucket.

• Price-Per-Click (PPC): �is is the price per click as deter-
mined by the auction. �e PPC was +0.5% as compared to
the control bucket

• Click-�rough Rate (CTR): �is is the number of clicks per
unit of impression (normalized by position) in the north
section of the page. �e CTR was found to be +.04% as
compared to control.

• Click Yield (CY): �e click yield is the number of ad clicks
per total number of searches. �e click yield was found to
be +0.5% compared to control.

• North footprint (NFP). �is correponds to the number of
north ads shown per total number of searches. �e NFP
was found to be +0.2%. �e objective is to achieve positive
metrics for all the above quantities while keeping NFP as
neutral as possible.

Our exploration design was able to demonstrate learning (in the
sense explained above) while maintaining the above revenue and
user engagement metrics neutral, and the experiment was thus
concluded successfully.

4.3 Good versus Bad Ads
In addition to the learning-rate metrics and the business metrics
that were used for the evaluation of the bucket experiments, the
product team also wished to understand whether exploration was
above to discover new ads of high-quality. We hence evaluated this
question by investigating the set of ads that were explored over a
larger volume of tra�c.

To de�ne this notion more formally, we �x a cold ad a, on day
0 of the evaluation. Let pa,init be the predicted CTR for the ad a
(aggregated across all the di�erent queries and users in which the
ad is returned by matching on day 0). On day 0, because the ad a is
cold, the empirical CTR of the ad is unknown. Assuming the ad is
boosted and impressed a su�cient number of times in the next N
days, the ad a will become warm, and its empirical CTR pa,emp is
known

For the purposes of exploration, we say that a cold ad is “good”
when pa,emp − pa,init > δ . (In other words the CTR of the ex-
plored ad is higher than the predicted click probability of the ad
pre-exploration, and hence exploration was able to discover a good
ad). Conversely, we say that an ad is bad when pa,emp−pa,init < −δ .
We set δ = .001, and �nd that in 20 days of exploration data, for
every creative that was persistent (appeared at least 100 times over
multipe days), the following metrics:

Good Ads Bad Ads Neutral Ads
9.5% 85.9% 4.6%

5 CONCLUSION
In this paper, we described our e�orts to build a production-scale
exploration mechanism for a search advertising system. We de-
scribed various pitfalls encountered in the process, novel evaluation
criteria, and important metrics. Speci�cally, we found that, the ex-
ploration system explored a number of new ads, of which 9.5% were
found to be good - i.e. these were ads with higher than expected
click-through-rate, which would have been otherwise discarded
by the advertising system. While we argued, that the notion of



regret (which is typically studied in the machine learning theory
community), due to its’ post-hoc nature, is di�cult to measure, we
proposed tracking good vs. bad ads as a novel, useful, and practical
measure of evaluation for an exploration system.
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