
Compressive sensing off the grid

Abstract— We consider the problem of estimating the fre-
quency components of a mixture of s complex sinusoids
from a random subset of n regularly spaced samples. Unlike
previous work in compressive sensing, the frequencies are not
assumed to lie on a grid, but can assume any values in the
normalized frequency domain [0, 1]. We propose an atomic
norm minimization approach to exactly recover the unobserved
samples, which is then followed by any linear prediction method
to identify the frequency components. We reformulate the
atomic norm minimization as an exact semidefinite program.
By constructing a dual certificate polynomial using random
kernels, we show that roughly s log s logn random samples
are sufficient to guarantee the exact frequency estimation with
high probability, provided the frequencies are well separated.
Extensive numerical experiments are performed to illustrate
the effectiveness of the proposed method. Our approach avoids
the basis mismatch issue arising from discretization by working
directly on the continuous parameter space. Potential impact
on both compressive sensing and line spectral estimation, in
particular implications in sub-Nyquist sampling and super-
resolution, are discussed.

I. INTRODUCTION

In many modern signal processing systems, acquiring a
real-world signal by a sampling mechanism in an efficient
and cost-effective manner is a major challenge. For compu-
tational, cost and storage reasons it is often desirable to not
only acquire, but also to subsequently compress the acquired
signal. A fundamental idea that has the potential to overcome
the somewhat wasteful process of acquiring a signal using
expensive hi-fidelity sensors, followed by compression and a
subsequent loss of fidelity, is the possibility of compressive
sensing: i.e. the realization that it is often possible to combine
the signal acquisition and the compression step by sampling
the signal in a novel way [1]–[4]. Compressive sensing
explores different mechanisms that allow one to acquire
a succinct representation of the underlying system while
simultaneously achieving compression.

Despite the tremendous impact of compressive sensing on
signal processing theory and practice, its development thus
far has focused on signals with sparse representation in finite
discrete dictionaries. However, signals we encounter in the
real world are usually specified by continuous parameters,
especially those in radar, sonar, sensor array, communication,
seismology, remote sensing. Wideband analog signal with
sparse spectrum is another example that is closely tied to
sampling theory [5]–[7]. In order to apply the theory of CS,
researchers in these fields adopt a discretization procedure to
reduce the continuous parameter space to a finite set of grid
points [8]–[14]. While this seemingly simple strategy gives
superior performance for many problems provided that the
true parameters do fall into the grid set, the discretization
introduces recovery issues.

Indeed, one significant drawback of the discretization
approach is the performance degradation when the true signal
is not exactly supported on the grid points, the so called basis
mismatch problem [13], [15], [16]. When basis mismatch
occurs, the true signal cannot be sparsely represented by the
assumed dictionary determined by the grid points. One might
attempt to remedy this issue by using a finer discretization.
However, increasing the discretization level will also increase
the coherence of the dictionary. Common wisdom in com-
pressive sensing suggests that high coherence would also
degrade the performance. It remains unclear whether over-
discretization is beneficial to solving the problems. Finer
gridding also results in higher computational complexity and
numerical instability, overshadowing any advantage it might
have in sparse recovery.

We overcome the issues arising from discretization by
working directly on the continuous parameter space for a
specific problem, where we estimate the continuous frequen-
cies and amplitudes of a mixture of complex sinusoids from
randomly observed time samples. This specific problem in
fact captures all the essential ingredients of applying com-
pressive sensing to problems with continuous dictionaries.
In particular, the frequencies are not assumed to lie on
a grid, and can instead take arbitrary values in [−W,W ]
where W is the bandwidth of the signal. With a time-
frequency exchange, our model is exactly the same as the
one in Candes, Romberg, and Tao’s foundational work on
compressive sensing [1], except that we do not assume the
frequencies lie on a equispaced grid. This major difference
presents a significant technical challenge as the resulting
dictionary is no longer an orthonormal Fourier basis, but
is an infinite dictionary with continuously many atoms and
arbitrarily high coherence.

In this paper we consider signals whose spectra consist
of spike trains with unknown locations in a continuous
normalized interval [0, 1] and whose amplitudes are random
but unknown. Rather than sampling the signal at all times t =
0, . . . , n−1 we randomly sample the signal at times t1, . . . tm
where each tj ∈ {0, . . . , n− 1}. Our main contributions in
this paper are the following:

1) Provided the original signal has a resolvable spectrum
(in a sense that we make precise later), we show that
such a procedure is a viable means for sampling, and
that the original signal can be reconstructed exactly.

2) Our reconstruction algorithm is formulated as the so-
lution to an atomic norm [17] minimization problem.
We show that this convex optimization problem can
be exactly reformulated as a semidefinite program
(hence our methodology is computationally tractable)
by exploiting a well-known result in systems theory



called the bounded real lemma.
3) Our proof technique requires the demonstration of an

explicit dual certificate that satisfies certain interpola-
tion conditions. The production of this dual certificate
requires us to consider certain random polynomial ker-
nels, and proving concentration inequalities for these
kernels. These results may be of independent interest
to the reader.

4) We validate our theory by extensive numerical experi-
ments that confirm random under-sampling as a means
of compression, followed by atomic norm minimiza-
tion as a means of recovery are viable.

This paper is organized as follows. In Section II we intro-
duce the class of signals under consideration, the sampling
procedure, and the recovery algorithm formally. Theorem
II.2 is the main result of this paper. We outline connections
to prior art and the foundations that we build upon in
Section III. In Section IV we present the main proof idea
(though we omit the detailed proofs due to space limitations).
In Section V we present some supporting numerical experi-
ments. In Section VI we make some concluding remarks and
mention future directions.

II. MODEL AND MAIN RESULTS

We start with introducing the signal model and present the
main results.

A. Problem Setup

Suppose we have a signal

x?j =
1√
|J |

s∑
k=1

cke
i2πfkj , j ∈ J, (1)

composed of complex sinusoids with s distinct frequencies
Ω = {f1, · · · , fs} ⊂ [0, 1]. Here J is an index set and |J |
is the size of J . In this paper, J is either {0, · · · , n − 1}
or {−2M, · · · , 2M} for some positive integers n and M .
Any mixture of sinusoids with frequencies bandlimited to
[−W,W ], after appropriate normalization, can be assumed
to have frequencies in [0, 1]. Consequently, a bandlimited
signal of such a form leads to samples of the form (1).

We emphasize that, unlike previous work in compressive
sensing where the frequencies are assumed to lie on a finite
set of discrete points [1], [13], [14], [18], the frequencies in
this work could lie anywhere in the normalized continuous
domain [0, 1].

Instead of observing x?j for all j ∈ J , we observe only
entries in a subset T ⊂ J . The goal is to recover the missing
entries from the observed entries by exploiting the sparsity
of frequencies in the continuous domain [0, 1]. Once the
missing entries are recovered exactly, the frequencies can be
identified by Prony’s method, the matrix pencil approach,
or other linear prediction methods. After identifying the
frequencies, the coefficients {ck, k = 1, . . . , s} can be
obtained by solving a least square problem.

B. Atomic Norms

Define atoms a(f) ∈ C|J|, f ∈ [0, 1] via

[a (f)]j =
1√
|J |

ei2πfj , j ∈ J (2)

and rewrite the signal model (1) in matrix-vector form:

x? =

s∑
k=1

cka(fk) =

s∑
k=1

|ck|eiφ(ck)a(fk) (3)

where φ(·) : C 7→ [0, 2π) extracts the phase of a complex
number. The set of atoms A = {eiφa(f), f ∈ [0, 1], φ ∈
[0, 2π)} are building blocks of the signal x?, the same
way that canonical basis vectors are building blocks for
sparse signals, and unit-norm rank one matrices are building
blocks for low-rank matrices. In sparsity recovery and matrix
completion, the unit balls of the sparsity-enforcing norms,
e.g., the `1 norm and the nuclear norm, are exactly the convex
hulls of their corresponding building blocks. In a similar
spirit, we define an atomic norm ‖ · ‖A by identifying its
unit ball with the convex hull of A:

‖x‖A = inf {t > 0 : x ∈ t conv (A)}

= inf
ck≥0, φk∈[0,2π)

f∈[0,1]

{∑
k

ck : x =
∑
k

cke
iφka(fk)

}
.

(4)

Roughly speaking, the atomic norm ‖ · ‖A can enforce
sparsity in A because low-dimensional faces of conv(A)
correspond to signals involving only a few atoms. The idea
of using atomic norm to enforce sparsity for a general set of
atoms was first proposed and analyzed in [17].

Equation (4) indeed defines a norm if the set of atoms
is bounded, centrally symmetric, and absorbent, which are
satisfied by our choice of A. The dual norm of ‖ · ‖A is

‖z‖∗A = sup
‖x‖A≤1

〈z, x〉R = sup
φ∈[0,2π),f∈[0,1]

〈z, eiφa(f)〉R (5)

In this paper, for complex column vectors x and z, the
complex and real inner products are defined as

〈z, x〉 = x∗z, 〈z, x〉R = Re(x∗z) (6)

respectively, where the superscript ∗ represents conjugate
transpose.

C. Computational Method

With the atomic norm ‖·‖A, we recover the missing entries
of x? by solving the following convex optimization problem:

minimize
x

‖x‖A subject to xj = x?j , j ∈ T. (7)

At this point, it is not clear at all that solving (7) is
computationally feasible, despite that it is a convex opti-
mization (norm minimization subject to linear constraint,
more explicitly). In this subsection, we present an exact
computational method based on semidefinite programming
to solve (7). When J = {0, · · · , n−1} or {−2M, · · · , 2M},



the atomic norm ‖x‖A defined in (4) is equal to the optimal
value of the following semidefinite program:

minimize
X,u,t

1

2
tr(X) subject to X =

[
Toep(u) x
x∗ t

]
� 0.

(8)

Here the linear Toeplitz operator constructs a Hermitian Teo-
plitz matrix Teop(u) from a complex vector u ∈ Cn whose
first element u0 is real. The case for J = {0, · · · , n−1} was
first shown in [19] via the bounded real lemma [20, Section
4.3]. The other case can be proved in a similar manner.

The semidefinite programming characterization (8) of the
atomic norm allows us to reformulate the optimization (7)
as a semidefinite program:

minimize
X,x,u,t

1

2
tr(X)

subject to X =

[
Toep (u) x

x∗ t

]
< 0 (9)

xj = x?j , j ∈ T.

D. Random Model

To quantify the performance of (7), we adopt a Bernoulli
observation model and a random sign signal model.

Bernoulli Observation Model: We observe entries in J
independently with probability p. Let δj = 1 or 0 indicate
whether we observe the jth entry. Then {δj}j∈J are i.i.d.
Bernoulli random variables such that

P (δj = 1) = p. (10)

Therefore, on average we observe p|J | entries,
Random Sign Model: We also assume that the complex

signs for the coefficients ck are uniformly random, namely,
{sign (ck) = ck/|ck|, k = 1, . . . , s} are independent and
identically distributed according to the uniform distribution
on the complex unit circle.

E. Main Results

We quantify the separation of fks as follows:

∆f = min
k 6=j
|fk − fj | (11)

where the distance |fk − fj | is understood as the wrap-
around distance on the unit circle.

Our major result concerns the symmetric case J =
{−2M, . . . , 2M}, where we use a Bernoulli observation
model with

P(δj = 1) = p = m/M, j = −2M, · · · , 2M. (12)

Theorem II.1. Suppose we observe the time samples of

xj =
1√

4M + 1

s∑
k=1

cke
i2πfkj (13)

on the index set T ⊂ J = {−2M, . . . , 2M} according to
the Bernoulli observation model (12) and sign(ck)s follow
i.i.d. uniform distribution on the complex unit circle. If ∆f ≥

∆min = 1
M , then there exists a numerical constant C such

that

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
, (14)

is sufficient to guarantee that with probability at least 1− δ,
x? is the unique optimizer to (7).

It is not difficult to translate this result to the case J =
{0, . . . , n− 1}.

Corollary II.2. Suppose we observe the time samples of

xj =
1√
n

s∑
k=1

cke
i2πfkj (15)

on the index set T ⊂ J = {0, . . . , n − 1} according to
the Bernoulli observation model with the average number
of samples m = E|T | and sign(ck)s follow i.i.d. uniform
distribution on the complex unit circle. If ∆f ≥ ∆min =

1
b(n−1)/4c , then there exists a numerical constant C such
that

m ≥ C max
{

log2 n

δ
, s log

s

δ
log

n

δ

}
, (16)

is sufficient to guarantee that with probability at least 1− δ,
x? is the unique optimizer to (7).

Remark II.3. (Sub-Nyquist Sampling) The normalization
in our model is such that we sample above the Nyquist
frequency when we observe all entries. To see this, suppose
the frequencies lie in

[
−W2 ,

W
2

]
, and x? (t) is a continuous

signal of the form:

x? (t) =
1√
n

s∑
k=1

cke
i2πwkt, wk ∈

[
−W

2
,
W

2

]
, t ∈ R.

(17)

By taking regular spaced Nyquist samples at t ∈
{0/W, 1/W, · · · , (n− 1)/W}, we observe

x?j := x? (j/W ) =
1√
n

s∑
k=1

cke
i2π

wk
W j

=
1√
n

s∑
k=1

cke
i2πfkj with fk =

wk
W
∈
[
−1

2
,

1

2

]
, (18)

exactly the same as our model (1) after a trivial translation
of the frequency domain.

However, if we use random sampling studied in this paper,
we take exponentially less samples, namely, reducing the
number of samples from n to O(s log s log n). Therefore,
by exploiting sparsity in the signal spectrum, we could
sample beyond Nyquist, exponentially. Compressed sensing
has shown that such scaling is possible when the frequenices
are constrained to lie on a discrete grid [1], [5]–[7]. The main
innovation in this work is that we do not assume such a grid
and allow the frequencies to attain a continuum of values.

Finally, we point out that Prony’s method based on regu-
larly spaced samples requires Nyquist sampling.
Remark II.4. (Resolution) The number of measurements
required is roughly at the order of O(s log s log n). The



resolution we get is roughly 4
n . Therefore, by using random

sampling, we increase the resolution from 4
s log s logn , which

is what we get using equispaced sampling [21], to 4
n , i.e.,

an exponential improvement. We comment that numerical
simulations in Section V suggest that the critical separation
is actually 1

n . We leave tightening our bounds by the extra
constant of 4 to future work.

F. Basis Mismatch Conundrum

Our result resolves the basis mismatch conundrum of the
discretization method. One approach to approximately solve
the optimization problem (7) is described below. We start
by discretizing the frequency domain [0, 1] into N grid
points {j/N, j = 0, · · · , N − 1} ⊂ [0, 1] and consider the
following set of atoms:

AN =
{
eiφa (j/N) : φ ∈ [0, 2π), 0 ≤ j ≤ N − 1

}
⊂ A.

(19)

The set of atoms AN also defines an atomic norm ‖ · ‖AN
.

The authors of [19] showed that ‖ · ‖AN
approximates ‖ · ‖A

for reasonably fine discretization. More specifically, for any
x ∈ C|J|, we have

(1− 2π|J |/N) ‖x‖AN
≤ ‖x‖A ≤ ‖x‖AN

. (20)

Note that the computation of ‖·‖AN
involves solving a linear

program, or more specifically, a basis pursuit problem:

‖x‖AN
= min{‖c‖1 : x = Ac}, (21)

where A ∈ C|J|×N is the matrix whose jth column is
a (j/N). If we replace ‖x‖A with ‖x‖AN

in (7), the resulting
optimization is also a basis pursuit problem:

minimize
c

‖c‖1 subject to x?j = (Ac)j , j ∈ T. (22)

This forms the basis of the discretization computational
method presented in Section V. However, as mentioned in the
introduction, when the frequencies do not fall onto the grid,
the signal x? is not sparse or even compressible [13], [15],
potentially degrading the performance of sparsity recovery.
If one tries to remedy the issue by increasing the level of
discretization, not only does one need to solve larger convex
programs, but the coherence of the resulting dictionary will
also increase. Hence, there seems to be a dilemma in sparse
representation and incoherence regarding whether to use finer
grid.

In our atomic norm formulation, the dictionary can be
seen as having continuously many elements and is arbitrarily
coherent globally. Therefore, Corollary II.2 shows that the
global coherence of the frame is not an obstacle to recovery.
What matters more is the local coherence characterized
by the separation between frequencies in the true signal.
Although we do observe performance improvement by in-
creasing the discretization level, overly fine grid usually
leads to dictionaries that are poorly conditioned, yielding
unstable numerical procedures, and a substantial increase
in computational complexity. In this regard, the continuous
formulation (7) and the corresponding semidefinite program
(9) seem to be a more desirable choice.

III. PRIOR ART AND INSPIRATIONS

Accurate frequency estimation from time samples is a
fundamental task in signal processing. When the frequency
domain is composed of line spectra, the so called line
spectral estimation is critical to many applications including
sensor array networks, array signal processing, NMR, radar
target detection and sonar [22]. Problems involving signals
composed of shifted versions of a common mother function
[23], such as those in neural spike train detection [24]
and LIDAR [25], can also be formulated as a line spectral
estimation using Fourier transform.

Frequency estimation is extensively studied and techniques
for estimating sinusoidal frequencies from time samples goes
back to Prony [26]. Many linear prediction algorithms based
on Prony’s method were proposed to estimate the frequencies
from regularly spaced time samples. A survey of these meth-
ods can be found in [27] and an extensive list of references
is given in [28]. With equispaced samples, these root-finding
based procedures deal with the problem directly on the
continuous frequency domain, and can recover frequencies as
long as the number of samples is at least twice of the number
of frequencies, no matter how closely these frequencies are
located [22], [26]–[28]. In recent work [21], Candès and
Fernandez-Granda studied this problem from the point of
view of convex relaxations and proposed a total-variation
norm minimization formulation that provably recovers the
spectrum exactly. However, the convex relaxation requires
the frequencies to be well separated. In [19], the authors
proposed using atomic norm to denoise a line spectral signal
corrupted with gaussian noise, and reformulated the resulting
atomic norm minimization as a semidefinite program using
bounded real lemma [20]. Denosing is important to frequency
estimation since the frequencies in a line spectral signal
corrupted with moderate noise can be identified by linear
prediction algorithms. Since the atomic norm framework
in [19] is essentially the same as the total-variation norm
framework of [21], the same semidefinite program can also
be applied to total-variation norm minimization.

What is common to all aforementioned approaches, in-
cluding linear prediction methods, is the reliance on observ-
ing uniform or equispaced time samples. In sharp contrast,
we show that nonuniform sampling is not only a viable
option, and that the original spectrum can be recovered
exactly in the continuous domain, but in fact is a means of
compressive sampling. Indeed non-uniform sampling allows
us to effectively sample the signal at a sub-Nyquist rate.
For array signal processing applications, this corresponds to
the reduction in the number of sensors required for exact
recovery, since each sensor obtains one spatial sample of
the field. An extensive justification of the necessity of using
randomly located sensor arrays can be found in [29]. To
the best of our knowledge, little is known about exact
line-spectrum recovery with non-uniform sampling, except
sporadic work using `2-norm minimization to recover the
missing samples [30], or based on nonlinear least square
data fitting [31].



An interesting feature related to using convex optimization
based methods for estimation such as [21] is a particular
resolvability condition: the separation between frequencies
is required to be greater than 4

n where n is the number
of measurements. Linear prediction methods do not have
a resolvability limitation, but it is known that in practice
the numerical stability of root finding limits how close the
frequencies can be. Theorem II.1 can be viewed as an
extension of the theory to nonuniform samples. Note that
our approach gives an exact semidefinite characterization
using the bounded real lemma, and is hence computationally
tractable. We believe our results have potential impact on two
related areas: extending compressive sensing to continuous
dictionaries, and extending line spectral estimation to nonuni-
form sampling, thus providing new insight in sub-Nyquist
sampling and super-resolution.

IV. PROOF IDEAS

In this section we briefly describe the proof architecture.
Interested reader can refer to the technical report for more
details. The following proposition indicates that the key is to
construct a dual polynomial to certify the unique optimality
of x?.

Proposition IV.1. The original signal x? is the unique
optimizer to (7) if there exists a dual polynomial

Q (f) =
1√
|J |

∑
j∈J

qje
−i2πjf (23)

satisfying

Q (fk) = sign (ck) ,∀fk ∈ Ω (24)
|Q (f)| < 1,∀f /∈ Ω (25)

qj = 0,∀j /∈ T. (26)

In the equispaced case where T = J , Candès and
Fernandez-Granda [21] exhibited an explicit dual certificate
composed of the squared Fejér kernel (denoted by K(·)) as
follows: Write Q(f) =

∑s
k=1 αkK(f − fk) +

∑
βkK

′(f −
fk). One then selects the coefficients α and β such that the
interpolation conditions (24) are satisfied, and in addition
such that at fks Q(f) attains a local maximum (so that (25)
is satisfied). Note that the condition (26) is absent in their
setting since the set T c is empty. The squared Fejer kernel
is a good candidate kernel because it attains the value of 1
at its peak, and rapidly decays to zero. Provided a separation
conditions is satisfied by the original signal, a suitable set of
coefficients α and β can always be found.

The main difference in our setting is that the demands of
our polynomial Q(f) are much stricter as manifested by (26).
Our polynomial is required to have most of its coefficients be
zero. The main proof technique then is to modify the kernel
K(·) to its random counter part Kr(·), which has nonzero
coefficients only on the random subset T , with the property
that EKr = K and such that Kr concentrates tightly around
K.
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Fig. 1: Plot of kernels: |Kr(f)| and |K(f)|

The rest of the proof consists of three steps:
1) Show the construction is meaningful with high proba-

bility by establishing the invertibility of certain linear
system using matrix Bernstein inequality [32];

2) Show the random perturbation introduced to the dual
polynomial by the random kernel is small on a set
of finite grid points with high probability, implying
the random dual polynomial satisfies the constraints in
Proposition IV.1 on the grid; This step is proved using
a modification of the idea in [33].

3) Extend the result to [0, 1] using Bernstein’s polynomial
inequality [34].

V. NUMERICAL EXPERIMENTS

We conducted a series of numerical experiments to test
the performance of (7) under various parameter settings. We
use J = {0, . . . , n− 1} for all numerical experiments.

We compared the performance of two algorithms: the
semidefinite program (9) solved by the SDPT3 solver [35]
and the basis pursuit (22) obtained through discretization,
which was solved using CVX [36] coupled with SDPT3. All
parameters of the SDPT3 solver were set to default values
and CVX precision was set to ‘high’. In the following, we
use SDP and BP to label the semidefinite program algorithm
and the basis pursuit algorithm, respectively. For the BP, we
used three levels of discretization, which are 4, 16, and 64
multiples of the signal dimension.

To generate our instances of form (3), we sampled s =
ρsn normalized frequencies from [0, 1], either randomly, or
equispaced, with an additional constraint on the minimal sep-
aration ∆f . The signal coefficient magnitudes |c1|, · · · , |cs|
are either unit, i.e., equal to 1, or fading, i.e., equal to .5+w2

with w a zero mean unit variance Gaussian random variable.
The signs {eiφk , k = 1, · · · , s} follow either Bernoulli ±1
distribution, labeled as real, or uniform distribution on the
complex unit circle, labeled as complex. A length n signal
was then formed according to model (3). As a final step, we
uniformly sample ρmn entries of the resulting signal.

We tested the algorithms on three sets of experiments. In
the first experiment, by running the algorithms on a randomly
generated instance with n = 256, s = 6 and 40 uniform
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Fig. 2: Frequency Estimation

samples, we compare SDP and BP’s ability of frequency
estimation and visually illustrate the the effect of discretiza-
tion. We see from Figure 2 that SDP recovery followed by
matrix pencil approach to retrieve the frequencies gives the
most accurate result. We also observe that increasing the
level of discretization can increase BP’s accuracy in locating
the frequencies.

In the second set of experiments, we compare the perfor-
mance of SDP and BP with three levels of discretization in
terms of solution accuracy and running time. The parameter
configurations are summarized in Table I. Each configuration
was repeated 10 times, resulting a total of 2160 valid
experiments.

TABLE I: Parameter configurations

n 64, 128, 256
ρs 1/16, 1/32, 1/64
ρm/ρs 5, 10, 20
|ck| unit, fading
frequency random, equispaced
sign real, complex

We use the performance profile as a convenient way
to compare the performance of different algorithms. The
performance profile proposed in [37] visually presents the
performance of a set of algorithms under a variety of
experimental conditions. More specifically, let P be the
set of experiments and Ma(p) specify the performance of
algorithm a on experiment p for some metricM (the smaller
the better), e.g., running time and solution accurary. Then the
performance profile Pa(β) is defined as

Pa(β) =
#{p ∈ P :Ma(p) ≤ βminaMa(p)

#(P)
, β ≥ 1.

(27)

Roughly speaking, Pa(β) is the fraction of experiments such
that the performance of algorithm a is within a factor β of
that of the best performed one.

We show the performance profiles for numerical accuracy
and running times in Figure 3a and 3b, respectively. We can
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Fig. 3: Performance profiles

see that SDP outperforms BP for all tested discretization
levels in terms of numerical accuracy. But SDP is also the
slowest.

To give the reader a better idea of the numerical accuracy
and the running time, we present their medians for the four
algorithms in Table II. As one would expect, the running
time increases as the discretization level increases. We also
observe that SDP is very accurate, with an median error at
the order of 10−9. Increasing the level of discretization can
increase the accuracy of BP. However, with discretization
level N = 64n, we get a median accuracy at the order of
10−6, but the median running time already exceeds that of
SDP.

TABLE II: Medians for solution accuracy and running time

SDP BP: 4x BP: 16x BP: 64x
Running Time (s) 42.48 11.40 21.48 54.87
Solution Accuracy 9.50e-10 5.44e-04 2.84e-05 2.46e-06

In the third set of experiments, we compiled two phase
transition plots. To prepare the Figure 4a, we pick n = 128
and vary ρs = 2

n : 2
n : 100

n and ρm = 2
n : 2

n : 126
n .

For each fixed (ρm, ρs), we randomly generate s = nρs
frequencies while maintaining a frequency separation ∆f ≥
1
n . The coefficients are generated with random magnitudes
and random phases, and the entries are observed uniform
randomly. We then run the SDPT3-SDP algorithm to recover
the missing entries. The recovery is considered successful if



(a) Phase transition with ∆f ≥ 1
n

.

(b) Phase transition with ∆f ≥ 1.5
n

.

Fig. 4: Phase transition: The plots are on a color scale where
red represents success while blue represents failure.

the relative error ‖x̂ − x?‖2/‖x?‖2 ≤ 10−6. This process
was repeated 10 times and the rate of success was recorded.
Figure 4a shows the phase transition results. The x-axis
indicates the fraction of observed entries ρm, while the y-axis
is ρs = s

n . The color represents the rate of success with red
corresponding to perfect recovery and blue corresponding to
complete failure.

We also plot the line ρs = ρm/2. Since a signal of s
frequencies has 2s degrees of freedom, including s frequency
locations and s amplitudes, this line serves as the boundary
above which any algorithm should have a chance to fail. In
particular, Prony’s method requires 2s consecutive samples
in order to recover the frequencies and the magnitudes.

From Figure 4a, we see that there is a transition from
perfect recovery to complete failure. However, the transition
boundary is not very sharp. In particular, we notice failures
below the boundary of the transition where complete success
should happen. Examination of the failures show that they
correspond to instances with minimal frequency separations
marginally exceeding 1

n . We expect to get cleaner phase
transitions if the frequency separation is increased.

To prepare Figure 4b, we repeated the same process in

preparing Figure 4a except that the frequency separation was
increased from 1

n to 1.5
n . In addition, to respect the minimal

separation, we reduced the range of possible sparsity levels to
{2, 4, . . . , 70}. We now see a much sharper phase transition.
The boundary is actually very close to the ρs = ρm/2 line.
When ρm is close to 1, we even observe successful recovery
above the line.

VI. CONCLUSION AND FUTURE WORK

By using atomic norm minimization, we proposed an
approach to identify continuous frequencies in a line spectral
signal from randomly observed samples. For signals with
well-separated frequencies, we show the number of samples
needed is roughly propositional to the number of frequencies,
with some extra logarithm factors. The resulting optimization
problem is shown equivalent to a semidefinite program. This
work is incomplete in several regards and we plan to continue
investigating the following directions:
• Robustness of the approach to noise;
• Approximate frequency recovery in the presence of

noise;
• The parallel case of random linear measurements;
• Practical sampling scheme for analog signals;
• Models other than complex exponentials.
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