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Abstract

We consider the problem of estimating the frequency components of a mixture of s complex
sinusoids from a random subset of n regularly spaced samples. Unlike previous work in com-
pressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in
the normalized frequency domain [0, 1]. We propose an atomic norm minimization approach to
exactly recover the unobserved samples. We reformulate this atomic norm minimization as an
exact semidefinite program. Even with this continuous dictionary, we show that most sampling
sets of size O(s log s log n) are sufficient to guarantee the exact frequency estimation with high
probability, provided the frequencies are well separated. Extensive numerical experiments are
performed to illustrate the effectiveness of the proposed method.

Keywords. atomic norm, basis mismatch, compressed sensing, continuous dictionary, line
spectral estimation, nuclear norm relaxation, Prony’s method, sparsity

1 Introduction

Compressed sensing has demonstrated that data acquisition and compression can often be com-
bined, dramatically reducing the time and space needed to acquire many signals of interest [2,
10, 11, 19]. Despite the tremendous impact of compressed sensing on signal processing theory and
practice, its development thus far has focused on signals with sparse representation in finite dis-
crete dictionaries. However, signals encountered in applications such as radar, sonar, sensor array,
communication, seismology, and remote sensing are usually specified by parameters in a continu-
ous domain [23, 37, 47]. In order to apply the theory of compressed sensing to such applications,
researchers typically adopt a discretization procedure to reduce the continuous parameter space
to a finite set of grid points [1, 3, 21, 24, 28, 34, 38]. While this simple strategy yields state-of-the-
art performance for problems where the true parameters lie on the grid, discretization has several
significant drawbacks.

One major weakness of discretization is basis mismatch, where the true signal cannot even be
sparsely represented by the discrete dictionary [16, 21, 29]. One might attempt to remedy basis
mismatch by using a finer discretization or adding extra basis elements. However, increasing the
size of the dictionary will also increase the correlation between the basis elements. Common wisdom
in compressed sensing suggests that low-correlation1 between dictionary elements is necessary for
high fidelity signal recovery, casting doubt as to whether additional discretization is beneficial.
Finer gridding also results in higher computational complexity and numerical instability, further
diminishing any advantage it might have in sparse recovery applications.

1In compressed sensing, the maximum correlation between columns is called the coherence of the dictionary
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We overcome the issues arising from discretization by working directly on the continuous pa-
rameter space for estimating the continuous frequencies and amplitudes of a mixture of complex
sinusoids from partially observed time samples. In particular, the frequencies are not assumed to
lie on a grid, and can instead take arbitrary values across the bandwidth of the signal. With a
time-frequency exchange, our model is exactly the same as the one in Candès, Romberg, and Tao’s
foundational work on compressed sensing [10], except that we do not assume the frequencies lie on
an equispaced grid. This major difference presents a significant technical challenge as the resulting
dictionary is no longer an orthonormal Fourier basis, but is an infinite dictionary with continuously
many atoms and arbitrarily high correlation between candidate models. We demonstrate that a
sparse sum of complex sinusoids can be reconstructed exactly from a small sampling of its time
samples provided the frequencies are sufficiently far apart from one another.

Our computational method and theoretical analysis is based upon the atomic norm induced by
samples of complex exponentials [15]. Chandrasekaran et al showed the atomic norm is in some
sense the best convex heuristic for underdetermined, structured linear inverse problems, and it
generalizes the `1 norm for sparse recovery and the nuclear norm for low-rank matrix completion.
The norm is a convex function, and, in the case of complex exponentials, can be computed via
semidefinite programming. Below, we show how the atomic norm for moment sequences can be
derived either from the perspective of sparse approximation or rank minimization [40], illuminating
new ties between these related areas of study. Much as was the case in other problems where the
atomic norm has been studied, we prove that atomic norm minimization achieves nearly optimal
recovery bounds for reconstructing sums of sinusoids from incomplete data.

To be precise, we consider signals whose spectra consist of spike trains with unknown locations in
a normalized interval [0, 1]. Rather than sampling the signal at all times t = 0, . . . , n−1 we sample
the signal at a subset of times t1, . . . tm where each tj ∈ {0, . . . , n− 1}. Our main contribution is
summarized by the following theorem.

Theorem 1.1. Suppose we observe the time samples of the signal

x?j =

s∑
k=1

cke
i2πfkj (1.1)

with unknown frequencies {f1, . . . , fs} ⊂ [0, 1] on an index set T ⊂ {0, . . . , n− 1} of size m selected
uniformly at random. Additionally, assume sign(ck) are drawn i.i.d. from the uniform distribution
on the complex unit circle and

∆f = min
k 6=j
|fk − fj |

where the distance |fk − fj | is understood as the wrap-around distance on the unit circle. If ∆f ≥
1

b(n−1)/4c , then there exists a numerical constant C such that

m ≥ C max
{

log2 n

δ
, s log

s

δ
log

n

δ

}
,

is sufficient to guarantee that we can recover x? via a semidefinite programming problem with
probability at least 1− δ.

Once the missing entries are recovered exactly, the frequencies can be identified by Prony’s
method [17], a matrix pencil approach [31], or other linear prediction methods [45]. After identifying
the frequencies, the coefficients {ck}sk=1 can be obtained by solving a linear system.
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Remark 1.2. (Resolution) An interesting artifact of using convex optimization methods is the
necessity of a particular resolution condition on the spectrum of the underlying signal. For the
signal to be recoverable via our methods using O(s log s log n) random time samples from the set
{0, 1, . . . , n− 1}, the spikes in the spectrum need to be separated by roughly 4

n . In contrast, if
one chose to acquire O(s log s log n) consecutive samples from this set (equispaced sampling), the
required minimum separation would be 4

s log s logn ; this sampling regime was studied by Candés
and Fernandez-Granda [7]. Therefore, by using random sampling, we increase the resolution from

4
s log s logn , which is what we get using equispaced sampling [7], to 4

n , i.e., an exponential improve-
ment. We comment that numerical simulations in Section 5 suggest that the critical separation is
actually 1

n . We leave tightening our bounds by the extra constant of 4 to future work.

Remark 1.3. (Random Signs) The randomness of the signs of the coefficients essentially assumes
that the sinusoids have random phases. Such a model is practical in many spectrum sensing
applications as argued in [47, Chapter 4.1]. Our proof will reveal that the phases can obey any
symmetric distribution on the unit circle, not simply the uniform distribution.

Remark 1.4. (Band-limited Signal Models) Note that any mixture of sinusoids with frequencies
bandlimited to [−W,W ], after appropriate normalization, can be assumed to have frequencies in
[0, 1]. Consequently, a bandlimited signal of such a form leads to samples of the form (1.1). More
precisely, suppose the frequencies lie in [−W,W ], and x? (t) is a continuous signal of the form:

x? (t) =
s∑

k=1

cke
i2πwkt .

By taking regularly spaced Nyquist samples at t ∈ {0/2W, 1/2W, . . . , (n− 1)/2W}, we observe

x?j := x? (j/2W ) =

s∑
k=1

cke
i2π

wk
W
j

=

s∑
k=1

cke
i2πfkj with fk =

wk
2W
∈
[
−1

2
,
1

2

]
,

exactly the same as our model (1.1) after a trivial translation of the frequency domain.

Remark 1.5. (Basis Mismatch) Finally, we note that our result completely obviates the basis
mismatch conundrum of discretization methods, where the frequencies might well fall off the grid.
Since our continuous dictionary is globally coherent, Theorem 1.1 shows that the global coherence
of the frame is not an obstacle to recovery. What matters more is the local coherence characterized
by the separation between frequencies in the true signal.

This paper is organized as follows. First, we specify our reconstruction algorithm as the solu-
tion to an atomic norm minimization problem in Section 2. We show that this convex optimization
problem can be exactly reformulated as a semidefinite program and that our methodology is thus
computationally tractable. We outline connections to prior art and the foundations that we build
upon in Section 3. We then proceed to prove Theorem 1.1 in Section 4. Our proof requires the con-
struction of an explicit certificate that satisfies certain interpolation conditions. The production of
this certificate requires us to consider certain random polynomial kernels, and derive concentration
inequalities for these kernels that may be of independent interest to the reader. In Section 5, we
validate our theory by extensive numerical experiments, confirming that random under-sampling
as a means of compression coupled with atomic norm minimization as a means of recovery are a
viable, superior alternative to discretization techniques.
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2 The Atomic Norm and Semidefinite Characterizations

Our signal model is a positive combination of complex sinuoids. As motivated in [15], a natural
regularizer that encourages a sparse combination of such sinusoids is the atomic norm induced by
these signals. Precisely, define atoms a(f, φ) ∈ C|J |, f ∈ [0, 1] and φ ∈ [0, 2π) as

[a (f, φ)]j =
1√
|J |

ei(2πfj+φ), j ∈ J

and rewrite the signal model (1.1) in matrix-vector form

x? =
s∑

k=1

|ck|a(fk, φk) (2.1)

where J is an index set with values being either {0, . . . , n−1} or {−2M, . . . , 2M} for some positive
integer n and M , and φk is the phase of the complex number ck. In the rest of the paper, we use
Ω = {f1, . . . , fs} ⊂ [0, 1] to denote the unknown set of frequencies. In the representation (2.1), we
could also choose to absorb the phase φk into the coefficient |ck| as we did in (1.1). We will use
both representations in following and explicitly specify that the coefficient ck is positive when the
phase term φk is in the atom a(fk, φk).

The set of atoms A = {a(f, φ) : f ∈ [0, 1], φ ∈ [0, 2π)} are building blocks of the signal x?, the
same way that canonical basis vectors are building blocks for sparse signals, and unit-norm rank
one matrices are building blocks for low-rank matrices. In sparsity recovery and matrix completion,
the unit balls of the sparsity-enforcing norms, e.g., the `1 norm and the nuclear norm, are exactly
the convex hulls of their corresponding building blocks. In a similar spirit, we define an atomic
norm ‖ · ‖A by identifying its unit ball with the convex hull of A

‖x‖A = inf {t > 0 : x ∈ t conv (A)}

= inf
ck≥0, φk∈[0,2π)

f∈[0,1]

{∑
k

ck : x =
∑
k

cka(fk, φk)
}
.

Roughly speaking, the atomic norm ‖ · ‖A can enforce sparsity in A because low-dimensional faces
of conv(A) correspond to signals involving only a few atoms. The idea of using atomic norms to
enforce sparsity for a general set of atoms was first proposed and analyzed in [15].

When the phases φ are all 0, the set A0 = {a(f, 0) : f ∈ [0, 1]} is called the moment curve
which traces out a one-dimensional variety in R2|J |. It is well known that the convex hull of this
curve is characterizable in terms of Linear Matrix Inequalities, and membership in the convex hull
can thus be computed in polynomial time (see [42] for a proof of this result and a discussion of
many other algebraic varieties whose convex hulls are characterized by semidefinite programming).
When the phases are allowed to range in [0, 2π), a similar semidefinite characterization holds.

Proposition 2.1. For x ∈ C|J | with J = {0, . . . , n− 1} or {−2M, . . . , 2M},

‖x‖A = inf

{
1
2 trace(Toep(u)) + 1

2 t :

[
Toep(u) x
x∗ t

]
� 0

}
.

In the proposition, we used the superscript ∗ to denote conjugate transpose. The proof of
this proposition relies on the following classical Vandermonde decomposition Lemma for positive
semidefinite Toeplitz matrices
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Lemma 2.2 (Caratheodory-Toeplitz, [12,13,48]). Any positive semidefinite Toeplitz matrix P can
be represented as follows

P = V DV ∗,

where
V = [a (f1, 0) · · · a (fr, 0)] ,

D = diag ([d1 · · · dr]) ,
dk are real positive numbers, and r = rank(P ).

The Vandermonde decomposition can be computed efficiently via root finding or by solving a
generalized eigenvalue problem [31]. Indeed, in the experiments, we compute the Vandermonde
decomposition of the solution of our semidefinite program to estimate the frequencies

Proof of Proposition 2.1. Denote the value of the right hand side by SDP(x). Suppose x =∑
k cka(fk, φk) with ck > 0. Then observe that∑

k

ck

[
a(fk, φk)

1

] [
a(fk, φk)

1

]∗
=
∑
k

ck

[
a(fk, φk)

1

] [
a(fk, φk)

1

]∗
=

[
Toep(u) x
x∗ t

]
� 0 (2.2)

with trace(Toep(u)) = t =
∑

k ck. Since this holds for any decomposition of x, we conclude that
‖x‖A ≥ SDP(x).

Conversely, suppose for some u and x,[
Toep(u) x
x∗ t

]
� 0 . (2.3)

In particular, Toep(u) � 0. Form a Vandermonde decomposition

Toep(u) = V DV ∗

as promised by Lemma 2.2. Since V DV ∗ =
∑

k dka(fk, 0)a(fk, 0)∗ and ‖a(fk, 0)‖2 = 1, trace(Toep(u)) =
trace(D).

Using this Vandermonde decomposition and the matrix inequality (2.3), it follows that x is in
the range of V , and hence

x =
∑
k

wka(fk, 0) = V w

for some complex coefficient vector w = [· · · , wk, · · · ]T . Finally, by the Schur Complement Lemma,
we have

V DV ∗ � t−1V ww∗V ∗

Let q be any vector such that V ∗q = sign(w). Such a vector exists because V is full rank. Then

trace(D) = q∗V DV ∗q � t−1q∗V ww∗V ∗q = t−1

(∑
k

|wk|

)2

.

implying that trace(D)t ≥ (
∑

k |wk|)
2. By the arithmetic geometric mean inequality,

1
2 trace(Toep(u)) + 1

2 t = 1
2 trace(D) + 1

2 t ≥
√

trace(D)t ≥
∑
k

|wk|

implying that SDP(x) ≥ ‖x‖A.
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There are several other approaches to proving the semidefinite programming characterization
of the atomic norm. As we will see below, the dual norm of the atomic norm is related to the max-
imum modulus of trigonometric polynomials (see equation (4.1)). Thus, proofs based on Bochner’s
Theorem [35], the bounded real lemma [4, 22], or spectral factorization [41] would also provide a
tight characterization.

The semidefinite programming characterization of the atomic norm also allows us to draw
connections to the study of rank minimization [8, 26, 39, 40]. A direct way to exploit sparsity in
frequency domain is via minimization of the following “`0-norm” type quantity

‖x‖A,0 = min
ck≥0, φk∈[0,2π)

fk∈[0,1]

{
s : x =

s∑
k=1

cka(fk, φk)
}

This penalty function chooses the sparsest representation of a vector in terms of complex expo-
nentials. This combinatorial quantity is closely related to the rank of positive definite Toeplitz
matrices as delineated by the following Proposition:

Proposition 2.3. The quantity ‖x‖A,0 is equal to the optimal value of the following rank mini-
mization problem:

minimizeu,t rank(Toep(u))

subject to

[
Toep(u) x
x∗ t

]
� 0.

(2.4)

Proof. The case for x = 0 is trivial. For x 6= 0, denote by r? the optimal value of (2.4). We first
show r? ≤ ‖x‖A,0. Suppose ‖x‖A,0 = s < n. Assume the decomposition x =

∑s
k=1 cka(fk, φk) with

ck > 0 achieves ‖x‖A,0, and set Toep(u) =
∑

k cka(fk, φk)a(fk, φk)
∗ � 0, t =

∑
k ck > 0. Then, as

we saw in (2.2), [
Toep(u) x
x∗ t

]
=

s∑
k=1

ck

[
a(fk, φk)

1

] [
a(fk, φk)

1

]∗
� 0 .

This implies that r? = rank(Toep(u)) ≤ s.
We next show ‖x‖A,0 ≤ r?. The r? = n case is trivial as we could always expand x on a Fourier

basis, implying ‖x‖A,0 ≤ n. We focus on r? < n. Suppose u is an optimal solution of (2.4). Then
if

Toep(u) = V DV ∗

is a Vandermonde decomposition, postive semidefiniteness implies that x is in the range of V which
means that x can be expressed as a combination of at most r? atoms, completing the proof.

Hence, for this particular set of atoms, atomic norm minimization is a trace relaxation of a
rank minimization problem. The trace relaxation has been proven to be a powerful relaxation
for recovering low rank matrices subject to random linear equations [40], values at a specified set
of entries [8], Euclidean distance constraints [32], and partial quantum expectation values [27].
However, our sampling model is far more constrained and none of the existing theory applies to
our problem. Indeed, typical results on trace-norm minimization demand that the number of
measurements exceed the rank of the matrix times the number of rows in the matrix. In our case,
this would amount to O(sn) measurements for an s sparse signal. We prove in the sequel that only
O(spolylog(n)) samples are required, dramatically reducing the dependence on n.
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2.1 Atomic Norm Minimization for Continuous Compressed Sensing

Recall that we observe only a subset of entries T ⊂ J . As prescribed in [15], a natural algorithm
for estimating the missing samples of a sparse sum of complex exponentials is the atomic norm
minimization problem

minimizex ‖x‖A
subject to xj = x?j , j ∈ T

(2.5)

or, equivalently, the semidefinite program

minimizeu, x, t
1
2 trace(Toep(u)) + 1

2 t

subject to

[
Toep(u) x
x∗ t

]
� 0

xj = x?j , j ∈ T.

(2.6)

The main result of this paper is that this semidefinite program almost always recovers the missing
samples provided the number of measurements is large enough and the frequencies are reasonably
well-separated. We formalize this statement in the following theorem.

Theorem 2.4. Suppose we observe the time samples of

xj =
1√

4M + 1

s∑
k=1

cke
i2πfkj

on the index set T ⊂ J = {−2M, . . . , 2M} of size m selected uniformly at random. Additionally,
assume sign(ck) are drawn i.i.d. from a symmetric distribution on the complex unit circle. If
∆f ≥ 1

M , then there exists a numerical constant C such that

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
,

is sufficient to guarantee that with probability at least 1− δ, x? is the unique optimizer to (2.5).

We prove this theorem in Section 4. Note that Theorem 1.1 is a corollary of Theorem 2.4 via a
simple reformulation. We provide a proof of the equivalence in Appendix A.

2.2 The power of rank minimization

The analog of `0 minimization for the continuous compressed sensing problem is the rank mini-
mization problem

minimizeu,x,t rank(Toep(u))

subject to

[
Toep(u) x
x∗ t

]
� 0

xj = x?j , j ∈ T.

(2.7)

The following proposition reveals that rank minimization is strictly stronger than trace minimiza-
tion for the continuous compressed sensing problem.

Proposition 2.5. Suppose the sampling set T is such that the set of vectors {aT (fk, 0) = [ei2πfkj ]j∈T , k =
1, . . . , 2s} is linearly independent for any 2s distinct frequencies {fk, k = 1, · · · , 2s}, and x? =∑s

k=1 cka(fk, 0) for some distinct frequencies {fk, k = 1, . . . , s} with the phases absorbed into the
complex coefficients ck. We have the following:
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1. the rank minimization problem (2.7) recovers the original x?;

2. if the trace minimization (2.6) returns a solution with rank(Toep(û)) ≤ s, then it also recovers
x?.

Proof. For the first part, we use the equivalence of rank minimization and ‖ · ‖A,0 minimization.

Suppose the ‖ · ‖A,0 minimization returns a solution x̂ =
∑

j ĉja(f̂j , 0) with ‖x̂‖A,0 = ŝ ≤ s. The
feasibility of x̂ and x? implies

x?T =
s∑

k=1

ckaT (fk, 0) =
ŝ∑
j=1

ĉja( f̂j , 0) = x̂T , (2.8)

contradicting with the linear independence of {aT (fk, 0), aT (f̂j , 0), k = 1, · · · , s, j = 1, · · · , ŝ}.
For the second part, suppose (û, x̂) is an optimal solution to the trace minimization prob-

lem. Positive semidefiniteness again implies that x̂ ∈ Range(Toep(û)). This together with the
Vandermonde decomposition readily give x̂ =

∑r
j=1 ĉja(f̂j , 0) for some frequencies {f̂j}, where

r = rank(Toep(û)) ≤ s. A contradiction argument based on (2.8) proves the claim.

As a particularly important example, if T is a set of consecutive indices with size greater than
2s, then {aT (fk, 0)} are columns of a Vandermonde matrix and hence are linearly independent as
long as the frequencies, {fk}, are distinct. Claim 1 of Proposition 2.5 then states that we could
recover x?, no matter the dimension of the signal and the separation of the frequencies. In this
sense, we get a separation condition because of the trace relaxation. The connection with rank
minimization also suggests using surrogate functions of rank other than the trace function, e.g., the
logdet(·) function, which might yield better model order selection [36].

We close this section by noting that a positive combination of complex sinusoids with zero
phases observed at the first 2s samples can be recovered via the trace relaxation with no limitation
on the resolution. Why is there change when we add phase to the picture? A partial answer is
provided by Figure 1. Figure 1 (a) and (b) display the set of atoms with no phase (i.e., {a(f, 0)})
and phase either 0 or π respectively. That is, Figure 1 (a) plots the set

A1 =
{[

cos(2πf) cos(4πf) cos(6πf)
]

: f ∈ [0, 1]
}
,

while (b) displays the set

A2 =
{[

cos(2πf + φ) cos(4πf + φ) cos(6πf + φ)
]

: f ∈ [0, 1], φ ∈ {0, π}
}
.

Note that A2 is simply A1 ∪ −A1. Their convex hulls are displayed in Figure 1 (c) and (d)
respectively. The convex hull of A1 is neighborly in the sense that every edge between every pair of
atoms is an exposed face and every atom is an extreme point. On the other hand, the only secants
between atoms in A2 that are faces of the convex hull of A2 are those between atoms with far apart
phase angles and frequencies. Problems only worsen if we let the phase range in [0, 2π). Thus,
our intuition from positive moment curves does not extend to the compressed sensing problem of
sinusoids with complex phase. Nonetheless, we are able to demonstrate that under mild resolution
assumptions, we can still recover sparse superpositions from very small sampling sets.
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Figure 1: Moments and their convex hulls.(a) The real moment curve for frequencies 1, 2, and 3. (b)
The moment curve for the same frequencies, but adding in phase. (c) The convex hull of (a). (d) The convex
hull of (b). Whereas all of the secants of (a) are extreme in their convex hull (c), many segments between
atoms of (b) lie inside the convex hull (d).
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3 Prior Art and Inspirations

Frequency estimation is extensively studied and techniques for estimating sinusoidal frequencies
from time samples dates back to the work of Prony [17]. Many linear prediction algorithms based
on Prony’s method were proposed to estimate the frequencies from regularly spaced time samples.
A survey of these methods can be found in [5] and an extensive list of references is given in [45].
With equispaced samples, these root-finding based procedures deal with the problem directly on
the continuous frequency domain, and can recover frequencies provided the number of samples is
at least twice of the number of frequencies, regardless of how closely these frequencies are located
[5, 17,45,47].

In recent work [7], Candès and Fernandez-Granda studied this problem from the point of view
of convex relaxations and proposed a total-variation norm minimization formulation that provably
recovers the spectrum exactly. However, the convex relaxation requires the frequencies to be well
separated by a the inverse of the number of samples. The proof techniques of this prior work forms
the foundation of analysis in the sequel, but many major modifications are required to extend their
results to the compressed sensing regime.

In [4], the authors proposed using atomic norm to denoise a line spectral signal corrupted with
gaussian noise, and reformulated the resulting atomic norm minimization problem as a semidefinite
program using the bounded real lemma [22]. Denosing is important to frequency estimation since
the frequencies in a line spectral signal corrupted with moderate noise can be identified by linear
prediction algorithms. Since the atomic norm framework in [4] is essentially the same as the
total-variation norm framework of [7], the same semidefinite program can also be applied to total-
variation norm minimization.

What is common to all aforementioned approaches, including linear prediction methods, is
the reliance on observing uniform or equispaced time samples. In sharp contrast, we show that
nonuniform sampling is not only a viable option, and that the original spectrum can be recovered
exactly in the continuous domain, but in fact is a means of compressive or compressed sampling.
Indeed non-uniform sampling allows us to effectively sample the signal at a sub-Nyquist rate.
For array signal processing applications, this corresponds to a reduction in the number of sensors
required for exact recovery, since each sensor obtains one spatial sample of the field. An extensive
justification of the necessity of using randomly located sensor arrays can be found in [14]. To
the best of our knowledge, little is known about exact line-spectrum recovery with non-uniform
sampling using parametric methods, except sporadic work using `2-norm minimization to recover
the missing samples [20], or based on nonlinear least square data fitting [46]. Nonparametric
methods such as Periodogram and Correlogram for nonuniform sampling have gained popularity
in recent years [44,52], but their resolutions are usually low.

An interesting feature related to using convex optimization based methods for estimation such
as [7] is a particular resolvability condition: the separation between frequencies is required to be
greater than 4

n where n is the number of measurements. Linear prediction methods do not have
a resolvability limitation, but it is known that in practice the numerical stability of root finding
limits how close the frequencies can be. Theorem 2.4 can be viewed as an extension of the theory
to nonuniform samples. Note that our approach gives an exact semidefinite characterization and is
hence computationally tractable. We believe our results have potential impact on two related areas:
extending compressed sensing to continuous dictionaries, and extending line spectral estimation to
nonuniform sampling, thus providing new insight in sub-Nyquist sampling and super-resolution.
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4 Proof of Theorem 2.4

The key to show that the optimization (2.5) succeeds is to construct a dual variable certifying
the optimality of x?. In Section 4.1, we establish conditions the dual certificate should satisfy to
guarantee unique optimality. Except for the optimality condition established in Section 4.1, which
holds for both J = {0, . . . , n− 1} and J = {−2M, . . . , 2M}, the rest of the paper’s proofs focus on
the symmetric case J = {−2M, . . . , 2M}.

We first show that the dual certificate can be interpreted as a polynomial with bounded modulus
on the unit circle. The polynomial will be constrained to have most of its coefficients equal to zero.
In the case that all of the entries are observed, we show that the polynomial derived by Candès and
Fernandez-Granda [7] suffices to guarantee optimality. Indeed they write the certificate polynomial
via a kernel expansion and show that one can explicitly find appropriate kernel coefficients that
certify optimality. We review this construction in Section 4.2. The requirements of the certificate
polynomial in our case are far more stringent and require a non-trivial modification of their con-
struction using a random kernel. This random kernel has nonzero coefficients only in the indices
corresponding to observed locations (the randomness enters because the samples are observed at
random). The expected value of our random kernel is a multiple of the kernel developed in [7].

Using a matrix Bernstein inequality, we show that we can find suitable coefficients to satisfy
most of the optimality conditions. We then write our solution in terms of the deterministic kernel
plus a random perturbation. The remainder of the proof is dedicated to showing that this random
perturbation is small everywhere. First, we show that the perturbation is small on a fine gridding of
the circle in Section 4.6. To do so, we emulate the proof of Candès and Romberg for reconstruction
from incoherent bases [9]. Finally, in Section 4.7, we complete the proof by estimating the Lips-
chitz constant of the random polynomial, and, in turn, proving that the perturbations are small
everywhere. Our proof is based on Bernstein’s polynomial inequality which was used to estimate
the noise performance of atomic norm de-noising by Bhaskar et al [4].

4.1 Optimality Conditions

We start with examining the optimality conditions for (2.5). Define the inner product as 〈q, x〉 =
x∗q, and the real inner product as 〈q, x〉R = Re(〈q, x〉). Then the dual norm of ‖ · ‖A is

‖q‖∗A = sup
‖x‖A≤1

〈q, x〉 = sup
φ∈[0,2π),f∈[0,1]

〈q, eiφa(f, 0)〉 = sup
f∈[0,1]

|〈q, a(f, 0)〉| (4.1)

that is, it is the maximum modulus of the polynomial

q(z) =
∑
j∈J

qjz
−j

on the unit circle. The dual problem of (2.5) is thus

maximizeq 〈q, x?〉R
subject to ‖q‖∗A ≤ 1

qT c = 0
(4.2)

which follows from a standard Lagrangian analysis [15].
The following proposition provides a sufficient condition for exact completion using dual cer-

tificate, whose proof is given in Appendix B.
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Proposition 4.1. Suppose the atom is defined by [a(f, 0)]j = 1√
|J |
ei2πfj , j ∈ J with J being either

{−2M, · · · , 2M} or {0, · · · , n− 1}. Then x̂ = x? is the unique optimizer to (2.5) if there exists a
dual polynomial

Q (f) =
1√
|J |

∑
j∈J

qje
−i2πjf (4.3)

satisfying

Q (fk) = sign (ck) ,∀fk ∈ Ω (4.4)

|Q (f)| < 1,∀f /∈ Ω (4.5)

qj = 0,∀j /∈ T. (4.6)

The polynomial Q (f) works as a dual certificate to certify that x? is the primal optimizer. The
conditions on Q (f) are imposed on the values of the dual polynomial (condition (4.4) and (4.5))
and on the coefficient vector q (condition (4.6)).

4.2 A Detour: When All Entries are Observed

Before we consider the random observation model, we explain how to construct a dual polynomial
when all entries in J = {−2M, . . . , 2M} are observed, i.e., T = J . The kernel-based construction
method, which was first proposed in [7], inspires our random kernel based construction in Section
4.4. The results presented in this subsection are also necessary for our later proofs.

When all entries are observed, the optimization problem (2.5) has a trivial solution, but we
can still apply duality to certify the optimality of a particular decomposition. Indeed, a dual
polynomial satisfying the conditions given in Proposition 4.1 with T c = ∅ means that ‖x?‖A =∑

k |ck|, namely, the decomposition x? =
∑

k cka (fk, 0) achieves the atomic norm. To construct
such a dual polynomial, Candés and Fernandez-Granda suggested considering a polynomial Q̄ of
the following form [7] :

Q̄ (f) =

s∑
k=1

αkK̄M (f − fk) +

s∑
k=1

βkK̄
′
M (f − fk) . (4.7)

Here K̄M (f) is the squared Fejer kernel

K̄M (f) =

[
sin(πMf)

M sin(πf)

]4

(4.8)

=
1

M

2M∑
j=−2M

gM (j) e−i2πfj (4.9)

with gM (j) = 1
M

∑min(j+M,M)
k=max(j−M,−M)

(
1−

∣∣ k
M

∣∣) (1−
∣∣∣ jM − k

M

∣∣∣) the discrete convolution of two tri-

angular functions. The squared Fejer kernel is a good candidate kernel because it attains the value
of 1 at its peak, and rapidly decays to zero. Provided a separation condition is satisfied by the
original signal, a suitable set of coefficients α and β can always be found.
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We use K̄ ′M , K̄
′′
M , K̄

′′′
M to denote the first three derivatives of K̄M . We list some useful facts

about the kernel K̄M (f):

K̄M (0) = 1

K̄ ′M (0) = K̄ ′′′M (0) = 0

K̄ ′′M (0) = −
4π2

(
M2 − 1

)
3

For the weighting function gM (·), we have

‖gM‖∞ = sup
j
|gM (j)| ≤ 1. (4.10)

We require that the dual polynomial (4.7) satisfies

Q̄ (fj) =

s∑
k=1

αkK̄M (fj − fk) +

s∑
k=1

βkK̄
′
M (fj − fk) = sign (cj) , (4.11)

Q̄′ (fj) =
s∑

k=1

αkK̄
′
M (fj − fk) +

s∑
k=1

βkK̄
′′
M (fj − fk) = 0, (4.12)

for all , fj ∈ Ω. The constraint (4.11) guarantees that Q (f) satisfies the interpolation condition
(4.4), and the constraint (4.12) is used to ensure that |Q (f) | achieves its maximum at frequencies
in Ω. Note that the condition (4.6) is absent in this section’s setting since the set T c is empty.

We rewrite these linear constraints in the matrix vector form: D̄0
1√
|K̄′′(0)|

D̄1

− 1√
|K̄′′(0)|

D̄1 − 1

|K̄′′(0)|D̄2

[ α√∣∣K̄ ′′ (0)
∣∣β
]

=

[
u
0

]

where
[
D̄0

]
jk

= K̄M (fj − fk),
[
D̄1

]
jk

= K̄ ′M (fj − fk),
[
D̄2

]
jk

= K̄ ′′M (fj − fk) and u ∈ Cs is the

vector with uj = sign (cj). We have rescaled the system of linear equations such that the system
matrix is symmetric, positive semidefinite, and very close to identity. Positive definiteness follows
because the kernel is a positive combination of outer products. To get an idea of why the kernel is
near the identity, observe that D̄0 is symmetric with diagonals one, D̄1 is antisymmetric, and D̄2

is symmetric with negative diagonals K ′′ (0). We define

D̄ =

 D̄0
1√
|K̄′′(0)|

D̄1

− 1√
|K̄′′(0)|

D̄1 − 1

|K̄′′(0)|D̄2

 =

 D̄0
1√
|K̄′′(0)|

D̄1

1√
|K̄′′(0)|

D̄∗1 − 1

|K̄′′[0)|D̄2

 (4.13)

and summarize properties of the system matrix D̄ and its submatrices in the following proposition,
whose proof is given in Appendix C.

Proposition 4.2. Suppose ∆f ≥ ∆min = 1
M . Then D̄ is invertible and

‖I − D̄‖ ≤ 0.3623, (4.14)

‖D̄‖ ≤ 1.3623, (4.15)

‖D̄−1‖ ≤ 1.568. (4.16)

Where ‖ · ‖ denotes the matrix operator norm.
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For notational simplicity, partition the inverse of D̄ as

D̄−1 =
[
L̄ R̄

]
where L̄ and R̄ are both 2s× s. Then, solving for α and

√∣∣K̄ ′′ (0)
∣∣β yields[

α√∣∣K̄ ′′ (0)
∣∣β
]

= D̄−1

[
u
0

]
= L̄u. (4.17)

Then the `th derivative of the dual polynomial (after normalization) is

1√
|K̄ ′′M (0)|

`
Q̄(`) (f) =

s∑
k=1

αk
1√

|K̄ ′′M (0)|
`
K̄

(`)
M (f − fk) +

s∑
k=1

√∣∣K̄ ′′ (0)
∣∣βl 1√∣∣K̄ ′′ (0)

∣∣`+1
K̄

(`+1)
M (f − fk)

= v̄` (f)∗ L̄u =
〈
L̄u, v̄`(f)

〉
. (4.18)

where we have defined

v̄` (f) =
1√∣∣K̄ ′′ (0)

∣∣`



K̄
(`)
M (f − f1)∗

...

K̄
(`)
M (f − fs)∗

1√
|K̄′′(0)|

K̄
(`+1)
M (f − f1)∗

...
1√
|K̄′′(0)|

K̄
(`+1)
M (f − fs)∗


(4.19)

with K̄
(`)
M the `th derivative of K̄M .

To certify that the polynomial with the coefficients (4.17) are bounded uniformly on the unit
circle, Candès and Fernandez-Granda divide the domain [0, 1] into regions near to and far from the
frequencies of x?. Define

Ωnear =
s⋃

k=1

[fk − fb,1, fk + fb,1]

Ωfar = [0, 1] /Ωnear

with fb,1 = 8.245×10−2 1
M . On Ωfar, |Q(f)| was analyzed directly, while on Ωnear |Q(f)| is bounded

by showing its second order derivative is negative. The following results are derived in the proofs
of Lemmas 2.3 and 2.4 in [7]:

Proposition 4.3. Assume ∆f ≥ ∆min = 1
M . Then we have∣∣Q̄ (f)

∣∣ < 0.99992, for f ∈ Ωfar (4.20)
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and for f ∈ Ωnear

Q̄R (f) ≥ 0.9182 (4.21)∣∣Q̄I (f)
∣∣ ≤ 3.61110−2 (4.22)

1∣∣K̄ ′′ (0)
∣∣Q̄′′R (f) ≤ −0.314 (4.23)∣∣∣∣∣ 1∣∣K̄ ′′ (0)
∣∣Q̄′′I (f)

∣∣∣∣∣ ≤ 0.5755 (4.24)∣∣∣∣∣∣ 1√∣∣K̄ ′′ (0)
∣∣Q̄′ (f)

∣∣∣∣∣∣ ≤ 0.4346. (4.25)

and as a consequence,

1∣∣K̄ ′′ (0)
∣∣ (Q̄R (f) Q̄′′R (f) +

∣∣Q̄′ (f)
∣∣2 +

∣∣Q̄I (f)
∣∣ ∣∣Q̄′′I (f)

∣∣) ≤ −7.86510−2.

4.3 Bernoulli Observation Model

The uniform sampling model is difficult to analyze directly. However, the same argument used
in [10] shows that the probability of recovery failure under the uniform model is at most twice of
that under a Bernoulli model. Here by “recovery failure”, we refer to that (2.5) would not recover
the original signal x?. Therefore, without loss of generality, we focus on the following Bernoulli
observation model in our proof.

We observe entries in J independently with probability p. Let δj = 1 or 0 indicate whether we
observe the jth entry. Then {δj}j∈J are i.i.d. Bernoulli random variables such that

P (δj = 1) = p.

On average in this model, we will observe p|J | entries. For J = {−2M, . . . , 2M}, we use

p =
m

M
< 1.

4.4 Random Polynomial Kernels

We now turn to designing a dual certificate for the Bernoulli observation model. As for the case
that all entires are observed, the challenge is to construct a dual polynomial satisfying

Q (fk) = sign (ck) ,∀fk ∈ Ω

|Q (f)| < 1,∀f /∈ Ω,

as well as an additional constraint
qj = 0, ∀j ∈ T c. (4.26)

The main difference in our random setting is that the demands of our polynomial Q(f) are much
stricter as manifested by (4.26). Our polynomial is required to have most of its coefficients be zero.
Our approach will be to mimic the construction in the deterministic case, but using a random kernel
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KM (·), which has nonzero coefficients only on the random subset T and satisfies EKM = pK̄M .
We will then prove that KM concentrates tightly around pK̄M .

Our random kernel is simply the expansion (4.9), but with each term multiplied by a Bernoulli
random variable corresponding to the observation of a component:

KM (f) =
1

M

∑
j∈T

gM (j) e−i2πfj

=
1

M

2M∑
j=−2M

δjgM (j) e−i2πfj .

As before

gM (j) =
1

M

min(j+M,M)∑
k=max(j−M,−M)

(
1−

∣∣∣∣ kM
∣∣∣∣)(1−

∣∣∣∣ jM − k

M

∣∣∣∣)
is the convolution of two discrete triangular functions. The `th derivative of KM (f) is

K
(`)
M (f) =

1

M

2M∑
j=−2M

(−i2πj)` gM (j) δje
−i2πfj .

Both KM (f − fk) and K ′M (f − fk) are random trigonometric polynomials of degree at most
2M . More importantly, they contain monomial e−i2πfj only if δj = 1, or equivalently, j ∈ T . Hence
Q (f) is of the form (4.3) and satisfies qj = 0, j ∈ T c. It is easy to calculate the expected values of
KM (f) and its `th derivatives:

EK(`)
M (f) =

1

M

2M∑
j=−2M

(−i2πj)` gM (j)E{δj}e−i2πfj

= p
1

M

2M∑
j=−2M

(−i2πj)` gM (j) e−i2πfj

= pK̄
(`)
M (f) . (4.27)

In Figure 2, we plot p−1KM (f) and p−1K ′M (f) laid over K̄M (f) and K̄ ′M (f), respectively. We
see that far away from the peak, the random coefficients induce bounded oscillations to the kernel.
Near 0, however, the random kernel remains sharply peaked.

In order to satisfy the conditions (4.4) and (4.5), we require that the polynomial Q (f) has the
form

Q (f) =
s∑

k=1

αkKM (f − fk) +
s∑

k=1

βkK
′
M (f − fk) . (4.28)

and satisfies

Q (fj) =
s∑

k=1

αkKM (fj − fk) +
s∑

k=1

βkK
′
M (fj − fk) = sign (cj) , (4.29)

Q′ (fj) =
s∑

k=1

αkK
′
M (fj − fk) +

s∑
k=1

βkK
′′
M (fj − fk) = 0 (4.30)
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Figure 2: Plots of the random kernel

for all fj ∈ Ω. As for Q̄(f), the constraint (4.29) guarantees that Q (f) satisfies the interpola-
tion condition (4.4), and the constraint (4.30) helps ensure that |Q (f) | achieves its maximum at
frequencies in Ω.

We now have 2s linear constraints (4.29), (4.30) on 2s unknown variables α, β. The remainder
of the proof consists of three steps:

1. Show that the linear system (4.29), (4.30) is invertible with high probability using matrix
Bernstein inequality [50];

2. Show
∣∣Q(`)(f)− Q̄(`)(f)

∣∣, the random perturbations introduced by the random observation
process, are small on a set of discrete points with high probability, implying the random dual
polynomial satisfies the constraints in Proposition 4.1 on the grid; This step is proved using
a modification of the idea in [9].

3. Extend the result to [0, 1] using Bernstein’s polynomial inequality [43] and eventually show
|Q(f)| < 1 for f /∈ Ω.

4.5 Invertibility

In this section we show the linear system (4.29) and (4.30) is invertible. Rewrite the linear system
of equations (4.29) and (4.30) into the following matrix-vector form: D0

1√
|K̄′′(0)|

D1

− 1√
|K̄′′(0)|

D1 − 1

|K̄′′(0)|D2

[ α√∣∣K̄ ′′ (0)
∣∣β
]

=

[
u
0

]
, (4.31)

where [D`]jk = K
(`)
M (fj − fk), and u = sign(c). Note that we still rescale the derivatives using the

deterministic quantity K̄ ′′ (0) rather than the random variable K ′′ (0).
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The expectation computation (4.27) implies that E [D`]jk = EK(`)
M (fj − fk) = p

[
D̄`

]
jk
, where[

D̄`

]
jk

= K̄
(`)
M (fj − fk). Define

D =

 D0
1√
|K̄′′(0)|

D1

− 1√
|K̄′′(0)|

D1 − 1

|K̄′′(0)|D2


=

 D0
1√
|K̄′′(0)|

D1

1√
|K̄′′(0)|

D∗1 − 1

|K̄′′(0)|D2


=

1

M

2M∑
j=−2M

gM (j) δje (j) e (j)∗

where

e (j) =



e−i2πf1j

...
e−i2πfsj

i2πj√
|K̄′′(0)|

e−i2πf1j

...
i2πj√
|K̄′′(0)|

e−i2πfsj


. (4.32)

Then we have

ED =
1

M

2M∑
j=−2M

gM (j)E{δj}e (j) e (j)∗

= p
1

M

2M∑
j=−2M

gM (j) e (j) e (j)∗

= pD̄,

with D̄ defined in (4.13). As a consequence, we have

D − ED = D − pD̄

=

2M∑
j=−2M

1

M
gM (j) (δj − p) e (j) e (j)∗

=

2M∑
j=−2M

Xj .

with Xj = 1
M gM (j) (δj − p) e (j) e (j)∗ a zero mean random self-adjoint matrix. We will apply the

noncommutative Bernstein inequality to show that D concentrates about its mean pD̄ with high
probability.
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Lemma 4.4 (Noncommutative Bernstein Inequality, [50, Theorem 1.4]). Let {Xj} be a finite
sequence of independent, random self-adjoint matrices of dimension d. Suppose that

EXj = 0

‖Xj‖ ≤ R, almost surely

σ2 =
∥∥∥∑

j

E
(
X2
j

) ∥∥∥.
Then for all t ≥ 0,

P
{∥∥∥∑

j

Xj

∥∥∥ ≥ t} ≤ d exp

(
−t2/2

σ2 +Rt/3

)
.

For τ > 0, define the event

E1,τ =
{∥∥p−1D − D̄

∥∥ ≤ τ} . (4.33)

The following lemma, proved in Appendix D, shows that E1,τ has a high probability if m is large
enough.

Lemma 4.5. If τ ∈ (0, 0.6377), then we have P (E1,τ ) ≥ 1− δ provided

m ≥ 50

τ2
s log

2s

δ
.

Note that an immediate consequence of Lemma 4.5 is that D is invertible on E1,τ . Additionally,
Lemma 4.5 allows us to control the norms of the submatices of D−1. For that purpose, we partition
D−1 as

D−1 =
[
L R

]
with L and R both 2s× s and obtain:

Corollary 4.6. On the event E1,τ with τ ∈
(
0, 1

4

]
, we have∥∥L− p−1L̄

∥∥ ≤ 2
∥∥D̄−1

∥∥2
p−1τ

‖L‖ ≤ 2
∥∥D̄−1

∥∥ p−1.

The proof of this corollary is elementary matrix analysis and can be found in Appendix E.

Since on the event E1,τ with τ < 1/4 the matrix D =

[
D0 D1

D1 D2

]
is invertible, we solve for α and√∣∣K̄ ′′ (0)

∣∣β from (4.31): [
α√∣∣K̄ ′′ (0)

∣∣β
]

= D−1

[
u
0

]
= Lu. (4.34)

In the next section, we will plug (4.34) back into (4.28), and analyze the effect of random pertur-
bations on the polynomial Q(f).
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4.6 Random Perturbations

In this section, we show that the dual polynomial Q (f) concentrates around Q̄(f) on a discrete set
Ωgrid.

We introduce a random analog of v̄`, defined by (4.19), as

v` (f) =
1√∣∣K̄ ′′ (0)

∣∣`



K
(`)
M (f − f1)∗

...

K
(`)
M (f − fs)∗

1√
|K̄′′(0)|

K
(`+1)
M (f − f1)∗

...
1√
|K̄′′(0)|

K
(`+1)
M (f − fs)∗


=

1

M

2M∑
j=−2M

(
i2πj√∣∣K̄ ′′ (0)

∣∣
)`
gM (j) δje

i2πfje(j). (4.35)

with K
(`)
M the `th derivative of KM , and e(j) defined in (4.32). Clearly we have the expectation of

v` is equal to p times its deterministic counterpart defined by (4.19):

Ev` (f) = pv̄` (f) , ∀f ∈ [0, 1]

Then, in a similar fashion to (4.18), we rewrite

1√
|K̄ ′′M (0)|

`
Q(`) (f) =

s∑
k=1

αk
1√

|K̄ ′′M (0)|
`
K

(`)
M (f − fk)

+
s∑

k=1

√∣∣K̄ ′′ (0)
∣∣βl 1√

|K̄ ′′M (0)|
`+1

K
(`+1)
M (f − fk)

= v` (f)∗ Lu = 〈Lu, v`(f)〉 = 〈u, L∗v`(f)〉 .

We decompose L∗v`(f) into three parts:

L∗v`(f) = [(L− p−1L̄) + p−1L̄]∗[(v`(f)− pv̄`(f)) + pv̄`(f)]

= L̄∗v̄`(f) + L∗(v`(f)− pv̄`(f)) + (L− p−1L̄)∗pv̄`(f),

which induces a decomposition on 1√
|K̄′′M (0)|

`Q
(`)(f)

1√
|K̄ ′′M (0)|

`
Q(`) (f) = 〈u, L∗v`(f)〉

=
〈
u, L̄∗v̄`(f)

〉
+ 〈u, L∗(v`(f)− pv̄`(f))〉+

〈
u, (L− p−1L̄)∗pv̄`(f)

〉
=

1√
|K̄ ′′M (0)|`

Q̄(`) (f) + I`1 (f) + I`2 (f) . (4.36)
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Here 1√
|K̄′′M (0)|`

Q̄(`)(f) =
〈
u, L̄∗v̄`(f)

〉
=
〈
uL̄, v̄`(f)

〉
as in (4.18) and we have defined

I`1(f) = 〈u, L∗(v`(f)− pv̄`(f))〉

and

I`2(f) =
〈
u, (L− p−1L̄)∗pv̄`(f)

〉
.

The goal of the remainder of this section is to show, in Lemma 4.9 and 4.10, that I`1 (f) and
I`2 (f) are small on a set of grid points Ω`

grid with high probability. We use superscript ` on Ω`
grid

to emphasize that the set of grid points could change with `.
The proof of Lemma 4.9, which shows I`1(f) is small on Ω`

grid, essentially follows that of Candès
and Romberg [9]. We include the proof details here for completeness, but very little changes in
the argument. Since I`1(f) = 〈u, L∗(v`(f)− pv̄`(f))〉 is a weighted sum of independent random
variables following a symmetric distribution on the complex unit circle, for fixed f ∈ [0, 1], we
apply Hoeffding’s inequality to control its value. This in turn requires an estimate of ‖L∗(v`(f)−
pv̄`(f))‖2. In Lemma 4.7, we first use concentration of measure (Lemma F.1) to establish that
‖v` (f)− pv̄` (f)‖2 is small with high probability. In Lemma 4.8, we then combine Lemma 4.7 and
Lemma 4.5 to show ‖L∗(v`(f)− pv̄`(f))‖2 is small. The extension from a fixed f to a finite set
Ωgrid relies on union bound.

We start with bounding ‖v`(f)−pv̄`(f)‖2 in the following lemma. The proof given in Appendix
F is based on an inequality of Talagrand.

Lemma 4.7. Fix f ∈ [0, 1]. Let

σ̄2
` := 24`+1 m

M2
max

{
1, 24 s√

m

}
and fix a positive number

a ≤

{√
2m1/4 if 24 s√

m
≥ 1,

√
2

4

√
m
s otherwise.

Then we have

E ‖v` (f)− pv̄` (f)‖2 ≤ 22`+3

√
ms

M

P
(
‖v` (f)− pv̄` (f)‖2 > 22`+3

√
ms

M
+ aσ̄`, ` = 0, 1, 2, 3

)
≤ 64e−γa

2

for some γ > 0.

The following lemma combines Lemma 4.7 and Corollary 4.6 to show ‖L∗(v`(f) − pv̄`(f)‖2 is
small with high probability.
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Lemma 4.8. Let τ ∈ (0, 1/4]. Consider a finite set Ωgrid = {fd}. With the same notation as last
lemma, we have

P

[
sup

fd∈Ωgrid

‖L∗(v` (fd)− pv̄` (fd))‖2 ≥ 4

(
22`+1

√
s

m
+
M

m
aσ̄`

)
, ` = 0, 1, 2, 3

]
≤ 64 |Ωgrid| e−γa

2
+ P

(
Ec1,τ

)
.

Proof of Lemma 4.8. Conditioned on the event⋂
`,fd∈Ωgrid

{
‖v` (fd)− pv̄` (fd)‖2 ≤ 22`+1

√
ms

M
+ aσ̄`

}⋂
E1,τ

we have

‖L∗ (v` (fd)− pv̄` (fd))‖2 ≤ ‖L‖
(

22`+1

√
ms

M
+ aσ̄`

)
≤ 2

∥∥D̄−1
∥∥ p−1

(
22`+1

√
ms

M
+ aσ̄`

)
≤ 4

(
22`+1

√
s

m
+
M

m
aσ̄`

)
,

where we have used Proposition 4.2 and Corollary 4.6, and plugged in p = m/M . The claim of the
lemma then follows from union bound.

Lemma 4.8 together with Hoeffding’s inequality allow us to control the size of supfd∈Ωgrid
I`1 (fd):

Lemma 4.9. There exists a numerical constant C such that if

m ≥ C max

{
1

ε2
max

(
s log

|Ωgrid|
δ

, log2 |Ωgrid|
δ

)
, s log

s

δ

}
,

then we have

P
{

sup
fd∈Ωgrid

∣∣∣I`1 (fd)
∣∣∣ ≤ ε, ` = 0, 1, 2, 3

}
≥ 1− 12δ

Next lemma controls I`2(f). It’s proof is similar to the proof of Lemma 4.9.

Lemma 4.10. There exists a numerical constant C such that if

m ≥ C 1

ε2
s log

s

δ
log
|Ωgrid|
δ

,

then we have

P
(

sup
fd∈Ωgrid

∣∣∣I`2 (fd)
∣∣∣ < ε, ` = 0, 1, 2, 3

)
≤ 1− 8δ
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Both Lemmas 4.9 and 4.10 are proven in the Appendix.
Denote

E2 =

{
sup

fd∈Ωgrid

∣∣∣∣∣ 1√
|K̄ ′′M (0)|`

Q(`)(fd)−
1√

|K̄ ′′M (0)|`
Q̄(`)(fd)

∣∣∣∣∣ ≤ ε

3
, ` = 0, 1, 2, 3

}
.

Combining the decomposition (4.36), Lemma 4.9, and Lemma 4.10 with suitable redefinition of ε
and δ immediately yields the following proposition

Proposition 4.11. Suppose Ωgrid ⊂ [0, 1] is a finite set of points. There exists constant C such
that

m ≥ C 1

ε2
max

{
log2 |Ωgrid|

δ
, s log

s

δ
log
|Ωgrid|
δ

}
, (4.37)

is sufficient to guarantee

P(E2) ≥ 1− δ.

4.7 Extension to Continuous Domain

We have proved that 1√
|K̄′′M (0)|`

Q(`)(f) and 1√
|K̄′′M (0)|`

Q̄(`)(f) are not far on a set of grid points.

This section aims extending this statement to everywhere in [0, 1], and show |Q(f)| < 1 for f /∈ Ω
eventually. The key is the following Bernstein’s polynomial inequality:

Lemma 4.12 (Bernstein’s polynomial inequality, [43]). Let pN be any polynomial of degree N with
complex coefficients. Then

sup
|z|≤1

∣∣p′ (z)∣∣ ≤ N sup
|z|≤1
|p (z)| .

Our first proposition verifies that our random dual polynomial is close to the deterministic dual
polynomial on all of [0, 1]

Proposition 4.13. Suppose ∆f ≥ ∆min = 1
M and

m ≥ C max

{
1

ε2
log2 M

δε
,

1

ε2
s log

s

δ
log

M

δε

}
.

Then with probability 1− δ, we have∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|`

Q(`)(f)− 1√
|K̄ ′′M (0)|`

Q̄(`)(f)

∣∣∣∣∣∣ ≤ ε, ∀f ∈ [0, 1], ` = 0, 1, 2, 3. (4.38)

Proof. It suffices to prove (4.38) on E1,1/4 and E2 and then modify the lower bound (4.37). We first

give a very rough estimate of supf
1√

|K̄′′M (0)|
`

∣∣Q(`) (f)
∣∣ on the set E1,1/4:

1√
|K̄ ′′M (0)|

`

∣∣∣Q(`) (f)
∣∣∣ = |〈u, L∗v`(f)〉|

≤ ‖u‖2‖L‖‖v`(f)‖2
≤ Cp−1s

≤ CM2
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where we have used ‖u‖2 ≤
√
s and ‖v` (f)‖2 ≤ C

√
s. To see the latter, we note

‖v` (f)‖2 ≤
2M∑

j=−2M

∥∥∥∥∥ 1

M

(
i2πj√∣∣K̄ ′′ (0)

∣∣
)`
gM (j) e(j)

∥∥∥∥∥
2

≤ (4M + 1)
1

M
4`+1s1/2,

where we have used

‖gM‖∞ ≤ 1,∣∣∣ 2πj√
K̄ ′′M (0)

∣∣∣ ≤ 4 whenM ≥ 2,

‖e(j)‖22 ≤ s

(
1 + max

|j|≤2M

(2πj)2

|K ′′ (0)|

)
≤ 14s when M ≥ 4.

Viewing 1√
|K̄′′M (0)|

Q(`) (·) as a trigonometric polynomial in z = e−i2πf of degree 2M , according to

Bernstein’s polynomial inequality, we get∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|

Q(`) (fa)−
1√

|K̄ ′′M (0)|
Q(`) (fb)

∣∣∣∣∣∣ ≤
∣∣∣e−i2πfa − e−i2πfb∣∣∣ sup

z

∣∣∣∣∣∣
d 1√
|K̄′′M (0)|

Q(`) (z)

dz

∣∣∣∣∣∣
≤ 4π |fa − fb| 2M sup

f

∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|

Q(`) (f)

∣∣∣∣∣∣
≤ CM3 |fa − fb| .

We select Ωgrid ⊂ [0, 1] such that for any f ∈ [0, 1], there exists a point fd ∈ Ωgrid satisfying
|f − fd| ≤ ε

3CM3 . The size of Ωgrid is less than 3CM3/ε.
With this choice of Ωgrid, on the set E1,1/4

⋂
E2 we have∣∣∣∣∣∣ 1√

|K̄ ′′M (0)|`
Q(`)(f)− 1√

|K̄ ′′M (0)|`
Q̄(`)(f)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|`

Q(`)(f)− 1√
|K̄ ′′M (0)|`

Q(`)(fd)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|`

Q(`)(fd)−
1√

|K̄ ′′M (0)|`
Q̄(`)(fd)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1√
|K̄ ′′M (0)|`

Q̄(`)(fd)−
1√

|K̄ ′′M (0)|`
Q̄(`)(f)

∣∣∣∣∣∣
≤ CM3|f − fd|+

ε

3
+ CM3|f − fd|

≤ ε,∀f ∈ [0, 1].
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Finally, we modify the condition (4.37) according to our choice of Ωgrid:

m ≥ C max

{
1

ε2
log2 M

δε
,

1

ε2
s log

s

δ
log

M

δε

}

An immediate consequence of Proposition 4.13 and the bound (4.20) of Proposition 4.3 is the
following estimate on Q(f) for f ∈ Ωfar = [0, 1]/

⋃
k [fk − fb,1, fk + fb,1]:

Lemma 4.14. Suppose ∆f ≥ ∆min = 1
M and

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
.

Then with probability 1− δ, we have

|Q(f)| < 1, ∀f ∈ Ωfar.

Proof. It suffices to choose ε = 10−5. The rest follows from (4.38), triangle inequality, and modifi-
cation of the constant in (4.38).

Similar statement holds for f ∈ Ωnear =
⋃
k [fk − fb,1, fk + fb,1].

Lemma 4.15. Suppose ∆f ≥ ∆min = 1
M and

m ≥ C max

{
log2

(
M

δ

)
, s log

s

δ
log

M

δ

}
.

Then we have |Q (f)| < 1 for all f ∈ Ωnear.

Proof. Define QR(f) = Re(Q(f)) and QI(f) = Im(Q(f)). Since |Q (fk)| = 1 and Q′ (fk) = 0 with
the latter implying

d|Q|
df

(f) =
Q′R(f)QR(f) +Q′I(f)QI(f)

|Q(f)|
= 0

we only need to show d2|Q(f)|
df2 < 0 on Ωnear. Take the second order derivative of |Q (f)|:

d2 |Q|
df2

(f) = −
(QR (f)Q′R (f) +QI (f)Q′I (f))2

|Q (f)|3
+
|Q′ (f)|2 +QR (f)Q′′R (f) +QI (f)Q′′I (f)

|Q (f)|
.

So it suffices to show that for f ∈ Ωnear

QR (f)Q′′R (f) +
∣∣Q′ (f)

∣∣2 + |QI (f)|
∣∣Q′′I (f)

∣∣ < 0.
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As a consequence of (4.38) in Proposition 4.13, triangle inequality, and (4.21)-(4.25) of Propo-
sition 4.3, we have on the set E2 for any f ∈ Ωnear

QR (f) ≥ Q̄R (f)− ε ≥ 0.9182− ε
|QI (f)| ≤

∣∣Q̄I (f)
∣∣+ ε ≤ 3.611× 10−2 + ε

1∣∣K̄ ′′ (0)
∣∣Q′′R (f) ≤ 1∣∣K̄ ′′ (0)

∣∣Q̄′′R (f) + ε ≤ −0.314 + ε∣∣∣ 1∣∣K̄ ′′ (0)
∣∣Q′′I (f)

∣∣∣ ≤ ∣∣∣ 1∣∣K̄ ′′ (0)
∣∣Q̄′′I (f)

∣∣∣+ ε ≤ 0.5755 + ε∣∣∣ 1√∣∣K̄ ′′ (0)
∣∣Q′I (f)

∣∣∣ ≤ ∣∣∣ 1√∣∣K̄ ′′ (0)
∣∣Q̄′I (f)

∣∣∣+ ε ≤ 0.4346 + ε.

implying

1∣∣K̄ ′′ (0)
∣∣ (QR (f)Q′′R (f) +

∣∣Q′ (f)
∣∣2 + |QI (f)|

∣∣Q′′I (f)
∣∣) ≤ −7.86510−2 + 2.714ε+ ε2 < 0

when ε assumes a sufficiently small numerical value. With this choice of ε, the condition of m
becomes

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
.

Therefore, |Q(f)| < 1 on Ωnear except for f ∈ Ω. We actually proved a stronger result that with
probability at least 1− δ

|Q (f) | ≤ 1− 0.07
∣∣K̄ ′′ (0)

∣∣ (f − fk)2 ≤ 1,∀f ∈ [fk − fb,1, fk + fb,1] .

Proof of Theorem 2.4. Finally, if ∆min ≥ 1
M and

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
,

combining Lemma 4.14 and 4.15, we have proved the claim of Theorem 2.4.

5 Numerical Experiments

We conducted a series of numerical experiments to test the performance of (2.5) under various
parameter settings (see Table 1). We use J = {0, . . . , n− 1} for all numerical experiments.

We compared the performance of two algorithms: the semidefinite program (2.6) and the basis
pursuit obtained through discretization:

minimize
c

‖c‖1 subject to x?j = (Fc)j , j ∈ T . (5.1)

Here F is a DFT matrix of appropriate dimension depending on the grid size. Note that since the
components of c are complex, this is a second-order cone problem. In the following, we use SDP
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and BP to label the semidefinite program algorithm and the basis pursuit algorithm, respectively.
We solved the SDP with the SDPT3 solver [49] and the basis pursuit (5.1) with CVX [25] coupled
with SDPT3. All parameters of the SDPT3 solver were set to default values and CVX precision
was set to ‘high’. For the BP, we used three levels of discretization at 4, 16, and 64 times the signal
dimension.

To generate our instancer5s of form (2.1), we sampled s = ρsn normalized frequencies from
[0, 1], either randomly, or equispaced. Random frequencies are sampled randomly on [0, 1] with an
additional constraint on the minimal separation ∆f . Given s = ρsn, s equispaced frequencies are
generated with the same separation 1/s with an additional random shift. This random shift will
ensure that in most case, basis mismatch occurs for discretization method. The signal coefficient
magnitudes |c1|, · · · , |cs| are either unit, i.e., equal to 1, or fading, i.e., equal to .5 + w2 with
w a zero mean unit variance Gaussian random variable. The signs {eiφk , k = 1, · · · , s} follow
either Bernoulli ±1 distribution, labeled as real, or uniform distribution on the complex unit circle,
labeled as complex. A length n signal was then formed according to model (2.1). As a final step,
we uniformly sample ρmn entries of the resulting signal.

We tested the algorithms on four sets of experiments. In the first experiment, by running the
algorithms on a randomly generated instance with n = 256, s = 6 and 40 samples selected uniformly
at random, we compare SDP and BP’s ability of frequency estimation and visually illustrate the
the effect of discretization. We see from Figure 3 that SDP recovery followed by matrix pencil
approach to retrieve the frequencies gives the most accurate result. We also observe that increasing
the level of discretization can increase BP’s accuracy in locating the frequencies.
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Figure 3: Frequency Estimation: Blue represents the true frequencies, while red represents the estimated
ones.

In the second set of experiments, we compare the performance of SDP and BP with three levels
of discretization in terms of solution accuracy and running time. The parameter configurations are
summarized in Table 1. Each configuration was repeated 10 times, resulting a total of 1920 valid
experiments excluding those with ρm ≥ 1.
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Table 1: Parameter configurations

n 64, 128, 256

ρs 1/16, 1/32, 1/64

ρm/ρs 5, 10, 20

|ck| unit, fading

frequency random, equispaced

sign real, complex

We use the performance profile as a convenient way to compare the performance of different
algorithms. The performance profile proposed in [18] visually presents the performance of a set
of algorithms under a variety of experimental conditions. More specifically, let P be the set of
experiments and Ma(p) specify the performance of algorithm a on experiment p for some metric
M (the smaller the better), e.g., running time and solution accurary. Then the performance profile
Pa(β) is defined as

Pa(β) =
#{p ∈ P :Ma(p) ≤ βminaMa(p)

#(P)
, β ≥ 1.

Roughly speaking, Pa(β) is the fraction of experiments such that the performance of algorithm a
is within a factor β of that of the best performed one.

We show the performance profiles for numerical accuracy and running times in Figure 4a and
4b, respectively. We see that SDP significantly outperforms BP for all tested discretization levels
in terms of numerical accuracy. When the discretization levels are higher, e.g., 64x, the running
times of BP exceed that of SDP.
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(a) Solution accuracy

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

β

P
(β

)

Performance Profile − Running Time

 

 

 SDP

 BP 4

 BP 16

 BP 64

(b) Running times

Figure 4: Performance profiles for solution accuracy and running times. Note the β-axes are in logarithm
scale for both plots.

To give the reader a better idea of the numerical accuracy and the running times, in Table 2
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we present their medians and median absolute deviation for the four algorithms. As one would
expect, the running time increases as the discretization level increases. We also observe that SDP
is very accurate, with an median error at the order of 10−9. Increasing the level of discretization
can increase the accuracy of BP. However, with discretization level N = 64n, we get a median
accuracy at the order of 10−5, but the median running time already exceeds that of SDP.

Table 2: Medians and median absolute deviation (MAD) for solution accuracy and running time

SDP BP: 4x BP: 16x BP: 64x

Solution Accuracy
Median 1.39e-09 1.23e-02 7.67e-04 4.65e-05
MAD 1.26e-09 9.44e-03 6.05e-04 3.64e-05

Running Time (s)
Median 34.03 11.72 20.39 70.46
MAD 27.32 4.83 12.19 55.37

In the third set of experiments, we compiled two phase transition plots. To prepare the Figure
5a, we pick n = 128 and vary ρs = 2

n : 2
n : 100

n and ρm = 2
n : 2

n : 126
n . For each fixed (ρm, ρs),

we randomly generate s = nρs frequencies while maintaining a frequency separation ∆f ≥ 1
n . The

coefficients are generated with random magnitudes and random phases, and the entries are observed
uniform randomly. We then run the SDPT3-SDP algorithm to recover the missing entries. The
recovery is considered successful if the relative error ‖x̂ − x?‖2/‖x?‖2 ≤ 10−6. This process was
repeated 10 times and the rate of success was recorded. Figure 5a shows the phase transition results.
The x-axis indicates the fraction of observed entries ρm, while the y-axis is ρs = s

n . The color
represents the rate of success with red corresponding to perfect recovery and blue corresponding to
complete failure.

We also plot the line ρs = ρm/2. Since a signal of s frequencies has 2s degrees of freedom,
including s frequency locations and s magnitudes, this line serves as the boundary above which
any algorithm should have a chance to fail. In particular, Prony’s method requires 2s consecutive
samples in order to recover the frequencies and the magnitudes.

From Figure 5a, we see that there is a transition from perfect recovery to complete failure.
However, the transition boundary is not very sharp. In particular, we notice failures below the
boundary of the transition where complete success should happen. Examination of the failures
show that they correspond to instances with minimal frequency separations marginally exceeding
1
n . We expect to get cleaner phase transitions if the frequency separation is increased.

To prepare Figure 5b, we repeated the same process in preparing Figure 5a except that the
frequency separation was increased from 1

n to 1.5
n . In addition, to respect the minimal separation,

we reduced the range of possible sparsity levels to {2, 4, . . . , 70}. We now see a much sharper phase
transition. The boundary is actually very close to the ρs = ρm/2 line. When ρm is close to 1, we
even observe successful recovery above the line.

In the last set of experiments, we use a simple example to illustrate the noise robustness of
the proposed method. The signal was generated with n = 40, s = 3, random frequencies, fading
amplitudes, and random phases. A total number of 18 uniform samples indexed by T were taken.
The noisy observations y was generated by adding complex noise w with bounded `2 norm ε = 2
to x?T . We denoised and recovered the signal by solving the following optimization:

minimize
x

‖x‖A subject to ‖y − xT ‖2 ≤ ε, (5.2)
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(a) Phase transition: ∆f ≥ 1
n (b) Phase transition: ∆f ≥ 1.5

n

Figure 5: Phase transition: The phase transition plots were prepared with n = 128, and ρm = 2/n : 2/n :
126/n. The frequencies were generated randomly with minimal separation ∆f . Both signs and magnitudes
of the coefficients are random. In Figure 5a, the separation ∆f ≥ 1/n and ρs = 2/n : 2/n : 100/n, while in
Figure 5b, the separation ∆f ≥ 1.5/n and ρs = 2/n : 2/n : 70/n.

which clearly is equivalent to a semidefinite program. Matrix pencil approach was then applied to
the recovered x to retrieve the frequencies. Figure 6 illustrates the approximate frequency recovery
achieved by the optimization problem (5.2) in presence of noise.

6 Conclusion and Future Work

By leveraging the framework of atomic norm minimization, we were able to resolve the basis
mismatch problem in compressed sensing of line spectra. For signals with well-separated frequencies,
we show the number of samples needed is roughly propositional to the number of frequencies, up
to polylogarithmic factors. This recovery is possible even though our continuous dictionary is not
incoherent at all and does not satisfy any sort of restricted isometry conditions.

There are several interesting future directions to be explored to further expand the scope of this
work. First, it would be useful to understand what happens in the presence of noise. We cannot
expect exact support recovery in this case, as our dictionary is continuous and any noise will make
the exact frequencies un-identifiable. In a similar vein, techniques like those used in [7] that still rely
on discretization are not applicable for our current setting. However, since our numerical method
is rather stable, we are encouraged that a theoretical stability result is possible.

Second, we saw in our numerical experiments that modest discretization introduces substantial
error in signal reconstruction and fine discretization carries significant computational burdens. In
this regard, it would be of great interest to speed up our semidefinite programming solvers so that
we can scale our algorithms beyond the synthetic experiments of this paper. Our rudimentary
experimentation with first-order methods developed in [4] did not suffice for this problem as they
were unable to achieve the precision necessary for fine frequency localization. So, instead, it would
be of interest to explore second order alternatives such as active set methods or the like to speed
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Figure 6: Noisy frequency recovery: (a) Real part of true, noisy, and recovered signals, (b)True frequencies
(blue) and recovered frequencies (red)

up our computations.
Finally, we are interested in exploring the class of signals that are semidefinite characterizable

in hopes of understanding which signals can be exactly recovered. Our continuous frequency model
captures all of the essential ingredients of applying compressed sensing to problems with contin-
uous dictionaries. It would be of great interest to see how our techniques may be extended to
other continuously parametrized dictionaries. Models involving image manifolds may fall into this
category [51]. Fully exploring the space of signals that can be acquired with just a few specially
coded samples provides a fruitful and exciting program of future work.
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A Proof of Theorem 1.1

Proof. Assume n = 4M + n0 with M = b(n − 1)/4c and n0 = 1, 2, 3 or 4. Suppose the signal x?

has decomposition

x? =
s∑

k=1

ck
1√
n


1

ei2πfk

...

ei2π(n−1)fk



=
s∑

k=1

√
4M + 1√

n
cke

i2πfk(2M)︸ ︷︷ ︸
c̃k

1√
4M + 1



ei2πfk(−2M)

ei2πfk(−2M+1)

...

ei2πfk(2M)

...

ei2πfk(2M+n0−1)


The rest of the proof argues that the dual polynomial constructed for the symmetric case can

be modified to certify the optimality of x? for the general case.
If the coefficients {ck, k = 1, . . . , s} have uniform random complex signs, for fixed {fk}, {c̃k, k =

1, . . . , s} also have uniform random complex signs. In addition, the Bernoulli observation model
{δj}n−1

j=0 on index set {0, · · · , n−1} naturally induces a Bernoulli observation model {δ̃j = δj+2M}2Mj=−2M

on {−2M, · · · , 2M} with P(δ̃j = 1) = m/n. Denote T̃ = {j : δ̃j = 1} ⊂ {−2M, · · · , 2M}. There-
fore, if ∆f ≥ ∆min = 1/M and

m ≥ C max

{
log2 M

δ
, s log

s

δ
log

M

δ

}
, (A.1)

according to the proof of Theorem 2.4, with probability great than 1− δ, we could construct a dual
polynomial

Q̃ (f) =
1√

4M + 1

2M∑
j=−2M

q̃je
−i2πjf

satisfying

Q̃ (fk) = sign (c̃k) ,∀fk ∈ Ω∣∣∣Q̃ (f)
∣∣∣ < 1,∀f /∈ Ω

q̃j = 0,∀j /∈ T̃ .

Now define

qj =

{
q̃j−2M j = 0, · · · , 4M
0 otherwise.
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and

Q(f) =
1√
n

n−1∑
j=0

qje
−i2πfj

=
1√

4M + 1

n−1∑
j=0

q̃j−2Me
−i2πfj

= e−i2πf(2M)Q̃(f).

Clearly, the polynomial Q(f) satisfies

Q (fk) = e−i2πfk(2M) sign (c̃k) = sign(ck), ∀fk ∈ Ω

|Q (f)| = |Q̃(f)| < 1, ∀f /∈ Ω

qj = 0,∀j /∈ T,

where T = {j : δj = 1} ⊂ {0, . . . , n − 1}. The theorem then follows from rewriting (A.1) in terms
of n and Proposition 4.1.

B Proof of Proposition 4.1

Proof. Consider the primal optimization problem(2.5) and its dual (4.2). Let (x, q) be primal-dual
feasible. Note that

〈q, x〉R = 〈qT , xT 〉R , since qT c = 0.

= 〈qT , x?T 〉R , since xT = x?T

= 〈q, x?〉R .

Thus, we can use 〈q, x〉R in place of the dual objective 〈q, x?〉R whenever x is primal feasible.
Since the primal is only equality constrained, Slater’s condition naturally holds , implying strong

duality [6, Section 5.2.3]. According to the strong duality theory, we have

〈q, x〉R = 〈q, x?〉R ≤ ‖x‖A

for any x primal feasible and any q dual feasible, and

〈q̂, x̂〉R = 〈q̂, x?〉R = ‖x̂‖A

if and only if q̂ is dual optimal and x̂ is primal optimal.
For the dual certificate q that satisfies the conditions in Proposition 4.1, which is clearly dual
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feasible, we have

〈q, x?〉R =
〈
q,

s∑
k=1

cka (fk, 0)
〉
R

=
s∑

k=1

Re (c∗k 〈q, a (fk, 0)〉)

=
s∑

k=1

Re (c∗k sign (ck))

=

s∑
k=1

|ck|

≥ ‖x?‖A .

So we must have equality and x? is an optimal solution.
For uniqueness, suppose x̂ =

∑
k ĉka(f̂k, 0) with ‖x̂‖A =

∑
k |ĉk| is another optimal solution.

We then have for the dual certicifate q:

〈q, x̂〉R =
〈
q,
∑
k

ĉka(f̂k, 0)
〉
R

=
∑
fk∈Ω

Re (ĉ∗k 〈q, a (fk, 0)〉) +
∑
fl /∈Ω

Re (ĉ∗l 〈q, a (fl, 0)〉)

<
∑
fk∈Ω

|ĉk|+
∑
fl /∈Ω

|ĉl|

≤ ‖x̂‖A

due to condition (4.5) if x̂ is not solely supported on Ω. So all optimal solutions are supported on
Ω. Since for both J = {−2M, · · · , 2M} and {0, · · · , n− 1}, the set of atoms with frequencies in Ω
are linearly independent, the optimal solution is unique.

C Proof of Proposition 4.2

Proof. Under the assumption that ∆min ≥ 1
M , we cite the results of [7, Proof of Lemma 2.2] as

follows: ∥∥I − D̄0

∥∥
∞ ≤ 6.253× 10−3∥∥∥ 1√∣∣K̄ ′′ (0)

∣∣D̄1

∥∥∥
∞
≤ 4.212× 10−2

∥∥∥I − (− 1∣∣K̄ ′′ (0)
∣∣D̄2

)∥∥∥
∞
≤ 0.3201,
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where ‖ · ‖∞ is the matrix infinity norm, namely, the maximum absolute row sum. Since I − D̄ is
symmetric and has zero diagonals, the Geršhgorin circle theorem [30] implies that∥∥I − D̄∥∥ ≤ ∥∥I − D̄∥∥∞

≤ max
{∥∥I − D̄0

∥∥
∞ +

∥∥∥ 1√∣∣K̄ ′′ (0)
∣∣D̄1

∥∥∥
∞
,

∥∥∥ 1√∣∣K̄ ′′ (0)
∣∣D̄1

∥∥∥
∞

+
∥∥∥I − (− 1∣∣K̄ ′′ (0)

∣∣D̄2

)∥∥∥
∞

}
= 0.3623.

As a consequence, D̄ is invertible and

‖D̄‖ ≤ 1 + ‖I − D̄‖ ≤ 1.3623,∥∥D̄−1
∥∥ ≤ 1

1−
∥∥I − D̄∥∥ ≤ 1.568.

D Proof of Lemma 4.5

Proof of Lemma 4.5. We start with computing the quantities necessary to apply Lemma 4.4:

EXj = 0

‖Xj‖ =

∥∥∥∥ 1

M
gM (j) (δj − p) e (j) e (j)∗

∥∥∥∥
≤ 1

M
‖gM‖∞ s

(
1 + max

|j|≤2M

(2πj)2

|K ′′ (0)|

)
≤ R := 14

s

M
forM ≥ 4.

Here we have used

‖gM‖∞ ≤ 1,

‖e(j)‖22 = s

(
1 + max

|j|≤2M

(2πj)2

|K ′′ (0)|

)
≤ 14s, for M ≥ 4.

We continue with σ2:

σ2 =

∥∥∥∥∥∥
2M∑

j=−2M

E
(

1

M2
g2
M (j) (δj − p)2 ‖e(j)‖22e (j) e∗ (j)

)∥∥∥∥∥∥
≤ 14

p (1− p)
M

s

∥∥∥∥∥∥ 1

M

2M∑
j=−2M

g2
M (j) e (j) e∗ (j)

∥∥∥∥∥∥ .
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To further bound σ2, we note

1

M

2M∑
j=−2M

g2
M (j) e (j) e∗ (j)

4 ‖gM‖∞
{ 1

M

2M∑
j=−2M

gM (j) e (j) e∗ (j)
}

= ‖gM‖∞ D̄,

which leads to ∥∥∥ 1

M

∑
j

g2
M (j) e (j) e∗

(
j
)∥∥∥

= λmax

( 1

M

∑
j

g2
M (j) e (j) e∗ (j)

)
≤ λmax

(
‖gM‖∞ D̄

)
= ‖gM‖∞

∥∥D̄∥∥
≤ 1.3623 ‖gM‖∞ by (4.15) and (4.10).

Therefore, we have

σ2 ≤ 20
p

M
s.

Invoking the non-commutative Bernstein’s inequality and setting t = pτ , we have

P
(∥∥p−1D − D̄

∥∥ ≥ τ) ≤ 2s exp

(
−p2τ2/2

20 p
M s+ 14 s

M pτ/3

)
≤ 2s exp

(
− 1

50
τ2m

s

)
(used τ ≤ 1)

≤ δ.

if

m ≥ 50

τ2
s log

2s

δ
.

Consequently, when τ < 1 − 0.3623 ≤ 1 −
∥∥I − D̄∥∥ according to (4.14), we have

∥∥I − p−1D
∥∥ ≤∥∥I − D̄∥∥+

∥∥p−1D − D̄
∥∥ < 1, confirming the invertibility of p−1D.

E Proof of Corollary 4.6

Assuming B is invertible and ‖A−B‖
∥∥B−1

∥∥ ≤ 1
2 , we have the following two inequalities:

∥∥A−1
∥∥ ≤ ∥∥B−1

∥∥
1− ‖A−B‖ ‖B−1‖

≤ 2
∥∥B−1

∥∥
∥∥A−1 −B−1

∥∥ ≤ ‖A−B‖
∥∥B−1

∥∥2

1− ‖A−B‖ ‖B−1‖
≤ 2

∥∥B−1
∥∥2 ‖A−B‖ ,
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which are rearrangements of∥∥A−1 −B−1
∥∥ ≤ ∥∥A−1

∥∥ ‖A−B‖ ∥∥B−1
∥∥∥∥A−1

∥∥ ≤ ∥∥A−1 −B−1
∥∥+

∥∥B−1
∥∥

≤
∥∥A−1

∥∥ ‖A−B‖ ∥∥B−1
∥∥+

∥∥B−1
∥∥ .

Therefore, we establish that when τ ≤ 1
4 <

1
2‖D̄−1‖ on the set E1,τ :

∥∥D−1 − p−1D̄−1
∥∥ ≤ 2

∥∥p−1D̄−1
∥∥2 ∥∥D − pD̄∥∥ = 2

∥∥D̄−1
∥∥2
p−1τ∥∥D−1

∥∥ ≤ 2
∥∥p−1D̄−1

∥∥ = 2
∥∥D̄−1

∥∥ p−1.

Since the operator norm of a matrix dominates that of all submatrices, this competes the proof.

F Proof of Lemma 4.7

The proof uses Talagrand’s concentration of measure inequality:

Lemma F.1 ( [33, Corollary 7.8]). Let {Yj} be a finite sequence of independent random variables
taking values in a Banach space and let V be defined as

V = sup
h∈H

∑
j

h (Yj)

for a countable family of real valued functions H. Assume that |h| ≤ B and Eh (Yj) = 0 for all
h ∈ H and every j. Then for all t > 0,

P (|V − EV | > t) ≤ 16 exp

(
− t

KB
log

(
1 +

Bt

σ2 +BEV̄

))
,

where σ2 = suph∈H
∑

j Eh2(Yj), V̄ = suph∈H

∣∣∣∑j h (Yj)
∣∣∣, and K is a numerical constant.

Proof of Lemma 4.7. Based on the definition of v`(f) in (4.35) and v̄`(f) in (4.19), we explicitly
write v` (f)− pv̄` (f) = v`(f)− Ev`(f) as

v` (f)− pv̄` (f) =
2M∑

j=−2M

1

M

(
i2πj√∣∣K̄ ′′ (0)

∣∣
)`
gM (j) (δj − p) ei2πfje(j)

=

2M∑
j=−2M

Y `
j ,

where e(j) is defined in (4.32) and we have defined Y `
j as

Y `
j =

1

M

(
i2πj√∣∣K̄ ′′ (0)

∣∣
)`
gM (j) (δj − p) ei2πfje(j).
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It is clear that {Y `
j }2Mj=−2M are independent random vectors with zero mean.

Define

V ` := ‖v` (f)− pv̄` (f)‖2 = sup
h:‖h‖2=1

〈v` (f)− pv̄` (f) , h〉R = sup
h∈C2s:‖h‖2=1

2M∑
j=−2M

〈Y `
j , h〉R

and

h(Y `
j ) = 〈Y `

j , h〉R = Re
( s∑
k=1

h∗kY
`
j,k

)
.

To compute the quantities necessary to apply Lemma F.1, we will extensively use the following
elementary bounds:

‖gM‖∞ ≤ 1,∣∣∣ 2πj√
K̄ ′′M (0)

∣∣∣ ≤ 4 whenM ≥ 2,

‖e(j)‖22 ≤ s

(
1 + max

|j|≤2M

(2πj)2

|K ′′ (0)|

)
≤ 14s when M ≥ 4.

First, we obtain an upper bound on |h|:

|h(Y `
j )| =

∣∣∣∣∣
〈

1

M

(
i2πj√∣∣K̄ ′′ (0)

∣∣
)`
gM (j) ei2πfje(j) (δj − p) , h

〉
R

∣∣∣∣∣
≤ 1

M

∣∣∣∣∣ i2πj√∣∣K̄ ′′ (0)
∣∣
∣∣∣∣∣
`

‖gM‖∞‖e(j)‖2

≤ B` := 4`+1

√
s

M
.

The expected value of ‖v` (f)− pv̄` (f)‖22 is upper bounded as follows:

E ‖v` (f)− pv̄` (f)‖22 =

2M∑
j=−2M

E
〈
Y `
j , Y

`
j

〉
R

+
∑
j 6=k

E
〈
Y `
j , Y

`
k

〉
R

=

2M∑
j=−2M

E
〈
Y `
j , Y

`
j

〉
R

≤
2M∑

j=−2M

1

M2

∣∣∣∣∣ 2πj√∣∣K̄ ′′ (0)
∣∣
∣∣∣∣∣
2`

g2
M (j) p (1− p) ‖e(j)‖22

≤ 42`+3 ps

M
when M ≥ 4. (F.1)
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Observe that V̄ ` = V ` = ‖v`(f)− pv̄`(f)‖2. We apply Jensen’s inequality and combine with (F.1)
to get

EV̄ ` = EV ` ≤
√
EV `2 ≤

√
42`+3

ps

M

≤ 22`+3

√
ms

M
.

Next, we upper bound σ2:

Eh2(Y `
j ) = 〈Y `

j , h〉2R

≤ 1

M2
42` ‖gM‖∞ E(δj − p)2

∣∣∣〈√gM (j)e(j), h
〉∣∣∣2

implying

∑
j

Eh2(Y `
j ) ≤ 1

M2
42`p

2M∑
j=−2M

∣∣∣h∗√gM (j)e(j)
∣∣∣2

=
1

M2
42`p ‖h∗P‖22

≤ 42` p ‖P‖
2

M2

where P is a matrix in C2s×(4M+1) whose jth column is
√
gM (j)e(j). Note that

PP ∗

M
=

1

M

2M∑
j=−2M

gM (j)e(j)e(j)∗ = D̄.

Therefore, we have

σ2
` =

∑
j

Eh2 (Yj) ≤ 42` p

M2
‖P‖2

≤ 42` 1

M2
pM

∥∥D̄∥∥
≤ 24`+1 m

M2

(
used

∥∥D̄∥∥ ≤ 2 from (4.15)
)

In conclusion, Lemma F.1 shows that

P (|‖v` (f)− pv̄` (f)‖2 − E ‖v` (f)− pv̄` (f)‖2| > t)

≤ 16 exp

(
− t

KB`
log

(
1 +

B`t

σ2
` +B`EV̄ `

))
≤ 16 exp

(
− t

KB`
log

(
1 +

B`t

24`+1 m
M2 +B`22`+3

√
ms
M

))

Suppose now σ̄2
` = B`2

2`+3
√
ms
M ≥ 24`+1 m

M2 , and fix t = aσ̄`. Then it follows that

P (|‖v` (f)− pv̄` (f)‖2 − E ‖v` (f)− pv̄` (f)‖2| > aσ̄`) ≤ 16e−γa
2
,
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for some γ > 0 provided B`t ≤ σ̄2
` . The same is true if σ̄2

` = 24`+1 m
M2 ≥ B`2

2`+3
√
ms
M and

B`t ≤ 24`+1 m
M2 . Therefore, let

σ̄2
` = max

{
24`+1 m

M2
, B`2

2`+3

√
ms

M

}
= 24`+1 m

M2
max

{
1, 24 s√

m

}
,

and fix a > 0 obeying

a ≤

{√
2m1/4 if 24s/

√
m ≥ 1

√
2

4

√
m
s otherwise.

Then we have

P
(
‖v` (f)− pv̄` (f)‖2 > 22`+1

√
ms

M
+ aσ̄`

)
≤ 16e−γa

2

for some γ > 0. Application of union bound proves the lemma.

G Proof of Lemma 4.9

The proof of Lemma 4.9 is based on Hoeffding’s inequality presented below:

Lemma G.1 (Hoeffding’s inequality). Let the components of u ∈ Cn be sampled i.i.d. from a
symmetric distribution on the complex unit circle, w ∈ Cn, and t be a positive real number. Then

P (|〈u,w〉| ≥ t) ≤ 4e
− t2

4‖w‖22 .

Proof of Lemma 4.9. Consider the random inner product 〈u, L∗(v`(f)− pv̄`(f))〉 where {uj} are
i.i.d. symmetric random variables with values on the complex unit circle. Conditioned on a partic-
ular realization

ω ∈ E :=
{
ω : sup

fd∈Ωgrid

‖L∗(v` (fd)− pv̄` (fd))‖2 < λ`, ` = 0, 1, 2, 3
}
,

Hoeffding’s inequality and union bound then imply

P
(

sup
fd∈Ωgrid

|〈u, L∗(v`(fd)− pv̄`(fd))〉| > ε
∣∣∣ω) ≤ 4 |Ωgrid| e

− ε2

4λ2
` .

Elementary probability calculation shows

P
(

sup
fd∈Ωgrid

|〈u, L∗(v`(fd)− pv̄`(fd))〉| > ε
)

= 4|Ωgrid|e−
ε2

4λ2 + P (Ec) .
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Setting

λ` = 4

(
22`+1

√
s

m
+
M

m
aσ̄`

)
in E and applying Lemma 4.8 yield,

P
(

sup
fd∈Ωgrid

|〈u, L∗(v`(fd)− pv̄`(fd))〉| > ε
∣∣∣ω)

≤ 4 |Ωgrid| e−
ε2

4λ2 + 64 |Ωgrid| e−γa
2

+ P
(
Ec1,τ

)
For the second term to be less than δ, we choose a such that

a2 = γ−1 log
64 |Ωgrid|

δ
,

and assume this value from now on. The first term is less than δ if

1

λ2
≥ 4

ε2
log

4 |Ωgrid|
δ

. (G.1)

First assume that 24s/
√
m ≥ 1. The condition in Lemma 4.7 is a ≤

√
2m1/4 or equivalently

m ≥ 1

4
γ−2 log2 64 |Ωgrid|

δ
. (G.2)

In this case, we have aσ̄` ≤ 22`+3
√
ms
M , leading to

1

λ2
=

1

16
(
22`+1

√
s
m + M

m aσ̄1

)2 ≥ 1

24`+625

m

s
.

Now suppose that 24s/
√
m ≤ 1. If 32s ≥ a2, then aσ̄` ≤ 22`+3

√
ms
M which again gives the above

lower bound on 1/λ2. On the other hand if 32s ≤ a2, then λ ≤ 5
√

222`−2 a√
m

and

1

λ2
≥ 1

24`−325

m

a2

Therefore, to verify (G.1) it suffices to take m obeying (G.2) and

mmin

(
1

24`+625

1

s
,

1

24`−325

1

a2

)
≥ 4

ε2
log

4 |Ωgrid|
δ

This analysis shows that the first term is less than δ if

m ≥ max
{ 4

ε2
24`+625s log

4|Ωgrid|
δ

,
4

ε2
24`−325γ−1 log

64|Ωgrid|
δ

log
4|Ωgrid|

δ
,

1

4
γ−2 log2 64 |Ωgrid|

δ

}
.

According to Lemma 4.5, the last term is less than δ if

m ≥ 50

τ2
s log

2s

δ
.
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Setting τ = 1/4, combining all lower bounds on m together, and absorbing all constants into one,
we get

m ≥ C max

{
1

ε2
max

(
s log

|Ωgrid|
δ

, log2 |Ωgrid|
δ

)
, s log

s

δ

}
,

is sufficient to guarantee

sup
fd∈Ωgrid

∣∣∣I`1 (fd)
∣∣∣ ≤ ε

with probability at least 1− 3δ. Union bound then proves the lemma.

H Proof of Lemma 4.10

Proof of Lemma 4.10. Recall that

I`2 (f) =
〈
u, (L− p−1L̄)∗pv̄` (f)

〉
On the set E1,τ defined in (4.33), we established in Corollary 4.6 that∥∥L− p−1L̄

∥∥ ≤ 2
∥∥D̄−1

∥∥2
p−1τ.

We use the `1 norm to bound the `2 norm of pv̄`(f):

‖pv̄` (f)‖2 ≤ ‖pv̄` (f)‖1

= p

(
s∑

k=1

1√∣∣K̄ ′′ (0)
∣∣`
∣∣∣K̄(`)

M (f − fk)
∣∣∣+

s∑
k=1

1√∣∣K̄ ′′ (0)
∣∣(`+1)

∣∣∣K̄(`+1)
M (f − fk)

∣∣∣).
To get a uniform bound on

∑s
k=1

1√
|K̄′′(0)|

`

∣∣∣K̄(`)
M (f − fk)

∣∣∣, we need the following bound:

1√∣∣K̄ ′′ (0)
∣∣`
∣∣∣K̄(`)

M (f)
∣∣∣ ≤ {C1 ∀f ∈ [−1

2 ,
1
2 ],

C2
M4|f |4 if 1

4M ≤ |f | ≤
1
2 .

for suitably chosen numerical constant C1 and C2. The bound over the region [ 1
4M ,

1
2 ] is a conse-

quence of the more accurate bound established in [7, Lemma 2.6], while the uniform bound C1 can
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be obtained by checking the expression of K̄
(`)
M (f). Consequently, we have

s∑
k=1

1√∣∣K̄ ′′ (0)
∣∣`
∣∣∣K̄(`)

M (f − fk)
∣∣∣

≤
∑

k:|f−fk|< 2
M

C1 +
∑

k: 2
M
≤|f−fk|≤ 1

2

C2

M4|f − fk|4

≤ 4C1 + C2

∞∑
k=1

1

M4(k∆min)4

≤ 4C1 + C2

∞∑
k=1

1

k4

= C := 4C1 +
π4

90
C2.

We conclude that on the set E1,τ

‖(L− p−1L̄)∗pv̄` (f) ‖2 ≤ Cτ.

Again, application of Hoeffding’s inequality and union bound gives

P

(
sup

fd∈Ωgrid

∣∣∣I`2 (fd)
∣∣∣ > ε

)

≤ 4 |Ωgrid| exp

(
− ε2

4Cτ2

)
+ P

(
Ec1,τ

)
.

To make the first term less than δ, it suffices to take

τ2 =
ε2

4C log
4|Ωgrid|

δ

.

To have the second term less than δ, we require

m ≥ C

τ2
s log

2s

δ

=
C
ε2

log
4|Ωgrid|

δ

s log
2s

δ

= C
1

ε2
s log

2s

δ
log

4 |Ωgrid|
δ

.

Another application of union bound with respect to ` = 0, 1, 2, 3 proves the lemma.
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