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Abstract—Signal demixing arises in many applications.
Common among these are the separation of sparse and low
rank components in image and video processing, sparse
and group sparse models in multitask learning and spikes
and sinusoids in source separation problems. For specific
problems of interest, many methods exist to perform
recovery, but an approach that generalizes to arbitrary
notions of simplicity has not been forthcoming. We propose
a framework for signal demixing when the components are
defined to be simple in a fairly arbitrary manner. Our
method remains computationally simple and can be used
in a variety of practical applications.

I. INTRODUCTION

The problem of demixing signals from noisy versions
of their sum plays a central role in many signal pro-
cessing and machine learning applications. For exam-
ple, in video processing applications, the signal can be
expressed as a sum of a low rank (the slowly varying
background) and sparse (the objects in the foreground)
components [1], [2]. In multitask learning applications,
modeling the parameters to be decomposable into sparse
and group sparse components has been shown to yield
superior performance as compared to the traditional
group sparse based framework [3], [4]. Separating group
sparse and low rank components has also been studied in
this framework [5], [6]. The problem of demixing signals
that are sparse in the canonical bases and sparse in the
Fourier basis is an age old problem in signal processing.
(For more applications and theory, please refer to [7]).

A common theme that unifies these problems is the
recovery of signals that have a “simple” decomposition
with respect to a certain basis or frame. For example,
sparse components can be seen as a linear combination
of a small number of scaled canonical basis vectors.
Similarly, low rank matrices can be seen as a linear
combination of a small number of unit rank matrices,
and so on. Such concepts can be extended to include

graphs with a few edges or cliques, low rank tensors,
(overlapping) group sparse components and so on. These
“simple” components that can be combined to yield
meaningful signals are called atoms, and the notion of
atomic norms [8] yield tractable convex heuristics to
perform penalized recovery of these signals.

We briefly describe the concepts of atoms and atomic
norms. We assume that a signal x can be expressed as
a conic combination of elements a ∈ A:

x =
∑
a∈A

caa, ca ≥ 0

The set A can be uncountabley infinite, but the signal
can be expressed as a sum of a finite number of atoms
a, justifying the sum notation above. The atomic norm
[8] is defined as

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
. (1)

The notion of atoms and the atomic norm generalizes
pre-existing notions of simplicity to include various
structures. For example, when the atoms are the (signed)
canonical basis vectors, the atomic norm reduces to the
`1 norm. When the atoms are unit rank matrices, we
obtain the nuclear norm. The set A can be fairly arbitrary
in general, and our goal is to develop an algorithm
that solves demixing problems involving such arbitrary
formulations.

The demixing problem involves recovering a signal
of the form x = x1 + x2 from observations y via a
sensing matrix Φ, where x1 and x2 can be expressed
compactly with respect to different atomic sets A1 and
A2. Recovery can then be expressed as the solution of
the following convex optimization problem:



minimize
x1,x2

f(x1,x2) :=
1

2
‖y −Φ(x1 + x2)‖2 (2)

subject to ‖x1‖A1 ≤ τ1 and ‖x2‖A2 ≤ τ2.

To solve (2), we propose an algorithm based on
the greedy conditional gradient (CG) method. Greedy
methods are typically computationally very efficient, and
scale well to large problems. However, a drawback of
these schemes is that the greedy strategy might pick
suboptimal atoms to represent the signal. To overcome
this, [9] propose a truncation step that purges suboptimal
atoms, provided the objective function does not deterio-
rate too much. This step is again very efficient, owing to
the quadratic nature of the objective function. We call our
method CoGEnT - demix, (Conditional Gradient with
Enhancement and Truncation, adapted to the demixing
problem. ) We informally explain it below, and provide
a more detailed description in the next section.

Each iteration starts by choosing an atom from A1

that nearly minimizes its inner product with the gradient
of the objective function with respect to x1; this is the
forward step with respect to A1. One then performs a
backward step for A1. Next follows a similar forward
step with respect to A2, followed by a backward step
for A2. We then proceed to the next iteration, unless
convergence is flagged. Note that the backward steps are
taken only if they do not deteriorate the objective func-
tion beyond a specified threshold. The entire procedure
is repeated until a termination condition is satisfied.

The rest of the paper is outlined as follows: in the next
section, we give some more details of the algorithm we
propose, including a pseudocode. In Section III, we test
our method on a variety of demixing problems com-
monly encountered in signal processing. We conclude
our paper in Section IV.

II. ALGORITHM

In the previous section, we informally explained our
method CoGEnT - demix for the case of separating two
signals that have a parsimonious representation with
respect to their respective bases. Algorithm 1 explains
the method in full generality, incorporating an arbitrary
number 2 ≤ R <∞ of regularizers. We write f(xr) to
denote the function f(x1, · · · ,xr) keeping all variables
except xr fixed.

We note below a few points with regards to Algorithm
1:

1) Algorithm 1 is the CoGEnT algorithm introduced
in [9] and further developed in [10] for convex
recovery of generally constrained signals. With a

Algorithm 1 CoGEnT - demix

1: Inputs: ∀r ∈ [R], Characterization of Ar, bounds
τ r, threshold η ∈ [0, 1)

2: Initialize t← 0, ar0 ∈ Ar, Ar
t ← [art ] , crt ← τ r

3: repeat
4: for r ∈ [R] do
5: ∇frt := ∂ft

∂xr

6: art+1 ← argmina∈Ar 〈∇frt ,a〉;
7: Ãr

t+1 ← [Ar
t art+1]

8: γt+1 ← argminγ∈[0,1] f(x
r
t+γ(τa

r
t+1−xrt ));

9: c̃rt+1 ← argminct+1
f(Ãr

t+1ct+1) s.t. ‖ct+1‖1 ≤
τ r, ct+1 ≥ 0 with the output from Step 8 as
a warm start;

10: x̃rt+1 = Ãr
t+1c̃

r
t+1;

11: Threshold F rt+1 := ηf(xrt ) + (1− η)f(x̃rt+1)
12: [Ar

t+1, c
r
t+1, x

r
t+1]

= TRUNCATE(Ãrt+1, c̃
r
t+1, τ, F

r
t+1);

13: end for
14: t← t+ 1
15: until convergence

slight modification in the method, we extend it to
the case of recovery of a mixture of signals.

2) Note that the (cyclic) alternating minimization
scheme mentioned in the algorithm can be re-
placed by a method that randomly chooses an
index r ∈ [R] and proceeds with the forward
and backward steps. In case of coordinate descent
methods, such random selection of covariates has
shown to sometimes outperform cyclic selection. A
thorough study of cyclic versus random coordinate
selection is beyond the scope of this paper.

Step 12 can be implemented in a variety of ways. The
implementation we choose for most of our experiments
in detailed below in Algorithm 2. Note that the back-
ward step can be used to delete multiple atoms from
the current representation, so long as the increase in
the objective function value stays below a predefined
threshold. This allows the resulting representation to be
extremely parsimonious, even though we select atoms in
a greedy fashion.

A. Effect of Enhancement and Truncation Steps

From Algorithm 1, we see that at each iteration, we
perform what we call “enhancement” and “truncation”
steps. A simple experiment in sparse signal recovery will
highlight the effect that these steps have, compared to the
standard conditional gradient method.
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Algorithm 2 : TRUNCATE(Ãt+1, c̃t+1, τ, Ft+1)

1: Input: Current basis Ãt+1, coefficient vector c̃t+1,
iterate x̃t+1 = Ãt+1c̃t+1; bound τ ; threshold Ft+1;

2: continue ← 1;
3: while continue= 1 do
4: ât+1 ← argmina∈Ãt+1

f(x̃t+1 − caa)
5: Ât+1 ← Ãt+1\{ât+1};
6: Find ĉt+1 ≥ 0 with ‖ĉt+1‖1 ≤ τ such that

f(Ât+1ĉt+1) ≤ f(x̃t+1 − (c̃ât+1
)t+1ât+1);

7: if f(Ât+1ĉt+1) ≤ Ft+1 then
8: Ãt+1 ← Ât+1;
9: x̃t+1 ← Ât+1ĉt+1;

10: c̃t+1 ← ĉt+1;
11: else
12: continue ← 0;
13: end if
14: end while
15: At+1 ← Ãt+1; xt+1 ← x̃t+1; ct+1 ← c̃t+1;
16: Output: Possibly reduced basis At+1, coefficient

vector ct+1 ≥ 0, and iterate xt+1.

We consider a sparse signal x of length p = 20000,
with 5% of randomly set to nonzero values. Setting
n = 5000, we construct the n×p matrix Φ to have i.i.d.
Gaussian entries, and corrupt the measurements with
Gaussian noise (AWGN) of standard deviation σ = 0.01.
We set τ = ‖x?‖1, where x? is the chosen optimal
signal. Fig 1 plots the objective function value (on a
logarithmic scale) as a function of time and the number
of iterations taken. Clearly, we can see that the method
we used achieves much faster convergence. In fact, the
enhancement step is key in achieving faster convergence
rates, and is costly related to the Chebyshev Weak
Greedy Algorithm considered in [11].

We note below a few special cases that are typically
of interest to the signal processing community, and show
that the greedy selection step 6 can be solved very
efficiently

• When ‖x‖A = ‖x‖1, we merely need to pick the
coordinate with maximum absolute value.

• When ‖x‖A = ‖x‖∗, step 6 involves computing the
leading singular vectors of the gradient matrix. Note
that this can be performed efficiently using power
iterations, and is an order of magnitude cheaper than
computing the full SVD of the matrix, as will be
the case when proximal point methods are used.

• For group sparse signals ‖x‖A =
∑
G∈G ‖xG‖2,

we only need to pick the group with maximal
norm. The same scheme will work even when the
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Fig. 1: Comparison between CoGEnT and standard con-
ditional gradient (CG).

groups overlap arbitrarily, thus obviating the need
to explicitly replicate variables for typical first order
methods.

III. EXPERIMENTS AND RESULTS

In our first example, we consider the standard recovery
of sparse + low rank matrices. We consider a matrix of
size 50× 50, which is a sum of a random rank 4 matrix
and a sparse matrix with 100 entries. The sets A1 and A2

are defined in the usual way for these types of matrices.
Figure 2 shows that CoGEnT recovers the components.

We also consider recovery of a mixture of signals that
are sparse in the canonical and DCT bases. We generated
random signals with sparsity level 10 in each of the
bases, and applied our method to perform recovery. Fig 3
shows that our method indeed recovers the components
accurately
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(a) (left) True and (Right) recovered sparse component

(b) (left) True and (Right) recovered low rank component

Fig. 2: Recovery of a sparse + low rank matrix. The left
column shows true components, and the right column
shows recovered components. Error in each recovered
component is at most 10−7.
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Fig. 3: Recovery of a signal that is sparse in the DCT and
canonical basis. The MSE for the top figure is 2.3×10−5,
and that for the lower figure is 3.3×10−5. The blue bars
represent the true components and the red stars represent
the recovered coefficients

A. Novel Application: Graph Deconvolution

Finally we apply the demixing method we present here
to the problem of deconvolution of graphs. More for-
mally, consider two simple, undirected weighted graphs
G1 = (V,W1) and G2 = (V,W2) where V represents
a (common) vertex set and W1,W2 are the weighted
adjacency matrices, with superposition W =W1 +W2.
Problems of this form are of interest in covariance
estimation: W1 and W2 may correspond to covariance

matrices of random vectors X1 and X2, and from
samples of X = X1 + X2, one may wish to recover
the covariances W1 and W2.

As an example, we consider a graph of |V | = 50
nodes in which G1 and G2 are each restricted to a
specific family of graphs T1 and T2, respectively, with
the following properties.

• T1 is the class of all tree-structured graphs on 50
nodes. Note that the only information we exploit
here is the fact that G1 is tree structured. Neither the
edges of the tree nor the edge weights are known.

• T2 is the class of two-dimensional 5 × 10 grid
graphs on 50 nodes. The nodes of the graph are
known up to a cyclic permutation. Once again,
neither the edges of the graph nor the corresponding
weights are known. The only information available
is that one of the 50 cyclic permutations of the
nodes yields the desired grid-structured graph.

For set T1, we define the atomic set A1 to be the set
of all matrices with Frobenius norm 1, whose nonzero
structure is the adjacency matrix of a tree. For the set T2

we define the atomic set A2 as follows. Let P ⊆ Rn×n
denote the set of all permutation matrices corresponding
to the cyclic permutations (that is, permutations in the
cyclic group of order n). Let G(p, q) (with pq = n)
denote the set of all weighted adjacency matrices (of
unit Frobenius norm) of p × q grid graphs with a fixed
canonical labeling of the nodes. The atomic set A2

is the set of weighted adjacency matrices for cyclic
permutations of all these adjacency matrices.

Given these definitions, and assuming that we observe
the full matrices, we state this deconvolution problem as:

minimize
X1,X2

1

2
‖W −X1 −X2‖2

subject to ‖X1‖A1 ≤ τ1 and ‖X2‖A2 ≤ τ2.

From the algorithm presented in Algorithm 1, we see
that an efficient implementation of the greedy step 6 is
possible when the dual norm is efficiently computable.
Indeed, for any norm ‖ · ‖A, the dual is given by

‖ · ‖∗A = sup
‖x‖A≤1

〈·,x〉

and we see that the greedy step amounts to finding
the argument that achieves the supremum in the above
definition, with (·) being the negative gradient of the loss
function at the present iteration.

For the setting of recovering graph adjacency matrices,
the variational descriptions of the dual atomic norms are
given by:
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‖Y ‖∗Ai
= max
‖Z‖Ai

≤1
[trace (ZY )]

= max
A∈Ai

[trace (AY )]

For A1, the dual norm essentially amounts to com-
putation of a maximum weight spanning tree, while for
A2, the dual norm can be computed in a straightforward
way by sweeping through the n possible permutations
of the grid graph to solve:

‖Y ‖∗A2
= max
P∈P,‖G(p,q)‖F≤1

trace
(
P

′
G(p, q)PY

)
.

Our problem instances are generated as follows. We
created a random tree by generating a random (sym-
metric) matrix with entries distributed as U [0, 1], and
extracting its maximum weight spanning tree. The grid
component was also chosen with similarly chosen ran-
dom weights. The resulting graphs were then superposed
and then randomly permuted. Results are shown in
Fig. 4. CoGEnT achieves exact recovery; that is, the
edges as well as the edge weights of the constituent
graphs are correctly recovered.

0.13539 1.8233

(a) True signal is a superposi-
tion of a weighted tree and a
weighted grid graph.

0.17698 0.21905

(b) Tree component, recov-
ered by CoGEnT .

0.13539 1.8233

(c) Grid graph component, re-
covered by CoGEnT .

Fig. 4: Recovering constituent graph components from
a superposition of weighted graphs. Edge weights are
color-coded, with darker colors representing higher
weights. CoGEnT correctly deconvolves the graph into
its constituent components. (Best seen in color)

IV. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we extended the CoGEnT optimization
framework to solve problems in signal demixing. The

method proceeds by solving one iteration of the min-
imization problem with respect to a single variable,
keeping all other variables fixed. The method allows
one to separate signals that are simple in a very general
sense of the term, and only relies on an efficient method
to compute the dual of the (convex) constraint on the
simplicity of the signal. Experiments on a variety of
problems show that CoGEnT - demix indeed recov-
ers constituent signals from corrupted measurements to
within reasonable accuracy.

Recent results have hinted that upon appropriate
initialization of the variables, alternating minimization
schemes converge to the optimal solution even though
the problem is convex in each variable alone. It will
be interesting to investigate such convergence criteria
for general atomic norm based signal demixing as con-
sidered in this paper. Furthermore, the ability to handle
arbitrary notions of simplicity in the solution opens up
a wide variety of problems that can be considered and
solved for.
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